CHAPTER

CIRCLES

Syllabus

- > Tangent to a circle at point of contact.
 - 1. (Prove) The tangent at any point of a circle is perpendicular to the radius through the point of contact.
 - 2. (Prove) The lengths of tangents drawn from an external point to a circle are equal.

Chapter Analysis

		2016			2017		2018
List of Topics	Delhi	Outside	Foreign	Delhi	Outside	Foreign	Delhi
List of Topics		Delhi			Delhi		&
				~ 2			Outside Delhi
Tangent to circle	1 Q (1 M)	1 Q (1 M)	1 Q (1 M)	1 Q (3 M)	1 Q (1 M)	1 Q (1 M)	
	2 Q (2 M)	1 Q (4 M)					
	2 Q (4 M)	1 Q (4 M)	2 Q (4 M)	1 Q (4 M)	1 Q (4 M)	1 Q (2 M)	
Question based on		1 Q (4 M)			1 Q (4 M)	2 Q (3 M)	1 Q (3 M)
properties of tangent							
		(X				
Revision Notes			U				

Revision Notes

- > A tangent to a circle is a line that intersects the circle at one point only.
- > The common point of the circle and the tangent is called the point of contact.
- > The length of the segment of the tangent from the external point P and the point of contact with the circle is called the length of the tangent.
- > A tangent to a circle is a special case of the secant when the two end points of the corresponding chord are coincide.
- > There is no tangent to a circle passing through a point lying inside the circle.
- > There are exactly two tangents to a circle through a point outside the circle.
- > At any point on the circle there can be one and only one tangent.
- > The tangent at any point of a circle is perpendicular to the radius through the point of contact.

> The lengths of the tangents drawn from an external point to a circle are equal.

In the figure, PA = PB.

Know the Facts

- The word 'tangent' comes from the Latin word 'tangere', which means to touch and was introduced by the Danish mathematician Thomas Fincke in 1583.
- > The line containing the radius through the point of contact is also called the 'normal' to the circle at that point.
- In two concentric circles, the chord of the larger circle, which touches the smaller circle, is bisected at the point of contact.

Objective Type Questions

[A] Multiple Choice Questions :

- Q. 1. If the radii of two concentric circles are 4 cm and 5 cm, then the length of each chord of one circle which is the tangent to the other circle is :
 - (a) 3 cm (b) 6 cm
 - (c) 9 cm (d) 1 cm
- **Sol. Correct option :** (b) **Explanation :** Let C_1 , C_2 be two concentric circles with their centre C.

Chord *AB* of circle C_2 touches C_1 at *P*

AB is tangent at *P* and *PC* is radius ∴ $CP \perp AB$ Given, $\angle P = 90^\circ$, CP = 4 cm and CA = 5 cm ∴ In right angle $\triangle PAC$, $AP^2 = AC^2 - PC^2$ $= 5^2 - 4^2$ = 25 - 16 = 9 $\Rightarrow AP = 3$ cm \therefore Perpendicular from centre to chord bisects the chord.

(1 mark each)

$$AB = 2AP$$
$$= 2 \times 3$$
$$= 6 \text{ cm}.$$

...

Q. 2. In the given figure, if $\angle AOB = 125^\circ$, then $\angle COD$ is equal to :

182

Sol. Correct option : (d)

Explanation : Since, quadrilateral circumscribing a circle subtends supplementary angles at the centre of the circle.

$$\angle AOB + \angle COD = 180^{\circ}$$
$$125^{\circ} + \angle COD = 180^{\circ}$$

$$\angle COD = 180^\circ - 125^\circ = 55^\circ$$

Q. 3. In the given figure, *AB* is a chord of the circle and *AOC* is its diameter, such that $\angle ACB = 50^{\circ}$. If *AT* is the tangent to the circle at the point A, then $\angle BAT$ is equal to :

Sol. Correct option : (c) *Explanation :* Since, the angle between chord and tangent is equal to the angle subtended by the same chord in alternate segment of circle.

$$\Rightarrow \qquad \angle BAT = 50^{\circ}$$

Q. 4. From a point *P* which is at a distance of 13 cm from the centre *O* of a circle of radius 5 cm, the pair of tangents *PQ* and *PR* to the circle are drawn. Then the area of the quadrilateral *PQOR* is :

Sol. Correct option : (a) *Explanation : PQ* is tangent and *QO* is radius at contact point *Q*. $\therefore \angle PQO = 90^{\circ}$ $\therefore By Pythagoras theorem, PQ^{2} = OP^{2} - OQ^{2} = 13^{2} - 5^{2} = 169 - 25 = 144$ $\Rightarrow PQ = 12 \text{ cm}$ $\therefore \Delta OPQ \cong \Delta OPR \qquad [SSS \text{ congruence}]$ $\therefore Area of \Delta OPQ = \text{ area of } \Delta OPR = 2 \text{ area of } \Delta OPR = 2 \times \frac{1}{2} \text{ base } \times \text{ height}$ $= RP \times OR = 12 \times 5$

$$= 12 \times 3$$

= 60 cm²

- Q. 5. At one end *A* of diameter *AB* of a circle of radius 5 cm, tangent *XAY* is drawn to the circle. The length of the chord *CD* parallel to *XY* and at a distance 8 cm from *A* is :
 - (a) 4 cm (b) 5 cm
 - (c) 6 cm (d) 8 cm
 - C + U [NCERT Exemp.]
- Sol. Correct option : (d) *Explanation : XAY* is tangent and *AO* is radius at

$$\therefore \angle OAY = 90^{\circ}$$

20AI = 90

CD is another chord at distance (perpendicular) of 8 cm from *A* and *CMD* || *XAY* meets *AB* at *M*. Join *OD*.

- OD = 5 cm
- OM = 8 5 = 3 cm

 $\angle OMD = \angle OAY = 90^{\circ}$

Now, in right angled $\triangle OMD$

 $MD^2 = OD^2 - MO^2$

$$= 5^2 - 3^2$$

= 25 - 9

$$= 16$$

$$MD = 4 \,\mathrm{cm}$$

We know that, Perpendiculars from centre *O* of circle bisect the chord.

$$CD = 2MD$$

...

$$= 2 \times 4$$

$$= 8 \text{ cm}$$

Hence, length of chord, CD = 8 cm.

- Q. 6. In the given figure, AT is a tangent to the circle with centre 'O' such that OT = 4 cm and $\angle OTA$ = 30°. Then AT is equal to :
 - (a) 4 cm (b) 2 cm
 - (c) $2\sqrt{3}$ cm (d) $4\sqrt{3}$ cm

Sol. Correct option : (c) Explanation : Join OA. OA is radius and AT is tangent at contact point A.

base

$$\therefore \qquad \angle OAT = 90^{\circ},$$

Given that,
$$OI = 4 \text{ cm}$$

Now $\frac{AT}{2} = \frac{ba}{2}$

Now.

 \Rightarrow

$$\frac{111}{4} = \frac{1}{\text{hypotenuse}} = \cos 30^{\circ}$$
$$AT = 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3} \text{ cm}.$$

Q. 7. In the given figure, 'O' is the centre of circle, PQ is a chord and the tangent PR at P makes an angle of 50° with *PQ*, then $\angle POQ$ is equal to :

(a) 100° (b) 80° (c) 90° (d) 75° Р R 50° U [NCERT Exemp.] Sol. Correct option : (a) Explanation : OP is radius and PR is tangent at P. $\angle OPR = 90^{\circ}$ So, $\Rightarrow \angle OPQ + 50^\circ = 90^\circ$ $\angle OPO = 90^{\circ} - 50^{\circ}$ \Rightarrow $\angle OPQ = 40^{\circ}$ \Rightarrow In ΔOPQ , OP = OQ[Radii of same circle] $\therefore \angle Q = \angle OPQ = 40^{\circ}$ [Angle opposite to equal sides are equal] But, $\angle POQ = 180^\circ - \angle P - \angle Q$ $= 180^{\circ} - 40^{\circ} - 40^{\circ} = 180^{\circ} - 80^{\circ} = 100^{\circ}$ \Rightarrow $\angle POQ = 100^{\circ}$. Q. 8. In the given figure, if PA and PB are tangents to the circle with centre O such that $\angle APB = 50^\circ$,

then $\angle OAB$ is equal to :

(a)	25°	(b) 30°
(c)	40°	(d) 50°

U [NCERT Exemp.]

Sol. Correct option : (a) *Explanation* : In $\triangle OAB$, we have OA = OB[Radii of same circle] $\therefore \angle OAB = \angle OBA$ [Angle opposite to equal sides are equal] As OA and PA are radius and tangent respectively at contact point A. So, $\angle OAP = 90^{\circ}$. Similarly, $\angle OBP = 90^{\circ}$ Now, in quadrilateral PAOB, $\angle P + \angle A + \angle O + \angle B = 360^{\circ}$ $\Rightarrow 50^\circ + 90^\circ + \angle O + 90^\circ = 360^\circ$ $\angle O = 360^{\circ} - 90^{\circ} - 90^{\circ} - 50^{\circ}$ $\angle O = 130^{\circ}$ Again, in $\triangle OAB$, $\angle O + \angle OAB + \angle OBA = 180^{\circ}$ $\Rightarrow 130^{\circ} + \angle OAB + \angle OAB = 180^{\circ} [\because \angle OBA = \angle OAB]$ $\Rightarrow 2\angle OAB = 180^\circ - 130^\circ = 50^\circ$ $\angle OAB = 25^{\circ}$ \Rightarrow Hence, $\angle OAB = 25^{\circ}$

- Q. 9. If two tangents inclined at an angle 60° are drawn to a circle of radius 3 cm, then the length of each tangent is equal to :
 - $\frac{3}{2}\sqrt{3}$ cm (a) (b) 6 cm

(d)
$$3\sqrt{3}$$
 cm

Sol. Correct option : (d)

Explanation : Let, OA and PA be the radius and the tangent, respectively at contact point A of a circle of radius OA = 3 cm.

U [NCERT Exemp.]

$$\therefore \qquad \angle PAO = 90^{\circ}$$

In right angled $\triangle POA$,
 $\tan 30^{\circ} = \frac{\text{Perpendicular}}{\text{Base}} = \frac{OA}{PA}$
$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{3}{PA}$$

$$\Rightarrow PA = 3\sqrt{3}$$

- Q. 10. In the given figure, if *PQR* is the tangent to a circle at *Q*, whose centre is *O*, *AB* is a chord parallel to *PR* and $\angle BQR = 70^\circ$, then $\angle AQB$ is equal to :
 - (a) 20° (b) 40°
 - (c) 35°

Sol. Correct option : (b)

Explanation : Given that *AB* || *PQR*

 $\angle B = \angle BQR = 70^{\circ}$ [Alternate interior angles] $\angle OQR = \angle AMQ$ [Alternate interior angles] As *PQR* and *OQ* are tangent and radius at contact point *Q* $\therefore \quad \angle OQR = 90^{\circ}$

 $\Rightarrow \angle 1 + \angle 70^\circ = 90^\circ$ $\angle 1 = 90^{\circ} - 70^{\circ} = 20^{\circ}$ \Rightarrow $\angle AMO = 90^{\circ}$ · · . · Perpendicular from centre to chord bisect the chord MA = MB*.*.. $\angle QMA = \angle QMB = 90^{\circ}$ MO = MO[Common] $\therefore \Delta QMA \cong \Delta QMB$ [SAS congruence] $\angle A = \angle B$ \Rightarrow $\angle A = 70^{\circ}$ $[\because \angle B = 70^\circ]$ \Rightarrow $\therefore \angle A + \angle AMQ + \angle 2 = 180^{\circ}$ [Angle sum property of a triangle] $\Rightarrow 70^\circ + 90^\circ + \angle 2 = 180^\circ$ $\angle 2 = 180^{\circ} - 160^{\circ}$ \Rightarrow $2 = 20^{\circ}$ \Rightarrow

- $\therefore \qquad \angle AQB = \angle 1 + \angle 2 = 20^\circ + 20^\circ = 40^\circ$
- Q. 11. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that OQ = 12 cm. Length PQ is :

Sol. Correct option : (d)

Explanation : We know that the radius is perpendicular to tangent In $\triangle OPQ$, we have $\angle P = 90^{\circ}$ By Pythagoras Theorem, $OQ^2 = PQ^2 + OP^2$ $(12)^2 = PQ^2 + (5)^2$

$$\Rightarrow$$
 144= PQ^2 +25

$$\Rightarrow PQ^2 = 144 - 25 = 119$$

$$\Rightarrow PQ = \sqrt{119}$$
 cm

Q. 12. From a point *Q*, the length of the tangent to a circle is 24 cm and the distance of *Q* from the centre is 25 cm. The radius of the circle is :

Sol. Correct option : (a)

Explanation : Let *O* be the centre of the circle. Given that, OQ = 25 cm and PQ = 24 cm We know that the radius is perpendicular to the tangent at the point of contact, $\therefore OP \perp PQ$

In $\triangle OPQ$, we have By Pythagoras theorem,

$$OP^2 + PO^2 = OO^2$$

$$OP + PQ = O$$

$$OP^2 + 24^2 = 25^2$$

$$r^2 + 576 = 625$$

$$OP^2 = 625 - 576$$

$$OP^{2} = 49$$

(a) 60°

(c) 80°

OP = 7 cm

Therefore, the radius of the circle is 7 cm.

Q. 13. In the given figure, if *TP* and *TQ* are the two tangents to a circle with centre *O* so that $\angle POQ = 110^\circ$, then $\angle PTQ$ is equal to :

A + U [NCERT Exemp.]

Sol. Correct option : (b)

Explanation: Given that, TP and TQ are tangents, We know that the radius drawn to the tangents will be perpendicular.

 $\therefore OP \perp TP$

and $OQ \perp TQ$

 $\angle OPT = 90^{\circ}$

$$\angle OQT = 90^{\circ}$$

In quadrilateral POQT, Sum of all interior angles = 360°

 $\angle OPT + \angle POQ + \angle OQT + \angle PTQ = 360^{\circ}$

$$90^{\circ}+110^{\circ}+90^{\circ}+\angle PTO=360^{\circ}$$

$$\angle PTQ = 70^{\circ}$$

- Q. 14. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80°, then $\angle POA$ is equal to :
 - (b) 60° (a) 50°
 - (c) 70° (d) 80°
 - A + U [NCERT Exemp.] **Sol. Correct option :** (a) *Explanation* : Given that, *PA* and *PB* are tangents.

We know that the radius drawn to the tangents are perpendicular,

 $\therefore OA \perp PA$

and $OB \perp PB$

∠OBP=90°

∠OAP=90°

In AOBP, we have Sum of all angles = 360° $\angle OAP + \angle APB + \angle PBO + \angle BOA = 360^{\circ}$

$$90^{\circ} + 80^{\circ} + 90^{\circ} + \angle PTQ = 360^{\circ}$$

∠BOA=100°

In $\triangle OPA$ and $\triangle OPB$ we	have
AP = BP	[Tangents from same point]
OA = OB	[Radii]
OP = OP	[Common side]
$\Delta OPB \cong \Delta OPA$	[SSS congruency]
$\angle POB = \angle POA$	[cpct]
$\angle POA = \frac{1}{2} \angle AOB = \frac{100}{2}$	=50°

Q. 15. In figure PQ and PR are two tangents to a circle with centre O. If $\angle QPR = 46^\circ$, then $\angle QOR$ equals :

(a)
$$67^{\circ}$$
 (b) 134°
(c) 44° (d) 46°
[A] + U [Board Term- 2, Set-I, 2014]

Sol. Correct option : (b)

Explanation : In Quadrilateral PQOR,

$$\angle QPR + \angle PRO + \angle QOR + \angle PQO = 360^{\circ}$$

 $46^{\circ} + 90^{\circ} + \angle QOR + 90^{\circ} = 360^{\circ}$
 $[\because \angle PRO = \angle PQO = 90^{\circ}]$
 $\angle QOR = 360^{\circ} - 226^{\circ}$
 $\angle OOR = 134^{\circ}$.

Q. 16. In figure, OR is common tangent to the given circles, touching externally at the point T. The tangent at T meets QR at P. If PT = 3.8 cm, then the length of QR (in cm) is :

Sol. Correct option : (b)

Explanation : Since,

QP = PT = 3.8 cm (:: tangents of circle) PR = PT = 3.8 cm (:: tangents of circle) and QP = PR = 3.8 cm*.*.. QR = QP + PR= 3.8 + 3.8= 7.6

Q. 17. Two circles touch each other externally at P. AB is a common tangent to the circles touching them at A and B. The value of $\angle APB$ is :

(a) 30° (b) 45°

(c) 60° (d) 90°

A + U [Board term-2, Foreign Set- 1, 2014]

Sol. Correct option : (d)

Explanation :

$$\therefore \qquad \angle APB = (a + b)$$

$$\angle BAP + \angle APB + \angle BPA = 180^{\circ}$$

$$a + (a + b) + b = 180^{\circ}$$

$$2(a + b) = 180^{\circ} \Rightarrow a + b = 90^{\circ}$$

So,
$$\angle APB = 90^{\circ}.$$

Q. 18. In figure, *PA* and *PB* are two tangents drawn from an external point *P* to a circle with centre *C* and radius 4 cm. If $PA \perp PB$, then the length of each tangent is :

$$= 45^{\circ}$$
.

Q. 20. In figure, a circle with centre *O* is inscribed in a quadrilateral *ABCD* such that, it touches the sides *BC*, *AB*, *AD* and *CD* at points *P*, *Q*, *R* and *S* respectively. If AB = 29 cm, AD = 23 cm, $\angle B = 90^{\circ}$ and DS = 5 cm, then the radius of the circle (in cm.) is :

(a) 11 (b) 18 (c) 6 (d) 15

[NCERT Exp.]

Sol. Correct option : (a) *Explanation :* Since *DS* = *DR* = 5 cm

(tangents of a circle from same external point)

AR = AD - DRNow, = 23 - 5 = 18 cm AR = AQ = 18 cmSimilarly, (tangents) QB = AB - AQNow, = 29 - 18 = 11 cmSimilarly, QB = PB = 11 cm $\angle B = 90^{\circ}$ Given, $\angle POQ = 90^{\circ}$ So, Hence, OQBP is square •.• OB = 11 cm

$$\sim$$
 Side of square = 11 cm, so the radius = 11 cm.

Q. 21. If figure, a quadrilateral *ABCD* is drawn to circumscribe a circle such that its sides *AB*, *BC*, *CD* and *AD* touch the circle at *P*, *Q*, *R* and *S* respectively. If AB = x cm, BC = 7 cm, CR = 3 cm and AS = 5 cm, find x:

Sol. Correct option : (c)

Explanation :

$$AS = AP = 5 \text{ cm}$$

 $BP = BQ, BQ + CO = BC = 7 \text{ cm}$

$$BQ = 7 - 3 = 4 \text{ cm} \Rightarrow BP = 4 \text{ cm}$$

 $AB = x, AP + BP = x \Rightarrow 5 + 4 = x \Rightarrow x = 9.$

Q. 22. Two concentric circles are of radii 5 cm and 3 cm. Length of the chord of the larger circle, (in cm), which touches the smaller circle is :

(a) 4 (b) 5
(c) 8 (d) 10
$$A + U$$

Sol.

Correct option : (c) *Explanation :* In $\triangle AOP$, Applying Pythagoras Theorem, $AO^2 = OP^2 + AP^2$

[B] Very Short Answer Type Questions :

Q. 1. In the given figure, *AOB* is a diameter of the circle with centre *O* and *AC* is a tangent to the circle at A. If $\angle BOC = 130^\circ$, then find $\angle ACO$.

U [Foreign Set I, II, III, 2016]

Sol. $\angle OAC = 90^{\circ}$ (as radius \perp tangent) $\angle BOC = \angle OAC + \angle ACO$

(Exterior angle property)

1

$$130^\circ = 90^\circ + \angle ACO$$

or,
$$\angle ACO = 130^{\circ} - 90^{\circ} = 40^{\circ}$$

Q. 2. From an external point *P*, tangents *PA* and *PB* are drawn to a circle with centre *O*. If $\angle PAB = 50^{\circ}$, then find $\angle AOB$. \bigcup [Delhi Set I, II, III, 2016]

Q. 3. What is the maximum number of parallel tangents a circle can have on a diameter ?

R [Board Term-2, 2012 Set (34)]

Sol. Since, tangent touches a circle on a distinct point. On the diameter of a circle only two parallel tangents can be drawn.

[CBSE Marking Scheme, 2012] 1

Q. 4. In fig., *PA* and *PB* are tangents to the circle with centre O such that $\angle APB = 50^{\circ}$. Write the measure of $\angle OAB$. [Delhi CBSE Board, 2015, Set I, II, III]

50°

Sol. Here,
$$\angle APB =$$

$$\angle PAB = \angle PBA = \frac{180^{\circ} - 50^{\circ}}{2} = 65^{\circ}$$
$$\angle OAB = 90^{\circ} - \angle PAB$$
$$= 90^{\circ} - 65^{\circ} = 25^{\circ}$$

Q. 5. In the given figure, PQ and PR are tangents to the circle with centre O such that ∠QPR = 50°, then find ∠OQR. [Board Term-2, 2012 Set (31)] [Delhi CBSE Term II, 2015 Set I, II, III]

$$Q$$

 O
 R
 R

Sol.
$$\angle QPR = \angle 50^{\circ}$$
 (Given)
 $\angle QOR + \angle QPR = 180^{\circ}$

(Supplementary angles)

 $\angle QOR = 180^{\circ} - 50^{\circ} = 130^{\circ}$ ¹/₂

From $\triangle OQR$

÷.

or,

$$\angle OQR = \angle ORQ = \frac{180^\circ - 130^\circ}{2}$$

$$=\frac{50^{\circ}}{2}=25^{\circ}$$
 ¹/₂

[CBSE Marking Scheme, 2015]

Q. 6. If *PQ* and *PR* are two tangents to a circle with centre O. If $\angle QPR = 46^\circ$, find $\angle QOR$.

U [Delhi, CBSE, Term-2, 2014]

Sol. Since, $\angle QOR + \angle QPR = 180^{\circ}$

(Supplementary angles) or, $\angle QOR + 46^\circ = 180^\circ$ or, $\angle QOR = 180^\circ - 46^\circ = 134^\circ$. **1** Q. 7. If the angle between two tangents drawn from an external point P to a circle of radius a and centre O, is 60°,
then find the length of OP.[Outside Delhi Set I, II, III, 2017]

A [Board Term-2, 2012 Set (31)]

$$= 2 \times \Delta POO$$

$$=$$
 base \times height

$$= 12 \times 5 = 60 \text{ cm}^2$$

 $\frac{1}{2}$

[CBSE Marking Scheme, 2012]

Q. 13. If O is centre of a circle, PQ is a chord and the tangent PR at P makes an angle of 50° with PQ, U [Board Term-2, 2012 Set (26)] find $\angle POQ$.

Q. 14. In fig., PA and PB are two tangents drawn from an external point P to a circle with centre C and radius 4 cm. If $PA \perp PB_{\prime}$ then find the length of each tangent. **U** [Board Term-2, 2013]

Sol. Here, CAPB will be a square

Then,
$$CA = AP = PB = BC = 4 \text{ cm}$$

 \therefore Length of tangent = 4 cm.

Q. 15. What is the length of the tangent drawn from a point 8 cm away from the centre of a circle of radius 6 cm? **U** [Board Term-2, 2012 Set (22)]

Sol. Length of the tangent = $\sqrt{d^2 - r^2}$

$$= \sqrt{(8)^{2} - (6)^{2}}$$

= $\sqrt{64 - 36}$
= $\sqrt{28} = 2\sqrt{7}$ cm. 1

[CBSE Marking Scheme, 2012]

Q. 16. If the angle between two radii of a circle is 130°, then what is the angle between the tangents at the end points of radii at their point of intersection?

U [Board Term II, 2012 Set (22)]

Sol. Since, sum of the angles between radii and between intersection point of tangent is 180°.

Angle at the point of intersection of tangents

$$= 180^{\circ} - 130^{\circ} = 50^{\circ}.$$
 1

[CBSE Marking Scheme, 2012]

- Q. 17. To draw a pair of tangents to a circle which are inclined to each other at an angle of 30°, it is required to draw tangents at end points of two radii of the circle, what will be the angle between fhem ? **R** [Board Term II, 2012 Set (31)]
 - **Sol.** Angle between the radii = $180^{\circ} 30^{\circ} = 150^{\circ}$ (Since the sum of opposite angles = 180°). 1 [CBSE Marking Scheme, 2012]
- Q. 18. Two tangents making an angle of 60° between them are drawn to a circle of radius $\sqrt{3}$ cm, then find the length of each tangent.

U [Board, Term-2, 2013]

 $\tan \theta = \frac{\text{Altitude}}{\theta}$ Sol. Since,

So.
$$\tan 30^\circ = \frac{OA}{AP}$$

or,

1

$$AP = \sqrt{3} \times \sqrt{3} = 3 \text{ cm.} \qquad 1$$

Base

Q. 19. If a line intersects a circle in two distinct points, what is it called ? R [Board Term-2, 2012 Set (17)]

 $\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{AP}$

Sol. The line which intersects a circle in two distinct points is called secant. 1

[CBSE Marking Scheme, 2012]

Q. 20. In the given figure, find $\angle QSR$.

U [Board Term-2, 2012 Set (5)]

Sol.

...

[CBSE Marking Scheme, 2017]

1/2

 $\frac{1}{2}$

Commonly Made Error

- In circle problems, whenever diameter is given, ۰ students may think it as radius.
- They have to familiar with diagram so that they may not make mistakes while drawing diagrams.

Answering Tips

- Students may name to angles as $\angle 1$, $\angle 2$ etc. instead of writing full forms like $\angle AOB$, $\angle BOC$, etc.
- They should understand the concept of Reflex • angles as (360°-angle).

[C] Fill in the blanks :

- (i) A tangent to a circle intersects it in _____ point (s).
- (ii) A line intersecting a circle in two points is called a
- (iii) A circle can have parallel tangents at the most.
- (iv) The common point of a tangent to a circle and the circle is called

[NCERT Exemp.]

(2 marks each)

Q. 1. In the given figure, from a point P, two tangents PT and PS are drawn to a circle with centre O such that $\angle SPT = 120^\circ$, prove that OP = 2PS.

> Т U [Foreign Set I, II, III, 2016]

Sol. Given that

$$\angle SPT = 120^{\circ}$$
$$\angle OPS = \frac{120^{\circ}}{2} = 60^{\circ}$$

or,

$$DPS = \frac{2}{2} = 60^{\circ}$$
(as *OP* bisects $\angle SPT$) ¹/₂

Also,

(as radius \perp tangent) $\frac{1}{2}$

 \therefore In right triangle *POS*,

$$\cos \angle OPS = \frac{PS}{OP}$$

 $\angle PTO = 90^{\circ}$

 $\frac{1}{2} = \frac{PS}{OP}$ or,

or,
$$OP = 2PS$$
.

Hence proved.

1

Q.2. In the given figure, a circle is inscribed in a
$$\triangle ABC$$
, such that it touches the sides *AB*, *BC* and *CA* at points *D*, *E* and *F* respectively. If the lengths of sides *AB*, *BC* and *CA* are 12 cm, 8 cm and 10 cm respectively, find the lengths of *AD*, *BE* and *CF*.

U [Delhi Set I, II, III, 2016]

Sol. Let	AD = AF = x	
or,	DB = BE = 12 - x	
and	CF = CE = 10 - x	
	BC = BE + EC	
or,	8 = 12 - x + 10 - x	
or,	x = 7	1
$\therefore AD = 7 \text{ cm}$	A, BE = 5 cm and CF = 3 cm	1

Q. 3. In Fig., AP and BP are tangents to a circle with centre O, such that AP = 5 cm and $\angle APB = 60^{\circ}$. Find the length of chord *AB*.

ъ

U [Delhi Set I, II, III, 2016]

Sol.	PA = PB	1/2
01	$\angle PAB = \angle PBA = 60^{\circ}$	1/2
$\therefore \Delta PAB$ is an equilateral triangle.		
Н	ence, $AB = PA = 5$ cm.	1/2

[CBSE Marking Scheme, 2016]

Q. 4. Prove that in two concentric circles, the chord of the larger circle, which touches the smaller circle is bisected at the point of contact.

A [Board Term-2, 2012 Set (17, 40)]

Sol. Let *OP* is radius and *APB* is tangent.

or, $OP \perp AB$ 1

Now, for bigger circle, O is centre and AB is	1/2
chord such that $OP \perp AB$.	1⁄2

Thus, OP bisects AB.

[CBSE Marking Scheme, 2012]

Q. 5. In the given figure PQ is chord of length 6 cm of the circle of radius 6 cm. TP and TQ are tangents to the circle at points P and Q respectively. Find $\angle PTQ$.

U [CBSE S.A.2 2016 Set HODM4OL]

Sol. Here,
$$PQ = 6 \text{ cm}$$
, $OP = OQ = 6 \text{ cm}$
 $\therefore \qquad PQ = OP = OQ$
 $\therefore \qquad \angle POQ = 60^{\circ}$
(angle of equilateral Δ .) $\frac{1}{2}$
 $\angle P = \angle Q = 90^{\circ}$
(radius \perp tangent)

$$\therefore \ \angle PTQ + 90^\circ + 90^\circ + 60^\circ = 360^\circ$$

(angle sum property) ½

$$\angle PTQ = 120^{\circ}$$
 1

Q. 6. *ABC* is an isosceles triangle in which AB = AC which is circumscribed about a circle as shown in the figure. Show that *BC* is bisected at the point of contact.

 \therefore Z is the mid-point of BC and Z is the point of contact.

Hence, *BC* is bisected at the point of contact. ½ [CBSE Marking Scheme, 2012]

Sol.

....

$$\angle AOQ = 58^{\circ}$$
 (Given)
 $\angle ABQ = \frac{1}{2} \angle AOQ$

(Angle on the circumference of the circle by the same arc)

$$=\frac{1}{2} \times 58^{\circ}$$

$$\angle BAT = 90^{\circ}$$
 (:: $OA \perp AT$)

$$\angle ATQ = 90^{\circ} - 29^{\circ}$$

 $= 61^{\circ}$

[CBSE Marking Scheme, 2015]

1

Q. 8. In figure, a triangle ABC is drawn to circumscribe a circle of radius 3 cm, such that the segments BD and DC are respectively of lengths 6 cm and 9 cm. If the area of $\triangle ABC$ is 54 cm², then find the lengths of sides AB and AC.

A [Outside Delhi CBSE, 2015, Set I, II, III]

Q. 9. In figure, two tangents RQ and RP are drawn from an external point R to the circle with centre O. If $\angle PRQ = 120^\circ$, then prove that OR = PR + RQ.

A [Outside Delhi CBSE Board, 2015, Set I, II, III] Sol. Try yourself, Similar to Q. No. 1 in SATQ-I.

Q. 10. PA and PB are tangents from point P to the circle with centre O as shown in figure. At point M_{1} a tangent is drawn cutting PA at K and PB at N. Prove that KN = AK + BN.

U [Board Term-2, 2012 Set (28)]

Sol. PA = PB, KA = KM, NB = NM,(Length of tangents from an external point are equal)

....

or

Sol.

$$KA + NB = KM + NM$$

$$AK + BN = KN.$$
1

[CBSE Marking Scheme, 2012]

U [Foreign Set I, II, III, 2015]

1

Then, $\angle TRQ = \frac{1}{2} \angle TOQ$

(angle at the circumference of the circle by same arc)

$$=\frac{1}{2} \times 110^{\circ} = 55^{\circ}.$$
 1

[CBSE Marking Scheme, 2015]

Q. 13. Two tangents PA and PB are drawn from an

external point P to a circle inclined to each other

Q. 14. A circle touches all the four sides of a quadrilateral *ABCD*. Prove that AB + CD = BC + DA.

A [Outside Delhi Set, I, II, III, 2016]

1

Sal P B	· · · · · ·
Sui. Griven : circle touching sides	en roemor en
of ABeDot P.O.RES.	
s - X C a	$\sim -\kappa$
To prove: AB+CD = AD+BC.	
Proof	The second second second
D CR C 11001	
PB = BO langents from same	
DR = DS point to actrcle are	
CR = CQ ; equal in length	
adding au@,	
AP+PB+OR+CR = AS+BQ+DS+CQ	
AB+CD = AS+SD+ BQ+QC	
ABICD = ADIBC	
Hence, proved.	
	[Topper Answer, 2017] 2

Q. 15. In Fig, ABC is a triangle in which $\angle B = 90^\circ$, BC = 48 cm and AB = 14 cm. A circle is inscribed in the triangle, whose centre is O. Find radius of incircle.

Sol.

Q. 16. In Figure, common tangents AB and CD to the two circles with centres O₁ and O₂ intersect at E. Prove that AB = CD. A [CBSE O.D. 2014]

Sol. EA and EC are tangents from point E to the circle with centre O_1 .

> EA = EC...(i) ½

EB and ED are tangents from point E to circle with centre O_2 .

...(ii) ½

Hence proved. 1

Q. 17. In the given figure, BOA is a diameter of a circle and the tangent at a point P meets BA when produced at T. If $\angle PBO = 30^\circ$, what is the measure of

 $\angle BPA = 90^{\circ}$ (angle in semicircle) $\frac{1}{2}$ Tangents from right angle at end point of radius. $(:: OB = OP) \frac{1}{2}$

> $\angle OPA = 60^{\circ} \text{ and } APT = 30^{\circ}$ $\frac{1}{2}$

> > (exterior angle). $\frac{1}{2}$

[CBSE Marking Scheme, 2012]

Q. 18. In the given figure, if BC = 4.5 cm, find the length U [Board Term-2, 2012 Set (59)]

Sol. Given,

BC = CP

(length of tangents from external point are equal) 1

or,
$$CP = 4.5 \text{ cm}$$

 $AC = CP = 4.5 \text{ cm}$
or, $AB = AC + CB$
 $= 4.5 + 4.5 = 9 \text{ cm}$. $\frac{1}{2} + \frac{1}{2}$
[CBSE Marking Scheme, 2012]

Q. 19. In fig. the radius of incircle of $\triangle ABC$ of area 84 cm^2 and the lengths of the segments AP and BP into which side AB is divided by the point of contact are 6 cm and 8 cm. Find the lengths of the sides AC and BC.

 $\angle OPQ = \angle OQP = 90^{\circ} - 60^{\circ} = 30^{\circ}$ $\angle POQ = 180^{\circ} - (30^{\circ} + 30^{\circ})$

1

Sol. Given, $\angle QPT = 60^{\circ}$

Sol

respectively. If AB = 29 cm, AD = 23 cm, $\angle B = 90^{\circ}$ and DS = 5 cm, then find the radius of the circle (in cm.). [Board Term-2, 2013] 2 B D DS = 5 cmDR = DS = 5 cm1 (length of tangents are equal) AR = 23 - 5 = 18 cmAQ = AR = 18 cmQB = 29 - 18 = 11 cm = PB $\angle OQB = \angle OPB = 90^{\circ}$ OP = OQ = PB = BQ÷., So, POQB is a square. Hence, r = OP = PB = 11 cm. 1

Q. 23. PB is a tangent to the circle with centre O to B. AB is a chord of length 24 cm at a distance of 5 cm from the centre. If the tangent is of length 20 cm, find the length of PO.

[Delhi Board Term-2, 2015]

Sol. Construction : Join OB.

III II. ΔOND ,		
	$OB^2 = 5^2 +$	$12^2 = 13^2$
<i>∴</i>	OB = 13 cm	n 1
Since	$OB \perp PB$	(radius \perp tangent)

 \therefore In rt. $\triangle OBP$,

or

$$OP^2 = OB^2 + BP^2$$

= 13² + 20²
= 569
 $OP = \sqrt{569} = 23.85$ cm.

[CBSE Marking Scheme, 2015]

1

Q. 24. From a point *T* outside a circle of centre *O*, tangents *TP* and *TQ* are drawn to the circle. Prove that *OT* is the right bisector of line segment *PQ*.

[Delhi CBSE Term-2, 2015 Set I, II, III

Sol. Given : *A* circle with centre *O*. Tangents *TP* and *TQ* are drawn from a point *T* outside a circle.

Q. 25. In the fig, AB and CD are common tangents to two circles of unequal radii. Prove that AB = CD.

[Delhi Compt. Set III 2017]

Q. 26. In the given figure, *PA* and *PB* are tangents to the circle from an external point *P*. *CD* is another tangent touching the circle at *Q*. If *PA* = 12 cm, *QC* = DQ = 3 cm, then find *PC* + *PD*.

[Delhi Compt. Set I, II, III 2017]

ol. Here,	AC = CQ
	(Tangents from external point to a circle)
	PA = PC + CA = PC + CQ
	$(\because CA = CQ)$
\Rightarrow	12 = PC + 3
\Rightarrow	PC = 12 - 3 = 9 cm 1
	PC = PD = 9 cm
	PC + PD = 9 + 9 = 18 cm 1
	[CBSE Marking Scheme, 2017]
\Rightarrow \Rightarrow \therefore	$ \begin{array}{c} (\because CA = CQ) \\ (\because CA = CQ) \\ 12 = PC + 3 \\ PC = 12 - 3 = 9 \text{ cm} \\ PC = PD = 9 \text{ cm} \\ PC + PD = 9 + 9 = 18 \text{ cm} \\ \end{array} $ $ \begin{array}{c} 1 \\ \hline CBSE Marking Scheme, 2017 \end{array} $

Q. 27. In a right angle $\triangle ABC$, BC = 12 cm and AB = 5 cm. Find the radius of the circle inscribed in this triangle. [Delhi CBSE Term-2, 2014]

Sol. Try yourself, similar to Q. No. 15 in SATQ-I,

Q. 28. Prove that the tangents drawn at the end points of a chord of a circle make equal angles with the chord. [Outside Delhi Set, I, II, III, 2017]

U [Board Term-2, 2014]

Sol. Since, the tangent is perpendicular to the end point of radius.

Then,	$\angle OAB = \angle OBA$ (:: $OA = OB$)	
	$\angle OBA = 30^{\circ}$ 1	
<i>.</i> :.	$\angle AOB = 180^{\circ} - (30^{\circ} + 30^{\circ})$	
<i>.</i> .	$\angle AOB = 120^{\circ}$ 1	
	$\angle ABP = \angle OBP - \angle OBA$	
	$=90^{\circ}-30^{\circ}=60^{\circ}$ 1	
	[CBSE Marking Scheme, 2014]	Ľ

Q. 4. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

A [Foreign set I, II, III, Delhi CBSE, Term-2, 2014] [Board Term-2, 2012 Set (12)] [Delhi Set I, II, III 2017]

Let AB be the diameter of a given circle and let CD and EF be the tangents drawn to the circle at A and *B* respectively.

$$AB \perp CD \text{ and } AB \perp EF \qquad 1$$

$$\therefore \qquad \angle CAB = 90^{\circ} \text{ and } \angle ABF = 90^{\circ} \qquad \frac{1}{2}$$

$$\angle ABE = \angle BAD$$

and $\frac{1}{2}$ $\angle CAB$ and $\angle ABF$ also $\angle ABE$ and $\angle BAD$ are alternate interior angles. 1 CD || FF LLA co provod

Q. 5. In $\triangle ABC_{I}AB = AC$. If the interior circle of $\triangle ABC$ touches the sides AB, BC and CA at D, E and F respectively. Prove that *E* bisects *BC*.

A [Board Term-2, 2014 Delhi Set, 2012 Set (40)]

Here,
$$AF = AD$$

and $BE = BD$,
(tangents from external points) $1\frac{1}{2}$
 $CE = CE$
 $AB = AC$
Then, $AD + BD = AF + FC$
or, $BD = FC$ ($\because AD = AF$)
 $BE = EC($\because BD = BE, CE = CF$)
 $\therefore E$ bisects BC. 1
[CBSE Marking Scheme, 2012]$

Q. 6. Two tangents *TP* and *TQ* are drawn to a circle with
centre O from an external point T. Prove that
$$(BTO = 2)(OPO)$$

$$2FIO = 22OIQ$$

U [Delhi Set I, II, III 2017;

Delhi Compt Set I, II, III 2017]

Let
$$\angle OPQ$$
 be θ .
 $\therefore \qquad \angle TPQ = (90^\circ - \theta)$
Since $TP = TQ$ (Tangents)
 $\therefore \qquad \angle TQP = (90^\circ - \theta)$
(Opposite angles of equal sides) **1**

(Opposite angles of equal sides) Now, $\angle TPQ + \angle TQP + \angle PTQ = 180^{\circ}$

$$\Rightarrow 90^{\circ} - \theta + 90^{\circ} - \theta + \angle PTO = 180^{\circ}$$

 \Rightarrow

$$\Rightarrow \qquad \angle PTQ = 180^{\circ} - 180^{\circ} + 2\theta \qquad \mathbf{1}^{1/2}$$
$$\Rightarrow \qquad \angle PTQ = 2\theta$$

 $\angle PTQ = 2 \angle OPQ$.

 $\frac{1}{2}$

Q. 7. In the given figure, PA and PB are tangents to a circle from an external point P such that PA = 4 cm and $\angle BAC = 135^{\circ}$. Find the length of chord AB.

U [Outside Delhi Set I, II, III, 2017]

PA = PB = 4 cmSol. (Tangents from external point) 1/2 $\angle PAB = 180^\circ - 135^\circ = 45^\circ$ (Supplementary angles) $\angle ABP = \angle PAB = 45^{\circ}$ (Opposite angles of equal sides) 1/2 $\angle APB = 180^{\circ} - 45^{\circ} - 45^{\circ}$ $= 90^{\circ}$ $\frac{1}{2}$

So,
$$\triangle ABP$$
 is an isosceles right angled triangle.
 $\Rightarrow AB^2 = 2AP^2$
 $\Rightarrow AB^2 = 32$

 $AB = \sqrt{32} = 4\sqrt{2}$ cm Hence,

[CBSE Marking Scheme, 2017]

1

1

1

Q. 8. The radii of two concentric circles are 13 cm and 8 cm. AB is a diameter of the bigger circle and BD is a tangent to the smaller circle touching it at D and intersecting the larger circle at P on producing. Find the length of *AP*. U [SQP, 2018-19]

and $\angle ODB = 90^{\circ}$ (radius is perpendicular to tangent)

 $\Delta ABP \sim \Delta OBD$ $\frac{AB}{OB} = \frac{AP}{OD}$ \Rightarrow $\frac{26}{13} = \frac{AP}{8}$ \Rightarrow Hence, AP = 16 cm[CBSE Marking Scheme, 2018-19]

Commonly Made Error

 Some candidates are not versed with the circle properties, e.g., could not well identify $\angle APB = 90^{\circ}$ by using angle at a semi-circle.

Answering Tips

- Candidates should be familiar with the circle properties.
- Q. 9. In figure AB is a chord of length 8 cm of a circle of radius 5 cm. The tangents to the circle at A and B intersect at *P*. Find the length of *AP*.

A [CBSE Compt. Set I, II, III 2018]

AB = 8 cm ⇒ AM = 4 cm.
∴
$$OM = \sqrt{5^2 - 4^2} = 3$$
 cm.
Let AP = y cm, PM = x cm.

 $\therefore \Delta OAP$ is a right angle triangle.

$$y^{2} = x^{2} + 16 = \frac{256}{9} + 16 = \frac{400}{9} \qquad 1$$

$$y = \frac{1}{3}$$
 cm or $6\frac{1}{3}$ cm 1

CBSE Marking Scheme, 2018]

Q. 10. AB is a chord of circle with centre O. At B_1 a tangent PB is drawn such that its length is 24 cm. The distance of P from the centre is 26 cm. If the chord AB is 16 cm, find its distance from the centre.

C [Board Term-2, 2012 Set (40), 2014]

Sol. Given, AB is a chord of circle with centre O and tangent PB = 24 cm, OP = 26 cm. **Construction :** Join *O* to *B* and draw $OC \perp AB$. By Pythagoras theorem,

(Perpendicular drawn from the centre to a chord bisects it.)

$$OB = 10 \text{ cm}$$

$$OC^2 = OB^2 - BC^2$$

$$= 10^2 - 8^2$$

$$OC^2 = 36$$

$$OC = 6 \text{ cm}$$
 1
∴ Distance of the chord from the centre = 6 cm.
[CBSE Marking Scheme, 2014]

Q. 11. Prove that the intercept of a tangent between a pair of parallel tangents to a circle subtend a right angle at the centre of the circle.

> [Delhi CBSE, Term-2, 2014] [Board Term-2, 2012 Set (22, 5)]

PQ and RS are two parallel tangents to a circle with centre O.

AB is tangent to a circle at C, intersecting PQ and RS at A and B respectively.

Since, *PA* || *RB* and *AB* is transversal.

 $\angle 1 + \angle 2 + \angle 3 + \angle 4 = 180^{\circ}$ $[\angle 1 = \angle 2, \angle 3 = \angle 4$ (by congruency)] $2 \angle 1 + 2 \angle 3 = 180^{\circ}$ $1+\frac{1}{2}$ $\angle 1 + \angle 3 = 90^{\circ}$ $\frac{1}{2}$ In $\triangle AOB$, by angle sum property of a triangle, $\angle AOB = 180^\circ - (\angle 1 + \angle 3)$ $= 180^{\circ} - 90^{\circ}$ $\angle AOB = 90^{\circ}.$ $\frac{1}{2}$

[CBSE Marking Scheme, 2012]

Q. 12. Prove that the parallelogram circumscribing a circle is a rhombus. [Delhi CBSE, Term-2, 2014] [Board Term-2, 2012 Set (1); Delhi 2013] AE

Sol. Let *ABCD* be the || gm.

Q. 13. In given figure, PA and PB are tangents from a point P to the circle with centre O. At the point M_{t} another tangent to the circle is drawn cutting PA and PB at K and N. Prove that the perimeter of $\Delta PNK = 2PB.$ [Board Term-2, 2012 Set (1, 25)]

Sol. Here,

$$KN = KM + MN$$

But $KM = KA$ and $MN = BN$, (\because tangents drawn
from an external point to a circle are equal) 1
 \therefore $KN = KA + BN$
 \therefore Perimeter of $\Delta PNK = PN + KN + PK$
 $= PN + BN + KA + PK$
 $= PB + PA = 2PB$,
 $(\because PA = PB)$ 2

A [Outside Delhi Set, I, II, III 2017]

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

Q. 14. Prove that the lengths of two tangents drawn from an external point to a circle are equal.

AP = BP

OA OA Α

Sol. Given : AP and BP are tangents of circle having centre O.

To Prove : Construction : Join OP, AO and BO **Proof** : $\triangle OAP$ and $\triangle OBP$

(Radius of circle)	OA = OB
(Common side)	OP = OP
(Radius – tangent angle)	$OAP = OBP = 90^{\circ}$
(RHS congruency rule)	OAP = OBP
(CPCT) 1	AP = BP
Hence Proved.	

÷.

Long Answer Type Questions

Q. 1. *a*, *b* and *c* are the sides of a right triangle, where *c* is the hypotenuse. A circle, of radius *r*, touches the sides of the triangle. Prove that $r = \frac{a+b-c}{2}$.

A [CBSE S.A.2 2016 Set HODM4OL]

Let circle touches CB at M, CA at N and AB at P. Now $OM \perp CB$ and $ON \perp AC$ (radius \perp tangent) OM = ON (radii)

$$CM = CN$$
 (Tangents)

Let
$$OM = r = CM = CN$$

 $AN = AP, CN = CM$ and $BM = BP$
(tangent from external point)
 $AN = AP$
 $\Rightarrow AC - CN = AB - BP$
 $b - r = c - BM$
 $b - r = c - (a - r)$

$$b-r = c - a + r$$

$$2r = a + b - c$$

$$r = \frac{a+b-c}{2}.$$
1

Hence Proved.

(4 marks each)

[CBSE Marking Scheme, 2016]

Q. 2. In Fig. *O* is the centre of a circle of radius 5 cm. *T* is a point such that OT = 13 cm and *OT* intersects circle at *E*. If *AB* is a tangent to the circle at *E*, find the length of *AB*, where *TP* and *TQ* are two tangents to the circle.

U [Delhi Set I, II, III, 2016]

Sol.	$PT = \sqrt{169 - 25} =$	12 cm
and	TE = OT - OE = 1	3 – 5
	= 8 cm	$\frac{1}{2} + \frac{1}{2}$
Let	PA = AE = x.	(Tangents)
Then,	$TA^2 = TE^2 + EA^2$	1
or,	$(12 - x)^2 = 8^2 + x^2$	

Sol.

· OMCNie a

1

4

$$24x = 80$$
or, $x = 3.3$ cm. 1
Thus $AB = 2 \times x = 2 \times 3.3$
 $= 6.6$ cm. 1
[CBSE Marking Scheme, 2015]
Q. 3. In the given figure, O is the centre of the circle.
Determine $\angle APC$, if DA and DC are tangents and $\angle ADC = 50^\circ$.
[A] [Foreign Set 1, 11, 11] 2017][CBSE O.D. 2014]
Sol. Given : A circle with centre O is inscribed in a quadrilateral $ABCD$.
[A] [Foreign Set 1, 11, 11] 2017][CBSE O.D. 2014]
Sol. Given : A circle with centre O is inscribed in a quadrilateral $ABCD$.
[A] [Foreign Set 1, 11, 11] 2017][CBSE O.D. 2014]
Sol. Given : A circle with centre O is inscribed in a quadrilateral $ABCD$.
[A] [Foreign Set 1, 11, 11] 2017][CBSE O.D. 2014]
Sol. Given : A circle with centre O is inscribed in a quadrilateral $ABCD$.
[A] [Foreign Set 1, 11, 11] 2017][CBSE O.D. 2014]
Sol. Given : A circle with centre O is inscribed in a quadrilateral $ABCD$.
[A] [Foreign Set 1, 11, 11] 2017][CBSE O.D. 2014]
Sol. Given : A circle with centre O is inscribed in a quadrilateral $ABCD$.
[A] [Foreign Set 1, 11, 11] 2017][CBSE O.D. 2014]
Sol. Given : A circle with centre O is inscribed in a quadrilateral $ABCD$.
[A] [Foreign Set 1, 11, 11] 2017][CBSE O.D. 2014]
Sol. Given : A circle with centre O is inscribed in a quadrilateral $ABCD$.
In ΔAEO and ΔAFO .
 $(aduus \perp tangent)$
 \therefore **[A] (CC = 2007**
 $(radius \perp tangent)$
 \therefore **[A] (CC = 1)**
 $(aduus \perp tangent)$
 $(aduus \perp t$

Q. 5. Prove that tangent drawn at any point of a circle is perpendicular to the radius through the point of contact. [Outside Delhi Set II, 2016]

Q. 8. In the given figure, XY and X'Y are two parallel tangents to a circle with centre O and another tangent AB with point of contact C_i is intersecting XY at A and X' Y at B. Prove that $\angle AOB = 90^{\circ}$.

