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FUNDAMENTAL DUTIES

(a)

(b)

(©)

(d)

(e)

()

(2)

(h)

(1)
)

(k)

It shall be the duty of every citizen of India :
to abide by the Constitution and respect its ideals and

institutions, the National Flag and the National Anthem;

to cherish and follow the noble ideals which inspired our

national struggle for freedom:;

to uphold and protect the sovereignty, unity and integrity

of India;

to defend the country and render national service when called

upon to do so;

to promote harmony and the spirit of common brotherhood
amongist all the people of India transcending religious,
linguistic and regional or sectional diversities; to renounce

practices derogatory to the dignity of women;

to value and preserve the rich heritage of our composite

culture;

to protect and improve the natural environment including
forests, lakes, rivers and wide life, and to have compassion

for living creatures;

to develop the scientific temper, humanism and the spirit of

inquiry and reform;
to safeguard public property and to abjure violence;

to strive towards excellence in all spheres of individual and
collective activity so that the nation constantly rises to higher

levels of endeavour and achievement.

to provide opportunities for education by the parent or the guardian, to
his child, or a ward between the age of 6-14 years as the case may be.
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About This Textbook...

We are very pleased to present before you the textbook for Mathematics of
semester IV for standard XII following the new syllabus prepared by Gujarat
Secondary and Higher Secondary Board on the basis of NCERT syllabus, in
extension of Mathematics textbooks of semester I and semester 1l for standard XI
and semester III of standard XII.

This textbook has been prepared originally in English as in the case of textbooks
of semester I and II for standard XI and semester III of standard XII. The manuscript
has been thoroughly examined by learned teachers from schools and colleges
through a workshop organized in the month of June. The suggestions and proper
amendments had been accepted and the revised manuscript has been translated in
Gujarati. The Gujarati version was also examined by teachers from schools and
colleges and the necessary amendments were made. The English manuscript and
the translated version in Gujarati were examined by language experts and the
corrections were made. This way the final draft of the manuscript was prepared.

A second review had been carried out in the end of July by subject experts from
universities and technological colleges. They were retired mathematics professors of
eminence. Their recommendations were accepted and amendments were made.

In chapter 1, we apply differentiation to various problems in mathematics like
coordinate geometry, approximation; maximum and minimum values of a function and
rates of change of one variable with respect to another, especially with respect to
time which will consequently help to study applications of differentiation to science.
Chapter 2 continues the study of integration which has began in semester III. Here,
since the study continues, the prerequisite is knowledge of indefinite integration
studied in semester III. Some examples can be studied by techniques of any of the methods
from these two chapters. Chapter 3 introduces definite integration. Theorems and
examples freely make use of indefinite integration techniques. Chapter 4 is about an
application of integration. It shows how to calculate certain areas bounded by some
known curves. Chapter 5 is further application of integration to solve differential
equations. Here, only some simple techniques are studied. Chapter 6 is the study of
algebra of vectors useful in three dimensional geometry. The concept of Vectors was
introduced in semester II. These concepts are revised. Abstract approach to vectors and
geometrical significance are studied. Chapter 7 deals with applications of vectors to
three dimensional geometry of lines and planes.

In between, some explanations are given in boxes. They are meant to explain
further the concept introduced earlier or to add some comments on them. They are
for more understanding only.
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Attractive four-colour title, four-colour printing and figures make this textbook
visually rich and adds more to its utility value. Plenty of illustrations and exercises

are integrated to explain various concepts and variety of problems. They will help the
students in achieving good marks in semester examination as well as competitive
examinations.

We thank all who have helped to prepare this textbook. We hope that all students,
teachers and parents would like this textbook. Positive suggestions to enhance the
quality of this textbook are welcome.

— Authors




APPLICATIONS OF DERIVATIVES

Life is good only for two things - discovering mathematics and teaching mathematics.
— Siméon Poisson
<
Each problem that I solved became a rule, which served afterwards to solve other
problems.
— René Des Cartes

1.1 Introduction

We have defined the derivative of a function and studied several methods to find the derivative
of a function.

In the introductory article in std. XI, semester II, we had introduced the notion of a derivative using
the slope of a tangent to a curve intuitively. Now we will study this application and several other
applications of a derivative such as rate of change of a quantity w.rz. another quantity, finding
approximate values of a function at some value in its domain, equations of tangents and normals to a
curve at a point and the orthogonality of curves, increasing and decreasing functions and maximum and
minimum values of a function. These mathematical concepts are used to apply differentiation to
find optimum values in Physics, Economics, Social Science, Biology, Chemistry etc. Des Cartes
and Newton explained creation, the shape and colour of rainbows using these ideas. Geophysicists
use differential calculus when studying the structure of the earth's crust while searching for oil.

1.2 Rates of Change

Let s = f(¢) be the equation of rectilinear motion of a particle, where s represents displacement

at time 7 (i.e. directed distance from origin). If the displacements at time #; and 7, are respectively

. . . . . . . . S — 85
s; and s,, its average velocity during time interval 1, — 7, is given by the ratio H—1 Let
As = s, — 5, At = 1, — 1, and average velocity = %
As t, — t;, we get instantaneous velocity v of the particle at time #,.

. As ds Y
v= lm &, =
At—>0At dt

N

Thus rate of change of displacement
s = f(t) w.rt. time ¢ is the instantaneous
velocity of the particle at time 7.

P(x, f(x
Similarly for any function y = f (x), Zx_y is 76

the rate of change of y = f(x) w.r.t. x.
For another example if volume V = f(r), QG+ hf(x+ h)

7 radius, % is the rate of change of volume

of a sphere w.r.¢. radius.

For a ‘smooth’ continuous curve y = f(x), Ie}
let P(x, f(x)) and Q(x + A, f(x + h)) be two
points on the curve. (Fig. 1.1)

Y' Figure 1.1

APPLICATIONS OF DERIVATIVES 1



& faxt+th-fw

Slope of the secant PQ =

x+h—x
_ fx+h—f
h

As h — 0, Q — P, P remaining on the curve. Since the curve is ‘smooth and continuous’,

<~
slope of tangent at P = lim (slope of PQ)

Q—>P

_ lim fG&x+h-fw
h—0 h

= f')

The slope of the tangent at P(x, f(x)) to the curve y = f(x) is f'(x).

In practice, we encounter many problems in which the rate w.z¢. time is required.
In these circumstances x, y etc. are functions of time ¢

. dy _dy dx .
So by Chain rule o de i will be useful to calculate such rates.

Example 1 : Find the rate of change of volume of a sphere w.r.£. radius. Find this rate when » = 3 cm.

Solution : For a sphere, V = %Ttr3, where V is the volume and 7 is the radius of the sphere.

av _ 4 2y — 2
X = AnGr?) = 4mr

(d—V) =4 X 9 = 36T cm3/cm
dr/r=3

The rate of change of volume of a sphere, w.zz. radius when the radius is 3, is 36T cm3/cm.
Example 2 : The rate of change of volume of a sphere w.r:t. time is 16T cm3/sec. Find the rate of
change of its surface area w.zt. time at the moment when the radius is 2 cm.
Solution : Volume of a sphere, V = %Ttr3, where 7 is the radius

Volume changes w.r.t. time. So » and V are functions of time 7.

av _dv dr_ 4 2 dr
dr ~ dr di o 3T Xy
_ 42 dr
471 A1
= 42 4L av _ 3
16T 41Tr A1 ( dr 16T cm /sec)
% = % cmlsec
Now surface area of a sphere, S = 47102
ds _ds . dr
dt dr dt
- dr
= 8Tr di
= 8Tr %
. 3277'6 = 16T cm?/sec r=2)
das _ Rm _ 2
(a't)r=2 > 16T cm*/sec

The rate of change of surface area of the sphere is 16T cm?/sec, when r = 2 cm.
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Example 3 : A stone is dropped into a quiet lake and circular ripples are formed. Circular wave fronts

move at the speed of radius increasing at the rate of 5 cm/sec. How fast is the area increasing
when the radius is 10 cm ?

Solution : Area of a circle, A = T2, where r is the radius.

da _ da  dr
dt dr dt
— dr
= 2Ttr dr
Now r = 10 ¢m and % = 5 cml/sec
daa

;= 2T X 10 X 5 = 1007 cm?/sec.

The area enclosed by the waves increases at the rate of 1007 cm?/sec.

. . . o d .
We say as x increases, y increases if and only if 2> 0. We say as x increases, ) decreases

dx
if and only if % < 0. Later on in this chapter, we will study the concept of an increasing
(decreasing) function. If Zx_y > 0, then y is an increasing function of x and if Zx_y < 0, then y is a

decreasing function of x.

Example 4 : Air is being pumped into a spherical balloon so that its volume increases at the rate

80 cm3/sec. How fast is the radius of the balloon increasing when the diameter is 32 cm ?

Solution : Volume of a sphere, V = %TCr3, where 7 is its radius.

av _dv dr _ A0\ dr _ 2 dr
dr ~dr S dr 370 gp T Ay
Nowd—V=80 cm3/sec,r=2=16 cm
dt 2
— dr
80 = 41 - 256 di
%=%cm/sec

The radius increases at the rate of % cmlsec

Example 5 : A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled away
along the floor away from the wall at the rate 3 cm/sec. How fast is its height on the wall
decreasing when the foot of the ladder is 4 m away from the wall ?

Solution : Let / be the length of the ladder. A is the end-point of the ladder on the wall. C is the
point where the ladder touches the ground. AB is a part of the wall.

From the figure 1.2, x2 + )2 = 2.

dx @ _ A
x4+ 2y =8 =0

=
|
+
<
I
]

y ©

Figure 1.2
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gy
dr

dt

d_y = 0.03 m/sec
dt

34X 4 400.03) = 0

= 3 cmlsec (d_y > 0 as y is increasing when ¢ increases)

di
dx _ _ 04 dx o g is d ing when 7 is i ‘
dt = . dt as x 1S ecreasing when 1S 1Increasing

The height of the ladder on the wall is decreasing at the rate of 4 cm/sec.

Example 6 : Find the point on the curve y = x°
y w.rt. time is 3 times the rate of change of x w.rt. time.

Solution : We have y = x3 + 7.

dy _ 3 dx

+ 7, where the non-zero rate of change of

Given v di (i)
dy _ , 5dx ..
Now v 3x di (ii)
From (i) and (ii) 3 % = 3x2 %
x2=1 (% # 0)

x=1or —1

y=8or6

The required points on y = x3 + 7 where the non-zero rate of change of y w.r:t. t is 3 times

rate of change of x w.rt. ¢ are (1, 8) and (—1, 6).

Example 7 : On a national highway, a car is driven East N
at a speed of 60 km/hr and a staff bus is driven
South at a speed of 50 km/hr. Both are headed for

the intersection of the roads. The car is 600 m away W

and the bus is 800 m away from the intersection.

Find the rate at which the car and the bus are

approaching each other.

Solution : C is the intersection of the roads. B
represents the position of the car and A represents the
position of the bus at a time. Let BC = x, AC = y at a -
moment. The distance between the car and the bus is B ;
AB = z.

From figure 1.3, x2 + )? = 22, Figure 1.3

% = —60 km/hr, % = —50 km/hr, negative as x and y are decreasing functions of time.

x =0.6 km and y = 0.8 km

s 2= 0,62 +(0.8)2 = 1 km

Now, X2 + y2 =72

4 MATHEMATICS 12 - IV



o dx 4o, Do dz

dt dt dt
dz _ 1 (. dx , d
dt 4 (x dt +ydt)

= % (0.6 (—60) + 0.8(—50))

= =76 km/hr
The bus and the car are approaching each other at the rate of 76 km/hr

Example 8 : The total cost in rupees associated with the production of x units of an item is given by
C(x) = 0.005x3 — 0.02x2 + 10x + 10000. Find the marginal cost, when 20 units are produced.
[Note : Marginal cost means the rate of change of total cost w.r.z the output x.]
Solution : We have C(x) = 0.005x3 — 0.02x2 + 10x + 10000

dc

Marginal cost MC = €= = (0.005)3x* — (0.02)2x + 10
(%)x — 5o = (0.005)1200 — (0.02)40 + 10
= 6—08+ 10

=152
The required marginal cost is ¥ 15.2.
Example 9 : The total revenue in rupees received from the sale of x units is given by
R(x) = 10xZ + 20x + 1500. Find the marginal revenue when x = 5.
[Note : Marginal revenue means the rate of change of total revenue w.r.t. the number

of units sold.]

Solution : We have R(x) = 10x% + 20x + 1500
drR

a=20x+20
(4R), _5 =100+ 20 =120

The marginal revenue is ¥ 120.

Example 10 : The volume of a cube is increasing at the rate of 12 c¢m3/sec. Find the rate at which

the surface area is increasing, when the length of the edge of the cube is 10 cm.

Solution : Volume of a cube, V = x3, where x is the length of an edge.

av _ dav dx
dt dx dt
— 3,2 dx
3x dr
av _ 3
But ar 12 cm?/sec
_ 1.2 dx
12 = 3x it
dx _ 4
dt x?

APPLICATIONS OF DERIVATIVES 5



Now surface area of the cube, S = 6x2

as _ ds dx
dt dx dt
- dx
12x dr
_ 4
= 43
X
(ﬁ) = 48
dt)x =10 10
das _ 4.8 cm?/sec
dt

The rate of increase of surface area is 4.8 cm?/sec.

Example 11 : A water tank is in the shape of an inverted cone. The radius of the base is 4 m and the
height is 6 m. The tank is being emptied for cleaning at the rate of 2 m3/min. Find the rate at

which the water level will be decreasing, when the water is 3 m deep.

Solution : Let the height of the water level at any instant be /4 and the radius of water cone be 7.

. C e . . OA _ OD
Using similarity of triangles, 5C — BD
4 _6
r h
L = l
h 3
= %
"7

Now the volume of water at any time 7 is,

\% ST h
_1 M)
375( 9 h Figure 1.4
_ 4mh?
27
4V _ Am (3,2 dh
dt 27 (3h dt)
4V _ anh®> dh
dt 9 dt
dh _ 2 _ av
dt  4mh* dt
Now % = =2 m3/min (Volume is decreasing)
dh _ 2 _
dr ~ anne 2
(G8), - 5 = ==
dit/n=3 21O

— 1

2T

The height is decreasing at the rate % m/min.

6 MATHEMATICS 12 - IV



10.

11.

12.

13.

14.

15.

Exercise 1.1

The surface area of a cube increases at the rate of 12 cm?/sec. Find the rate at which its
volume increases, when its edge has length 5 cm.

Find the rate of change of volume of a cone w.rt. its radius, when the height is kept constant.
Find the rate of change of lateral surface area of a cone w.rt. to its radius, when the height
is kept constant.

The volume of a sphere increases at the rate 8 cm’/sec. Find the rate of increase of its surface
area, when the radius is 4 cm.

The volume of a closed hemisphere increases at the rate of 4 cm3/sec. Find the rate of increase
of its surface area, when the radius is 4 cm.

A cylinder is heated so that its radius remains twice of its height at any moment. Find the rate
of increase of its volume, when the radius is 3 ¢m and the radius increases at the rate 2 cm/sec.
Find the rate of increase of its total surface area also in this case.

A stone is dropped into a quiet lake and ripples move in circles with radius increasing at a
speed 4 cmi/sec. At the time when the radius of a circular wave is 10 cm, find the rate at
which the area enclosed by the waves increases.

A rectangular plate is expanding. Its length x is increasing at the rate 1 cm/sec and its width
y is decreasing at the rate 0.5 cm/sec. At the moment when x = 4 and y = 3, find the rate of
change of (1) its area (2) its perimeter (3) its diagonal.

A ladder 7.5 m long leans against a wall. The ladder slides along the floor away from the wall at
the rate of 3 cm/sec. How fast is the height of the ladder on the wall decreasing, when the foot of
the wall is 6 m away from the wall ?

A concrete mixture is pouring on ground at the rate of 8 cm3/sec to form a cone in such a way
that the height of the cone is always %th of the radius at the time. Find the rate of increase of
the height, when the radius is 8 cm.

The total cost in rupees associated with the production of x units is given by

C(x) = 0.005x3 — 0.004x2 + 20x + 1000. Find the marginal cost when x = 10.

The total revenue in rupees received from the sale of x units of a product is given by

R(x) = 20x%2 + 15x + 50. Find the marginal revenue when x = 15.

A man 2 m tall walks away at a rate of 4 m/min from source of light 6 m high from the ground.
How fast is the length of his shadow changing ?

Area of a triangle is increasing at a rate of 4 cm?/sec and its altitude is increasing at a rate of
2 cmisec. At what rate is the length of the base of the triangle changing, when its altitude is
20 c¢m and area is 30 cm??

Two sides of a triangle have lengths 4 m and 5 m. The measure of the angle between

them is increasing at a rate of 0.05 rad/sec. Find the rate at which the area of the triangle

increases, when the angle between the sides (fixed) has measure %

APPLICATIONS OF DERIVATIVES 7



16.

17.

18.

19.

20.

1.3

Two sides of a triangle have lengths 10 m and 15 m. The angle between them has the measure

increasing at a rate of 0.01 rad/sec. How fast is the third side increasing when the angle

between sides having lengths 10 m and 15 m (fixed) has measure % ?

The radius of a spherical balloon increases at the rate of 0.3 cm/sec. Find the rate of increase
of its surface area, when the radius is 5 cm.

If y = 3x — x3 and x increases at the rate of 3 units per second, how fast is the slope of the
curve changing when x = 2 ?

A particle moves on the curve y = x3. Find the points on the curve at which the y-coordinate
changes w.r.t. time thrice as fast as x-coordinate.

Find the points on the parabola y?> = 4x for which the rate of change of abscissa and ordinate

1S same.

Increasing and Decreasing Functions

We have seen in the third semester that /(x) = ¢°, a € RY, x € R is an increasing function

of x for a > 1 i.e. as x increases, the value of f(x) also increases. This was observed looking at the

graph of f(x) = &*. But this is not always possible or even convenient for all functions. Let us find a

criterion for this.

Consider f(x) = 2x + 3, x € R. Here obviously, X 5
=X
X < xy = 2x; < 2x, Y
= 2x; +3<2x,+3
= f(x) <f(x), Vx.x, € R
Thus f is ‘increasing’ on R. We have
observed sine is increasing in (O, %) X o) X
Consider f(x) = x2, x € R (Fig. 1.5)
In the first quadrant 7 (x) = x2 increases
with x and asx proceeds towards right of
Y-axis, y-coordinate increases. But on the left N
of Y-axis, as x increases, ) decreases. Y
Figure 1.5

Now let us formally define this concept.
Definition : Let (a, b) be a subset of the domain of a function. We say,
(1) f is increasing on (a, b) (denoted by f T) if
x; < x, = f(x) < f(xy), Vx;, x, € (a,b)
(2) fis strictly increasing on (a, b) if x; < x, = f(x)) < f(x,), Vx], x, € (a, b)
(3) fis decreasing on (a, b) (denoted by f J') if x; <x, = f(x)) 2f (), Vxl, x, € (a, b)
(4) fis strictly decreasing on (a, b) if x; < x, = f(x)) > f(x,), Vxl, x, € (a, b)

MATHEMATICS 12 - IV



We say f is increasing (or decreasing or strictly increasing or strictly decreasing) on R or a
subset of R which is a subset of its domain D, if fis increasing in every open interval (or decreasing

or strictly increasing or strictly decreasing) which is a subset of R or of D as the case may be.

Consider following graphs :

Y Y
N N
f@ = [x] — y=x
@0
ol — X < > X
A4
Figure 1.6 Figure 1.7
Figure 1.6 is the graph of the increasing function f(x) = [x] in [0, 1), [1, 2)... It is increasing on R.
Y
See that increasing actually means non-decreasing. 0\
. . . . . 2‘
Figure 1.7 represents the graph of a strictly increasing function. . H
Figure 1.8 is the graph of f(x) = [ 2 — x 0<x<1 < > X
g graph of f(x) ol T §\‘
1 1<x<2
3—x x=22
Here f is decreasing for x = 0. J
Figure 1.8
f is constant, so f is non-increasing and non-decreasing for 1 < x < 2.
= 32 Y
f(x) = x2, x < 0 represents the graph of a y=2x
decreasing function. (Fig. 1.9)
A function increasing or decreasing at a point :
Let f be defined on a domain containing an open X' S X
interval 1. Let x, € I and let some /&, 2 > 0 be so small
that (xy, — h, xy + h) C L
If f is increasing in (x, — &, x, + /), we say f is increasing at x,. “("

If f is decreasing in (x, — /&, x, + h), we say f is decreasing at x,,. Figure 1.9

If f is strictly increasing in (x, — h, x, + h), we say f is strictly increasing at x,,.

If f is strictly decreasing in (x, — h, x, + h), we say f is strictly decreasing at x,.

If f is increasing for all x, € I (decreasing, strictly decreasing or strictly increasing),
then we say f is increasing (decreasing, strictly decreasing or strictly increasing) on I.

Now we will find some criteria to determine the nature of a function whether increasing or

decreasing.

APPLICATIONS OF DERIVATIVES 9



Theorem 1.1 : If f is continuous on [a, b] and differentiable in (a, b), then

(1) fis increasing on (a, b) if f'(x) 2 0 Vx € (a, b)
(2) fis decreasing on (a, b) if f'(x) £ 0 Vx € (a, b)
(3) fis strictly increasing on (a, b) if f'(x) >0 Vx € (a, b)
(4) fis strictly decreasing on (a, b) if f'(x) < 0 Vx € (a, b)
(5) fis constant on (a, b) if f'(x) =0 Vx € (a, b)
Proof : Let x; € (a b), x, € (a b) and x; < x,. Since f is continuous on [a, b] and

differentiable in (a, b), there exists ¢ € (x;, x,) C (@, b) so that f(x,) — f(x)) = (x, — x) f'(0).

(Mean value theorem)
(1) Iff'(x) 20, Vx € (a b), fi(c)=20asc€ (x, x,) C (a b).
Since x; < x5, X, —x; > 0
F1©) (= x) 2 0
f@y) = f(xp) 20
&) S fxy)
x; < x, = fx) S f(xy), Vx,x, € (a b)
f is increasing on (a, b).
2) Iff'(x) £0, Vx € (a b), f'(c)Z0.
x; < x, = f(x)) 2 f(x). Vx..x, € (a b),
f is decreasing on (a, b).
(3) Iff'(x) >0, Vx € (a b), f'(c)>0.
x; < xy = f(x)) < f(xy), Vxl, X, € (a, b),
f is strictly increasing on (a, b).
4) Iff'(x) <0, Vx € (a b), f(c)<O.
x; < xy, = f(x)) > f(x,), Vxq, x, € (a, b),
f is strictly decreasing on (a, b).
(5) If f'(x) =0, Vx € (a b), f'(c)=0.
f(xy) = f(x)) =0, Vx, x, € (a b)
f@y) =f@)  Vx.x, € (@ b)

fis a constant function on (a, b).

Do you remember how arbitrary constant was introduced in indefinite integration ?
In view of the remark preceding the theorem, f is increasing or decreasing on [a, b] also
according as f'(x) = 0 or f'(x) < 0 respectively in (a, b).

Similar remarks apply for strictly increasing and strictly decreasing functions.

10 MATHEMATICS 12 - IV



Example 12 : Prove that sine function is strictly increasing in (—5, 3).

Solution : Lsinx = cos x
dx

i I =
cosx >0, if x € ( > 2).

sine function is strictly increasing in (—%, %)
Example 13 : Prove that f(x) = (%)x is strictly decreasing on R.

Solution : f(x) = (%)x =27
f'(x) = —2log 2 <0 as log,2 >0 and 27 > 0.

f1is strictly decreasing on any interval (a, b)) C R.
f(x) = (%)x is strictly decreasing on R.

Example 14 : Prove that f(x) = tanx, x € R — {(Zk - 1)% | k e Z} is strictly increasing in every
quadrant.
Solution : f(x) = tanx
S = sexx >0 Vxe R—{@k— DL | ke zf.

f(x) = tanx is strictly increasing in all intervals like (0, %), (%, ‘It),... etc.

f(x) = tanx is strictly increasing in all quadrants.
Example 15 : Prove that f: R — R, f(x) = ax + b is strictly increasing for a > 0 and strictly
decreasing for a < 0.
Solution : f(x) = ax + b
f'x) =a
If a >0, f'(x) > 0 and so f is strictly increasing on R.
If a <0, f'(x) < 0 and so f is strictly decreasing on R.
As an example f(x) = 5x + 7 is strictly T and f(x) = —2x + 3 is strictly 3
Example 16 : Prove that f(x) = x3, x € R is increasing on R.
Solution : f'(x) = 3x2 = 0
fisTonany(a, b) C R
fis T on R.
Example 17 : Prove that f: R — R, f(x) = x> + 3x2 + 5x is strictly increasing on R.
Solution : f(x) = x> + 3x% + 5x
f'(x) =3x2 4+ 6x + 5
=3x>+6x+3+2
=3x+1)+2>0, Vxe R

fis strictly increasing on R.
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Example 18 : Find the intervals in which /: R — R, f(x) = x2 — 6x + 15 is strictly increasing or
strictly decreasing.
Solution : f(x) = x%2 — 6x + 15
flx)=2x—6
If x <3,2x <6 and f'(x) < 0.

fis strictly decreasing for x € (—oo, 3).
If x> 3,2x > 6 and f'(x) > 0.
fis strictly increasing for x € (3, o).
Example 19 : Determine in which intervals the function f: R — R, f(x) = x3 — 6x2 — 36x + 2
is increasing and where it is decreasing.
Solution : f(x) = x> — 6x2 — 36x + 2
f'(x) = 3x% — 12x — 36

b
o 4
8

=3(x* —4x—12) __,
=3(x —6)(x+2)
(1) Ifx < —2,thenx <6
x+2<0,x—6<0
f'x) =3x—6)(x+2)>0
fis Tin (=00, —2). (Infact strictly T)

2) f2<x<6,thenx+2>0,x—6<0
f'(x) =3x —6)x+2)<0
fis 4 in (=2, 6).
3) Ifx>6,thenx+2>0,x—6>0
f'(x) >0
7is T in (6, o).
Example 20 : Determine where f(x) = tan~!(sinx + cosx), x € (0, T) is increasing and in which

interval it is decreasing.

Solution : f(x) = tan~\(sinx + cosx)

. B 1 X (cosx — sinx)
S =75 (sinx + cosx)?

cosx — Sinx

T 1+ (sinx + cosx)?
(1) Ifx e (0, E), then cosx > sinx

(cosx IS (f, 1) and sinx € (O, f))
Also 1 + (sinx + cosx)? > 0
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f'(x) > 0 for x € (0, %)

fis increasing in (0, %)

2) x € (%, %), cosx < sinx. Thus, cosx — sinx < 0 and if x € (%, 71:), cosx < 0, sinx > 0

cosx—sinx<0.Forx=%,cosx—sinx=0—1=—1<0

ifxe (7). /() <0

fis decreasing in (%, TC).

Example 21 : Prove that f(x) = x!90 + sinx — 1 is increasing for x € (0, ).
Solution : f(x) = x!100 + sinx — 1
f'(x) = 100x%° + cosx

For x € (0, %), x?? > 0, cosx > 0. So f'(x) > 0.

For x = %, x?? > 0, cosx = 0. So f'(x) > 0.

If x € (%, Tl:), x> 1 and —1 < cosx < 0.
f'(x) > 0.
fis (strictly) increasing in (0, T0).
Example 22 : Prove f(x) = log sinx is increasing in (0, %)
Solution : f(x) = log sinx

) = —L_ - ' ( E)
') it X cosx = cotx > 0 in (0, > )

f is increasing in (0, %)

X
log x>

Example 23 : Determine intervals in which f(x) = x > 1 is increasing and where it is

decreasing.

Solution : f(x) = @

logx—x-— logx—1
(logx)>  (logx)’

S =

(1) x<e, then logx < loge =1
logx — 1 < 0. Also (logx)? > 0
f'ix) < 0.
fis 4 in (1, o).
(2) If x > e, then logx > 1. So logx — 1 > 0 and (logx)? > 0
f'(x) > 0.
7is Tin (e, o).
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Example 24 : Prove f(x) =

Solution : f(x) = lanx

J'(x)

X

lanx iq increasing on (O, %)
_ _sinx
XCOSX

XCOSX - COSX — SINX (COSX — XSinx)

(xcosx)?

X (Cos*x + sin’x) — sinxcosx

(xcosx)?

X — Sinx cosx

(xcosx)?

Now,0<x<%. So 0 <sinx<x,0<cosx <1

0 < sinx cosx < x

x — sinx cosx > 0. Also (xcos x)> > 0

fl

(x) > 0

fis Tin (0.%).

Exercise 1.2

1. Prove that cot : R — {kTt | k € Z} — R is decreasing in all quadrants.
2. Prove that cosine is a decreasing function in (0, TT).
3. Prove that sec is an increasing function in (0,%).
4. Prove that cosec is an increasing function in (%, TC).
5. Prove that f(x) = a* is T, if a>1.
6. Prove that f(x) = log,x is T, x € R
7. Determine the intervals in which f is increasing and the intervals in which f is
decreasing :
(1) f: R —> R, fx)=3x+7
2) f: R —>R, f(x) =8 — 5x
(3) f:R—>R, f)=x>—2x+5
(4) f:R—R, f(x) =9+ 3x — x?
(5) f:R—>R, f@) =x+3x + 10
(6) f: R —> R, ) =3x* —4x3 — 12x2 + 5
(7) f:(, T = R, f(x) = sinx + cosx
(8) f: R =R, fx) =—2x3 —9x2 — 12x + 1
9) f:R >R, @) =@+ 1) x—3)>
10) f: (0»%) — R, f(x) = log cosx
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10.
11.

12.

13.

14.

15.

16.
17.

18.

19.

20.
21.

a1 f: (%, Tl',) — R,  f(x) = log | cosx |
1
(12)f: R— {0} > R, f(x) =¢e”*

Prove that if | is an open interval and I M [—1, 1] = @, then f(x) = x + é is strictly
increasing on .

Prove that f(x) = x> — 3x2 + 3x + 100 is increasing on R.

Prove that f(x) = x190 + ginx — 1 is increasing on (0, 1).

4 _ 4

Find intervals in which f(x) = %x 5

X3 — 3x2 + 3—56x + 11 is increasing and intervals in

which it is decreasing.

48inX — 2X — XCOSX

Find in which intervals, f: R — R, f(x) = > T cosx

is decreasing and intervals in

which it is increasing.

Prove f(x) = x*, x € RY is increasing if x > é and decreasing if 0 < x < é.

4

Decide the intervals in which f(x) = sin*x + cos*x is increasing or intervals in which it is

decreasing. x € (0,%).

Find the value of a for which the function f(x) = ax®> — 3(a + 2)xZ + 9(a + 2)x — 1 is decreasing
for all x € R.

Find the values of a for which f(x) = ax> — 9ax? + 9x + 25 is increasing on R.

Prove that f(x) = (x — 1)¢* + 1 is increasing for all x > 0.
) . PO . i
Prove that f(x) = x* — x sin x is increasing on (0, 5 )
Prove f: R — R, f(x) = x% is increasing for x € R and decreasing for x < 0 without using
derivative test and using the definition only.
Prove f: R = R, f(x) = 2¥ + 27¥ is increasing for x € (0, oo) and decreasing for x € (—oo, 0).

Determine intervals in which following functions are strictly increasing or strictly
decreasing :

(1) f:R =R, f(x) =x3 —6x2 —36x + 2

(2) f:R =R, f(x) = x* — 4x

(3) f: R =R, S =@x—1) x—2)

(4) f:R >R, fx) =2x3 — 12x2 + 18x + 15
(5) f:RT >R f) = xfx+l

6) f:R" =R, f(x) = x% (x + 3)%

(7) f:(0, T) > R, f(x) = 2x + cotx

(8) f: R >R, f(x) = 2cos x + sin*x

(9) f:R >R, f(x) =log(1 + x?)
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(10) f: R > R, f(x) =x%+ 192x + 10

(11) f: R = R, fx) = xe*
(12) f: R = R, f(x) = x2&

(13) f:RY >R, f(x) = k’%

(14) f: Rt - R",  f(x) =x log x

1.4 Applications to Geometry

(1) Tangents and Normals : We know that if y = f(x) is a differentiable function in (a, b),
f'(xg) is the slope of the tangent to the curve y = f(x) at (x, f(xy)), X, € (a, b).

So a tangent to a curve y = f(x) at (x, f(xy)) is the line passing through (x,, y,) and
having slope f'(x,), where y, = f(x)). If a tangent at (x,, y,) is vertical, it does not have
a slope.

The equation of tangent at (xy, y,) to the curve y = f(x) is y — y, = f'(xg)(x — X)),
where the tangent is not vertical. If the tangent is a vertical line through (x,, y,), its
equation is x = x,.

A tangent may intersect the curve again. The tangents y = 1 or y = —1
intersect the graph of y = sinx, x € R in infinitely many points. (Touch)

A normal to a curve y = f(x) at (xy, yy) is a line perpendicular to the tangent at that
point and passing through (x,, y,). If the tangent is not horizontal, f'(x)) # 0. Then the

slope of the normal at (x;,, y,) is — ﬁ, since slopes m;, m, of perpendicular lines satisfy
0
». The equation of the normal at (x, y) is y — yy = — m (x — x¢) (f'(xp) # 0)

If f'(xg) = 0, the equation of the normal at (x,, y,) is x = x,. If the tangent at (x,, y,) is

vertical, the equation of the normal at (xy, y) is y = y,.

Example 25 : Find the slope of the tangent and the normal to y = x3 — 2x + 4 at (1, 3).

Solution : The equation of the curve is y = x3 — 2x + 4.

Zx—y=3x2—2
d _
(ay)le—l

The slope of the tangent to y = x3 — 2x + 4 at (1, 3) is 1.
Since a normal at a point is perpendicular to the tangent at the point , its slope at (1, 3) is —1.
(mym, = —1)
Example 26 : Find the equation of the tangent and the normal to the circle x2 + 2 = ¢? at (x5, yy)-

Solution : The equation of the circle is x2 + y? = g2,
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dy Y
2x+2y— =0 A N A
Y dx I I
I I
dy x - 1 1
— === ify#0
ax oyt I I
I I
The equation of the tangent at (x;, y,) is, ! |
X : X
Yoy =y = x 0 #0) A A
1 I I
I I
=y = g g : |
2 2 x=—ay (¥
xx, + =x,7 +
17N TN M ! o
But x,2 + y,> = a* as (x,, y,) lies on the circle x* + )? = a?. Figure 1.10

xx; + oy, = a® is the equation of tangent at (x, ¥y) to the circle x2 + 32 =% 0, #0)
Corresponding to y; = 0, A(a, 0), A'(—a, 0) are two points on the circle.

The tangents at A and A' are vertical and have equations x = a and x = —a respectively.
Taking (x;, y;) = (a, 0) or (—a, 0) repectively in the equation xx; + yy; = a* also, we get
2 2

xa+0=a2i.e.xa=a or —xa = a

x = a and x = —a are tangents at A and A'. (a #0)
At all points (x;, y;) on x2 + y2 = a2 the equation of tangent to x% + 2 = a? is xxy+yy, = a’.
A normal to x2 + y2 = &? is perpendicular to xxy + oy = a* and passes through xp yp-

Its equation is xy; — yx; = x;y; — y;x; = 0.

A line perpendicular to ax + by + ¢ = 0 and passing through (x;, y;) has equation

bx —ay = bx; — ayy.

The equation of the normal to x2 + )2 = 4% at (xy, ¥y is xy; — yx; = 0 and it passes
through the centre (0, 0) of the circle.
A radius (i.e. line containing radius) is always a normal to the circle.

2 2 2
Example 27 : Find the equation of the tangent and the normal to x3 + y3 = g3 at x = acos30,
y = asin0. 0 € [0, %) (a>0)
2 2 2 2
Solution : See that x3 + y3 = (acos’0)3 + (asin’0)3
2
= a3 (cos?® + sin’0)
2
— a3
2 2 2
(acos0, asin30) lies on x3 + y3 = g3,
1
2.3 42,739 _
Now 5 X + 3V T 0
1 .
3 —(asin®0)3
Do xS
X3 —(acos’0)3
. . sin ©
The equation of the tangent at (acos30, asin30) is y — asin®0 = — Zos0 (¢ — acos30)

ycos® — asin’® cos® = —x sin® + asin® cos’0
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xsin® + ycos® = asin® cosO (sin*0 + cos?0)

= a sin® cosO

The equation of the tangent at (acos>0, asin’0), © € (0,%) is
xsin® + ycosO = asin® cosO
The equation of the normal at (acos30, asin30) is
xcos® — ysin® = acos30 cosO — asin30 sind
= a(cos*® — asin*0)
= a(cos?0 — sin?0)(cos?0 + sin’0)
= acos20

The equation of the normal at (acos>0, asin30) is xcos® — ysin® = acos20.

Remember : A line perpendicular to ax + by + ¢ = 0 has equation
bx — ay = bx; — ay,, if it passes through (x;, ).

Example 28 : Find the equation of the tangent and the normal to y? = 4ax at (af?, 2at)

Solution : The equation of the curve is 2 = 4ax.

2y Zx_y = 4a X

2Q2at) % = 4a

Zx—y =1 if1#0 0 x
The equation of the tangent at (ar2, 2af) is

y — 2at = %(x — a?) (t # 0)

ry — 202 = x — ai? Figure 1.11

x — ty + ar> = 0 is the equation of the tangent to

2 = 4ax at (ar?, 2at) where t # 0

The equation of normal at (ar?, 2at) is tx + y = at*) + 2at.

tx +y — 2at — a® = 0 is the equation of the normal to y? = 4ax at (ar?, 2af). #0

Now if £ = 0, the corresponding point on parabola is (0, 0). The tangent at (0, 0) is vertical
and its equation is x = 0. Normal at # = 0 is perpendicular to x = 0 and passes through (0, 0).

Hence its equation is y = 0.

See that these equations can also be obtained from general equations by putting ¢ = 0.

Example 29 : Find the equation of the tangent to y = ‘/3x — 2 parallel to 4x — 2y + 5 = 0.

Solution : The slope of the line 4x — 2y + 5=0is m = —% = —_iz = 2.
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The slope of tangent to y = ‘/3x— 2 must be 2 as parallel lines have same slopes.

dy
dx
Since y = ‘/3x —2 is the equation of the curve,

=2

1-3
dy 12
dx 243x—2
9 = 16(3x — 2)

Let (x(, y) be the point of contact.

_ 9 _
Then Xy = %(ﬁ+2) ié, Yo =

J; 3
The equation of tangent at (% %) isy — % = 2( - —) (m = 2)
24y — 18 = 48x — 41
48x — 24y = 23 is the equation of the tangent to y = J?mc_—Z parallel to 4x — 2y + 5 = 0.

[Verify that 48x — 24y = 23 is parallel to 4x — 2y + 5 = 0 and is not coincident with
4x — 2y + 5=0]
Example 30 : Find the points on x2 + »2 — 2x — 3 = 0 at which the tangents are parallel to X-axis.

Solution : The equation of the curve is x2 + y2 — 2x — 3 = 0

2x+2yj——2—0 (i)

The tangent is parallel to X-axis. So its slope is zero.

2x—2= (using (i)

Now, x2 + 32 —2x—3=0
1+3y2-=2-3=0 x=1)
=4
y=%x2
The tangents at (1, 2) and (1, —2) to the circle are y = = 2 and they are parallel to X-axis.
Example 31 : Find the point or points on y = x> — 11x + 5 at which the equation of the tangent is

y=x— 11
Solution : The equation is y = x> — 11x + 5.
Zx—y =3x2 — 11 @

The slope of y =x — 11 is 1.

The slope of the tangent is 1.

dy

Ezl
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3x2—11=1 (using (i)

3x2 =12
x2 =4
x=x2

Ifx=2y=x—1llx+5=-9.1fx=-2,y=x3—1lx+ 5=19
Point of contact may be (2, —9) or (=2, 19).
At (2, —9), the equation of the tangent is y + 9 = 1(x — 2) (slope = 1)
o y=x—11I.
But the tangent at (=2, 19) cannot have equation y = x — 11 as (=2, 19) does not lie on
y=x—11.
The tangent at (2, —9) has equation y = x — 11.
Example 32 : Show that tangents to y = 7x3 + 11 at x = 2 and at x = —2 are parallel.
Solution : The equation of the curve is y = 7x3 + 11.

Zx—y=21x2=84atx=i‘2

Ifx=2,y=7x+ 11 = 67. If x = =2, y = —45.
The equations of tangents at (2, 67) and (=2, —45) are respectively y — 67 = 84(x — 2) and
y + 45 = 84(x + 2). (m = 84)
84x — y = 101 and 84x — y + 123 = 0 are equations of the tangents at (2, 67) and
(=2, —45) respectively.
They are having same slopes and are distinct lines.
They are parallel.
Example 33 : Find the equation of the normal to x2 = 4y passing through (1, 2).

Solution : The equation of the curve is x2 = 4y

Y
2x =4 e
4y _x
dx 2
The slope of the normal at (x(, y,) is _x%) xg # 0)
The equation of the normal at (x,, y) isy — y) = _x% (x — x¢) @)

If it passes through (1, 2), 2 — y, = _xio (I = xy)

2

x0(2 - x%) =2+ 2x (xg® = 4vp)
xo3 =8

_ _ X()Z _
The equation of the normal at (2, 1) isy — 1 = — % x—2)=—x+2 (using (i)

x + y = 3 is the equation of the normal to x2 = 4y passing through (1, 2).
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(1) If x, = 0, then y, = 0. Normal at (x,, ) »
is x = 0. It does not pass through (1, 2)

(2) Here the normal passes through (1, 2) and is o) X
not at (1, 2). It is proved to be a normal at (2, 1).
(1, 2) does not lie on x2 = 4y. v
Figure 1.12

Example 34 : Prove that the sum of the intercepts (if they exist) on axes by any tangent to
Jx + J_ = Jc is constant. c>0).x#0,y#0)

Solution : The equation of the curve is \/; + \/_ = ‘/;

d_y
dx

|H

R

+ 5 =0

5

(x # 0)

&

The equation of the tangent at (x;, y;) isy — y; = —‘/% (x —xy)
1

Y
e R iy £0,y, %0
\/;1 ‘/_ ‘/_ (xy »1 )
‘/_ \/Z \/y_l = \/; ((xg5 yp) lies on \/; + J_ = JZ)
It intersects axes at (‘/x_1 Je. 0), (0, \/Y_l Jo).

The sum of the intercepts on axes is \/x_l\/; + \/y_l\/; =Jc (‘/x_1 + \/y_l)
- Jede

= C

'?II
|‘< ﬁl*

The sum of the intercepts of any tangent to ‘/; + J_ = \/; on axes is constant.

If x; = 0 or y; = 0, the points on the curve are (0, c¢) or (¢, 0). The tangents at these

points are respectively x = 0 and y = 0 and do not have both the intercepts.

Example 35 : Prove that any normal to x = acos® + a0 sin®, y = asin® — ab cosO is at a constant
distance from origin. O # %, ke 7

Solution : Since x = acos® + a0 sin® and y = asin® — aB cosO

de _ —asin® + asin® + a0 cosO = a0 cosO

do
dy , .
- = acos® — a cosO + ab sin® = a0 sind
dy sin©
TIr  cos® (cos® # 0)
cos0
The slope of the normal at O-point is — TR (sin® # 0)
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cosO

The equation of the normal at O-point is (y — asin® + a0 cos0) =— (x — acosO — ab sin0O)

sin©
ysin® — asin®0 + ab sin® cos® = —xcosO + acos*® + aO sin® cosO
xcos® + ysin® = a(cos?0 + sin?0) = a

. . . . k1t
xcosO + ysin® = a is the equation of the normal at O-point. (9?5 5 )

. .. B lcl
If its distance from origin is p, then p = —W

l—al
— = | a| which is a constant.

[What happens if 6 = an 2]

(2) Angle between two curves :

The measure of the angle between two curves is defined to be the measure of the angle between
the tangents to them at their point of intersection.

A result : Let y = f(x) and y = g(x), x € (a, b), be equations of two curves and f(x) and
g(x) are differentiable in (a, b). If they intersect at (x4 yg), X, € (a, b). The measure O of the
angle between them is given by

S '(xp) - 8'(xp)
1+ f'(x0) &'(x0)

Explanation : We know if m, and m, are slopes of two lines, the measure Ol of the angle
between them is given by

tanQ, =

m —ny

tanQL = T+ mm,

Also the slopes of tangents at (x,, y,) are f'(xy) and g'(x,).
So m; = f'(x,) and m, = g'(x,). Hence the result.

If f'(xy) g'(xp) = —1, OL = L and we say the curves intersect orthogonally.

2
If f'(xy) = g'(xy), the curves touch each other at (x,, y)-

Example 36 : Prove that x2 — »2 = 5 and 4x2 + 9y? = 72 intersect orthogonally at every point of
intersection.

Solution : Let us first find the points of intersection.
x2 —y2 =35, 4x2 4+ 92 =72 @)
4x2 — 4y? = 20 using x2 — y? = 5. (ii)
Solving (i) and (ii), 13y% = 52
2 =4.Soy=%2

x2—4=5 (x2_y2=5)
x2 =09, So,x=%3
The points of intersection are (3, 2), (3, —2), (=3, —2), (=3, 2).

dy _
—==0

The slope of the tangent to x2 — y2 = 5 denoted by my is given by m, = %

For the first curve 2x — 2y

For the second curve 8x + ISny—y = 0.
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The slope of the tangent to 4x% + 932 = 72 at (x, ) denoted by m, is given by m, = —g—;

4x?
fn S 36 _ 1

At all the points of intersection the curves (hyperbola and ellipse) intersect orthogonally.

Example 37 : Prove that y = ax?, x2 + 3y% = b2 are orthogonal.
dy

Solution : The slope of the tangent to y = ax> at (x, y) is denoted by my. So m; = i 3ax?.
x2 + 3y2 = b2 implies 2x + 6y ZZ =0
2 2 _ 2 - _dy _ _ x
The slope of the tangent to x~ + 3y~ = b~ at (x, y) is denoted by m,. So m, = T3y
- 2y (X)) = _ﬁ I : : : — 3
mym, = (3ax) ( 3y) Y 1 as at the point of intersection y = ax

The curves intersect at right angles.
[The curves do intersect as substituting y = ax3 in x2 + 3)2 = b2, we get x2 + 3a2b® = b2
This equation has a solution.]
Example 38 : Find the measure of the angle between x2 + y2 —4x — 1 =0 and x2 + y2 — 2y — 9=0.
Solution : The equations of curves are x2 + 2 —4x — 1 =0, x2+ 32 —2y — 9 = 0.
At the point of intersection, x2 + 2 = 4x + 1 =2y + 9.

4x — 2y =8
2x —y =4
y=2x—4

Substituting y =2x — 4 inx2+ 32 —4x—1=0, x2+ 2x—4)2 —4x—1=0
5x2—20x+15=0

¥ —4x+3=0

x =3 or 1. So correspondingly y = 2x — 4 =2 or —2

The points of intersection of the circles are (3, 2) and (1, —2).

Nowforx2+y2—4x—1=0,2x+2y2x—y—4=0 (@)
d d
2 2— —_— = _y— _y= I
and for x= + y 2y —9 =0, 2x+2ydx I 0. (i)
1) At @3 2)'6+4d—y—4=0 6+4d—y—2d—y=0 (Using (i) and (ii))
P dx : dx ~ dx &
For x2 + y2 — 4x — 1 = 0 slope of tangent m1=—%.

For x2 + 2 — 2y — 9 = 0 slope of tangent m, = —3.

B —%+3 B | —m,
2
_ T
o=
) ia—ad 4o 4y, ine (i "
2) At(1,-2):2 4dx 0, 2 4a’x de 0 (Using (i) and (ii))
_ _1 _ 1
As before m =3, My =3
_1_1
23
tanO = |7 "1 [=1
6

APPLICATIONS OF DERIVATIVES 23



-z
=7

The circles intersect at both the points at an angle having measure %.
Example 39 : Where does the normal to x2 — xy + 2 = 3 at (—1, 1) intersect the curve

again ?

Solution : x2 — xy + »2 = 3 is the equation of the curve.

2x—(xd—y+y)+2yfilx—y=0

dx
_ (b dy _
At (=1, 1), =2 = E+1)+2E_0
dy _
35 3
.ody _
The slope of the tangent at (—1, 1) is e 1.

So the slope of the normal at (—1, 1) is —1.
The equation of the normal at (=1, 1) isy —1=—=1(x+1)
x + y = 0 is the equation of the normal at (—1, 1).
To find the points of intersection, let us solve.
x+y=0and x2 —xy +)% =3
Substitution y = —x in x2 — xy + y2 = 3,
3y2 =
x=*1
Since x = —y, the point of intersection is (1, —1) as x # —1.
The normal drawn at (—1, 1) intersects the curve at (1, —1).

[(=1, 1) is the point at which normal is drawn. So it is the foot of the normal. Hence x # —1.]

2 2
Example 40 : Prove that ? - Z—z = 1 (a® # b?) and xy = ¢ cannot intersect orthogonally.
2 y2
Solution : One of the equation is % il =1
2x _ 2y dy _ 0
a’ b dx
dy b2x

The slope of the tangent to the curve, m; = T ay (Why y # 0)
The other curve has equation xy = ¢2

dy

— + =
x—oty 0
The slope of the tangent to the curve, m, = — %

_(B2x Ny _ B2 2 2
mlmz—(azy)(—;)——a—zi—l as a* # b-.

The curves (hyperbolas) cannot intersect at right angles.

If a? = b2, they intersect orthogonally. Hence rectangular hyperbolas x2 — 2 = ¢ and

xy = ¢ intersect orthogonally. That they do intersect can be verified.
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10.

11.

12.
13.
14.

15.

16.
17.

18.
19.
20.

21.
22.

23.

Exercise 1.3

2 2
Find the equation of the tangent to % - Z_Z =1 at (xq, y))-

Find the equation of the tangent to y?> = 4ax at x> Y-

Find the slope of the tangent to y = x3 + 5x + 2 at (2, 20).

Find the slope of the normal to y% = 4x at (1, 2).

Find the equation of the tangent to 32 = 16x, which is parallel to the line 4x —y = 1.

Find the equation of the normal to »? = 8x perpendicular to the line 2x — y — 1 = 0.

x> v’ x> y’ ) .
Prove that the curves @+ A + ey =1, T+ + b, = 1 intersect orthogonally, if

they intersect. (7\1 # 7»2)

Prove that portion of any tangent to x = acos’0, y = asin’0 intercepted between axes has

constant length.
Prove that 2x%2 + y2 = 3 and »? = x intersect at right angles.

Prove that circles x2 + y2 = ax and x2 + y? = by are orthogonal.

(1) Find the equation of the tangent to y = sinx at (%, 1).

(2) Where does it intersect the curve again ?

Find equation of tangent to x = cos0, y = sin® O € [0, 2T) at O = %

Find equation of tangent to y = 4x3 — 2x> passing through origin.

(2, 3) lies on y* = ax3 + b. The slope of the tangent at (2, 3) is 4. Find « and b.

The slope of the tangent to xy + ax + by = 2 at (1, 1) is 2. Find a and b.

Find the equation of tangent to x = a(0 — sinB), y = a(1 — cos0).

Prove that parabola y? = x and hyperbola xy = k intersect at right angles, if 842 = 1.

Where does the normal to y = x — x2 at (1, 0) intersect the curve again ?

Find g, b if tangent to y = ax? + bx at (1, 1) is y = 3x — 2.

Find the equation of tangent to x> + )3 = 6xy at (3, 3). At which point is the tangent horizontal
or vertical ?

Prove xy = ¢, ¢ # 0 and x2 — y? = k%, k # 0 intersect orthogonally. (Compare : Example 40)

Find the equation of the tangent to given curves at given point :

2 2
W -3 o (53)
2y _
@) &+ 5 =1 at (—1, 442)
3) »¥=x>2—-x) at (1, 1)
(4) 32 = 5x% — x2 at (1, 2)

(5) 202 + 32 =252 —y?) at (3, 1)

Find points on x%y2 + xy = 2 where tangent has slope —1.
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24. Find the measure of the angle between

(1) y=x%y=(—2)7? (2) 2 —32=3,x2+)2—4x+3=0
25. Find the equations of tangents to y = cos(x + y) parallel to x + 2y = 0.

26. Find the equations of tangents to y = ﬁ, x # 1 parallel to the line x +y + 7 = 0.

n n
27. Prove that i + 2 =2 touches (%) + (l) =2 for all » € N — {1}, the point of contact

b b
being (a, b).

28. X-axis touches y = ax® + bx2 + cx + 5 at P(—=2, 0) and intersects Y-axis at Q. The slope of
the tangent at Q is 3. Find a, b, c.

1.5 Approximation and Differentials
Error : We know that lim PACRROENAC))

h—0 h
and x € (a, b), x + h € (a, b).

= f"'(x), where fis a differentiable function in (a, b)

If 4 is ‘very small’,

fx+h-fx)
h

fx+ h) — f(x) =f'(x)h + u(h)h.
Let f(x+ h) — f(x) = Af(x)and h = (x + h) — x = Ax.

= f'(x) + u(h) where u(h) is a function of 4 and as &4 — 0, u(h) — 0.

A f(x) is a ‘small’ change in f(x) caused by a ‘small’ change Ax in x.

s AF®) = f(O)Ax + uAx)Ax
f'(x)Ax is called differential of y = f(x) and is denoted by dy. Also A f(x) = Ay.
Ay = dy + u(Ax)Ax

Since u(Ax)Ax is very small and can be neglected, we say dy is an approximate value of Ay

and we write Ay = dy.
Also dy = f'(x)Ax ()
Moreover for the function y = x, f'(x) = 1.
dx = 1.Ax
For the independent variable x, Ax = dx.
Thus from (i) dy = f'(x)Ax = f'(x)dx

; von _ dy)

0= G
dy _ @y
dx (dx)

d
On L.H.S. we have derivative of y = f(x) and is not a ratio, but on R.H.S. We have a ratio %

of differential of y and differential of x.
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Ay is also called an error in calculation of f(x).

s Ay = ody = ' (0O)Ax.
Moreover f(x + Ax) = f(x) + f'(x)Ax.

Geometrical Interpretation of Differential :

v C// (dy)(xo, )
'\A(xo, /(xp)) {~% +Axg, [ (xg + Axg))
vl D “Af(x)
/ Axo
o X
A4

Figure 1.13
Let A(x(, f(xy)) be a point on the curve y = f(x).
B(x, + Ax,, f(x, + Axo)), is also on the curve. C is the point on the tangent at A to the curve
v = f(x) lying on the vertical line through B.
The equation of the tangent at A is y — y, = f'(xy) (x — x) (f'(xg) is slope of the tangent)
At C, x = x, + Ax,
y-coordinate of C, y =y, + (x, + Axo — x0).f'(xp)
= f(xo) + f'(xo) Axo
= fxp) + (dy)(x()’ o)
CD = y-coordinate of C — f(x,) = (dy)(xo’ o)
BD = f(xy + Axo) = fxp) = Af(xo) = Ayo
BC = |Ay0 - (dJ’)(xO’ y0)|
As B moves nearer and nearer to A on the curve, BC — 0. Hence dy = Ay.
Thus f(x, + Axo) = f(xy) + f'(xy) Ax, is called the approximate value of f(x) for x = x, + Axo
obtained by linear approximation using tangent to y = f(x).

Example 41 : Obtain approximate value of {101 and /99 using differentiation.

Solution : Let f(x) = 1/;, x e R
Let x = 100 and x + Ax = 101 (We know 100.)

Ax=1. (Ax=x+ Ax — x = 101 — 100)
oy = L L1
f(x)—z)c—z’/m—20 0.05

Now f(x + Ax) = f(x) + f'(x) Ax
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£(101) = £(100) + £'(100) Ax
= J100 + (0.05)(1) = 10.05
An approximate value of 101 is 10.05.
For 99, let x = 100, x + Ax = 99, Ax = —1
J99 =£(99) = f(100) + £'(100) Ax
J100 + (0.05)(—1)
10 — 0.05 = 9.95

(Ax = 99 — 100 = —1)

x Approximate Value
J1o1 10.05
J99 9.95
J102 10.1
J98 9.9

Actual Value
10.0498756....
9.94987437....
10.0995049....
9.89949493....

We observe that as Ax — 0, actual value
approaches true value. Here the actual value is

smaller than the approximate value, as the tangent

lies above the graph of y = Jx or y? = x.

1
Example 42 : Find approximate value of (65)3.

[Note : We will henceforth not use the phrase ‘using differentiation’ but it is implied.]

1l
Solution : f(x) = x3.

X =64, x + Ax = 65. So, Ax = 1

-2
f@)=3x =—7 ="7 =3 S0 Af(») = () Ax = ¢

1 1
(657 = (647 + Af(x) =4+ =13

Example 43 : Find ran 46°.

Solution : Let f(x) = tanx and x = %, xeR—{(Zk—l)%lkeZ} (450 = %R)
R
= .L = l
Ax ! 180 180

f(x) = sec?x = (\/5)2 =2

Af(x) :f'(x)Ax=2.% z%

28
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tan4d6° = tan45° + A f(x)

~ s
=1+ )
An approximate value of fan 46° is 1 + 9—7'(:)

Example 44 : Find approximate value of (1) cos ' (=0.49) (2) sec”! (=2.01)

Solution : (1) Let f(x) = cos”lx, x = —0.5, Ax = 0.01

) — _ __2 -
O e B Af@) = f0) Ax = —5o

3

os~ 1 (—0.49) = cos™! (—0.5) + Af(x)

o —1 R
= T — cos  (0.5) S0v3

- T _ —
T=3 "5
2 1
3 5043
Another method : Let f(x) = cos”lx, x = 0.5, Ax = —0.01
os~ ! (—0.49) = T — cos™ ! (0.49)

T — (cos™! (0.5) + f'(x) Ax)

-n-Z - (—%)(—o.m)

2m 1
3 5043
(2) Let f(x) = sec 'x, x =2, Ax = 0.01

!

FO) = T T A = S WA -

ec”! (=2.01) = T — sec”! (2.01)
= T — (sec 12 + f'(x) Ax)

- (% + 20(:1/5)
_2m _ 1
T3 T 20003
Example 45 : Find approximate value of (1) log,10.01 (2) log;,10.1 (3) log,(e + 0.1)
(log e = 0.4343, log,10 = 2.3026)

Solution : (1) Let f(x) = log,x
Let x = 10, Ax = 0.01, f'(x) = % =L =01
Afx) = f'(x) Ax = 0.001
log,(10.01) = log,10 + f'(x) Ax
= 2.3026 + 0.001

= 2.3036
(Actually log,10.01 = 2.30358459....)
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log, x
(2) Let f(x) = log;ox = _loge 0 = log,x - log;ge

=(0.4343) log x
Let x = 10, Ax = 0.1

VALCO R o
A f'(x) = £'(x) Ax = (0.04343) (0.1) = 0.004343
log;((10.1) = log;(10 + f'(x) Ax
=1.004343
(Actually log;o(10.1) = 1.00432137....)
(3) Letf(x) = logx, x =e, Ax = 0.1

S ==L Arw = reac= G = ok

log,(e + 0.1) = log,e + f'(x) Ax

=1+ % = 1.03678794
e

(Actually it is 1.0367879441....)
Example 46 : If there is an error of x % in the measurement of radius of a sphere, what is the

approximate error in the measurement of volume and surface area ?

Solution : There is x % error in the radius.

= X
Ar R
Volume of a sphere, V = %Ttr3

av _ 4 — 4102
o 3TC(3r2) 47U

Error in volume AV = % Ar
— A2 XL
47T 100

3 100 100
There is approximately 3x % error in the volume.
Surface area S = 4702

ﬁ=81‘I:r

dr

Error in surface area AS = % Ar

- L xr
811 100

= 2041 355

_ 2xS
100

There is approximately 2x % error in surface area.
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Example 47 : The radius of a sphere is measured as 7 m with error of 0.02 m. What is the

approximate error in the volume ?

Solution : For a sphere, volume V = %Ttr3

r=7m, Ar=0.02m

DV - Ln(312) = 4m?

ar
. av

AV = Ir Ar
= 412 . Ar
= 470(49)(0.02)
=3.92 T m3

There is approximately 3.92 T m? error in the volume.
Example 48 : Find the approximate error in the surface area of a cube with edge x c¢m, when the edge
is increased by 2 %.

Solution : S = 632, Ax = 2X

100
ﬁ =
dx 12x
AS = 4as . Ax
dx
AS = 12x Ax
_ 2X
= 12x . m
_ A6x?) _ 48
100 100

There is approximately 4 % increase in the surface area.

Example 49 : Prove that for a triangle inscribed in a circle of constant radius, sides change according

d. db di . Lo
to Cosa ~ t Zoss T COSC c = 0 in usual notation, if da, db, dc are small.

. a b c . .
Solution : We have 5;;x = S5inB = smc — 2R according to sine rule.

a = 2RsinA, b = 2RsinB, ¢ = 2RsinC, R constant.

da _ db _ de _
= 2RcosA, 4B 2RcosB, C 2RcosC

da = % AA = 2RcosA AA etc.

da db dc
cosA T TosB T cosc = 2R(AA + AB + AC)

=2R(AA + B + Q)
= 2R A(T)
=0

da db dc

cos A + cos B + cos C

=0

Example 50 : When a circular plate is heated, its radius increases by 0.1 cm. Find the approximate

increase in area, when the radius is 5 cm.
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Solution : For a circle, area A = T2

dA

dr 27r
AA = 48 Ar = o1 Ar = 21(5)(0.1)
AA = T cm?

2

There is Tt cm* increase in area approximately.

Example 51 : If f(x) = cosx, find the differential dy and evaluate dy when x = % and Ax = 0.01.

Solution : y = f(x) = cosx

dy = £'(x) Ax = (—0.5)(0.01)
dy =—0.005

Example 52 : Prove that if 4 is very small, sinh = h.

13.

14.

15.

16.

17.

Solution : Let f(x) = sinx, x = 0, x + Ax = h
f'(x) = cosx, f'(0) = cosO = 1
flx + Ax) = f(x)+ f'(x) Ax
Sy = f(0)+ f(0) A (h = Av
sinh = sin0 + cos0 - h

sinh = h, if h is small.

Exercise 1.4

Find approximate value (1 to 12) :

L 1 1
v0.37 2. (0.999)'° 3. (80)* 4. (255)*
1 1
(399)? 6. (32.1)° 7. cos 29° 8. sin61°
1
tan31° 10. log,(100.1) 11. log;((10.01) 12. (16.1)*

If the radius of a cone is twice its height, find the approximate error in the calculation of its

volume, when the radius is 10 ¢m and the error in the radius is 0.01 cm.
If there is an error in measuring its radius by Ar, what is the approximate error in the volume

of a sphere?

1
2
the energy. What increase in the velocity v which caused it ?

Kinetic energy is given by k = =mv2. For constant mass there is approximately 1 % increase in

Area of a triangle is calculated using formula A = %absinC. If C = % and there is an error in

measuring C by x %, what is the percentage error in area approximately ? a, b are kept constant.

Find approximate value of f£(3.01) where f(x) = x° — 2x2 — 3x + 1.

32
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18. Find approximate value of f(1.05) where f(x) = 2x* — 3x + 5.

19. Find the approximate increase in the volume of a cube when the length of its edge increases
by 0.2 ¢m and its edge has length 10 cm.

20. Find the approximate increase in the total surface area of a cone when its height remains constant
and the radius increases by 2 % at the time when its radius is 8 c¢m and the height is 6 cm.

21. Find approximate value of cos 131—2, knowing the value of cos %

%
1.6 Maximum and Minimum Values

We have seen some applications of differential calculus. Now we will learn an important

application of differential calculus to optimization problems.

We may wish to find maximum volume of a box, minimum cost of a can to contain fixed quantity
of fruit juice or minimize the cost and maximize the profit etc.

Definition : A function f has an absolute or global maximum at c if f(c) 2 f(x), Vx € D,
c € Df and a function has an absolute or global minimum at ¢ if f(¢) < f(x),

Vx € Df, c € Dj. The maximum and minimum values are also called the extreme values of

S on Df.
Definition : A function f defined on an interval I has a local maximum value at ¢ € 1,
if for some # > 0, (c — h,c+ h) C 1 and f(c) 2 f(x), Vx € (c — h, c + h).
A function f defined on an interval I has a local minimum value at ¢ € 1, if for some

h>0(c—hc+hCl andf(c)Sf(x),VxE (c— hy,c+ h).

Note :| If I is a closed interval local maximum or local minimum cannot occur at

an end-point of the interval because of the condition (¢ — &, ¢ + h) C 1.

However global maximum or global minimum may occur at an end-point.

Y

N

f(x) = sinx, x € R takes global maximum
(5.25)
lforx=>4n+1) %, n € Z and global minimum

I
o

y
—1 for x = (4n + 3)%, n € Z. Consider

f(x) = x2, x € R. Since x> 20 Vx € R,

f(0) = 0 is global minimum as well as local
minimum but f has no global maximum. But

if the domain of f is restricted to [—3, 5],

say, it has a global maximum f(5) = 25. v

Figure 1.14
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4
y=x
The function f(x) = x3, x € R has
no extreme value in R. < > X
Look at following graph.
N
Y Figure 1.15
4/
I
I
I
1) 1@ !
I
f© f@© [
/(@ ] X
a O a
\ Figure 1.16

See that the global minimum occurs at x = a in [a, a'] and the global maximum occurs at x = d.
f(b) is local maximum and f(c) and f(e) are local minimum values. Also global minimum occurs at
an end-point of the interval but global maximum occurs at an interior point of the domain. Now we
assume following result without giving proof.

The Extreme Value Theorem : If a function f is continuous on [a, b], f attains its
global maximum value at some ¢ € [a, ] and global minimum value at some d € |[a, b].

These are called extreme values of the function.

Y Y Y
a b
@i@ | / Sls|s
<:“\ £@ 1) f© [f@ NSRS
1
o X o X o) X
(@ (b) (©
Figure 1.17

In figure 1.17(a) both maximum and minimum values of f occur at an interior point of [a, b]. In

figure 1.17(b) the maximum occurs at ¢ € (a, b) and minimum at d = b. In figure 1.17(c), there are
two maxima (i.e. more than one).
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Look at figure 1.18.

Here the domain of the function is [1, 4]

but the function is discontinuous at x = 2. Its
range is [0, 4). For no x € [1, 4], f(x) = 4.
The function has no maximum.

Hence, we have kept the assumption that

fis ‘continuous’ in the extreme value theorem.

But a discontinuous function could well

have maximum and minimum value.

Y

—_
- S T

Figure 1.19

. X +2 X +2
See that in figure 1.19(a), we get | = ==

which is larger than f(x,), where x;, € (0,2). No

f(x) can be maximum. Similarly f (%) < f(x)), so f(x)
has no minimum value.

Mid-point of AC is B and mid-point of OA is D.

+2
Thus we get a larger value f (x12 ) at B than any
value f(x|) at A and a smallar value f (%) at D than
value at A.

There is no maximum or no minimum.

Y

N

(c.f ()

(d.f(d)

c+h

Figure 1.20

1 2 3 4
Figure 1.18

Look at figure 1.19.

The function is continuous on (0, 4), but it
has neither maximum nor minimum value. The
range is (1, oo). Hence, the condition ‘closed
interval® enters in the extreme value theorem.

f(x) = x in (0, 2) has no maximum or
minimum but f(x) = x in [0, 2] has maximum
f(2) = 2 and minimum f(0) = 0. For f(x) = x,

X +2
let x; € (0, 2). Then x; < ) <2asx; <2

Y

4

N

X +2

, (%) Ay B(232) c@)
Figure 1.19(a)

Look at the graph (figure 1.20).
f has a local maximum at x = c. In

(¢ — h, ¢), fis increasing and therefore
f'(x) > 0. In (c, ¢ + h), fis decreasing
and so f'(x) < 0. As x takes values
in (¢ — h, ¢ + h) and passes through
¢, f'(x) changes from positive to
negative. Also f'(c) = 0.

Similarly at x = d, f has a local
minimum and f' changes sign from
negative to positive and f'(d) = 0.
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Thus we accept the following theorem without proof.

Theorem 1.2 (Fermat's Theorem) : If f has a local maximum or local minimum at ¢ and if
[ is differentiable at c, then f'(c) = 0.

S
7

Although this is only a necessary condition
and not sufficient. For £ (x) = x3, £'(0) = 0 but

it does not have a maximum or minimum.

N
A\ 4
<

Such a point where the graph crosses its
horizontal tangent is called a point of inflexion.
For f(x) = x3, (0, 0) is a point of inflexion.

At (0, 0) tangent is horizontal. v
Figure 1.21

Fermat's theorem is named after Pierre Fermat (1601-1665). He was a French lawyer and
mathematics was his hobby. He was one of the inventors of analytic geometry (the other being
Des Cartes).

Y
Also fmay have an extreme value at
x = ¢ and f may not be differentiable
at c.
x f(x) = | x| has minimum at x = 0.
O f(0) = 0] = 0 is minimum value of
f(x) = |x| but f is not differentiable
v for x = 0.
Figure 1.22 Hence we define,

A Critical Number (Point) : A critical number (point) ¢ of a function is a number ¢ € Df
such that f'(c) = 0 or f is not differentiable at c.
Thus if f has a local maximum or local minimum at x = ¢, ¢ is a critical number of f.

We now state following first derivative test from above discussion.

First Derivative Test : Let f be defined in an open interval I = (a, b). ¢ € 1 is a critical

point of f and f is continuous at c.
(1) If there exists a positive number % such that (¢ — h, ¢ + h) C I, f'(x) > 0 in
(c— h, ¢) and f'(x) < 0 in (¢, ¢ + h), then f has a local maximum value at c.
(2) If there exists a positive number % such that (¢ — h, ¢ + h) C I, f'(x) < 0 in

(c— h, c) and f'(x) > 0 in (¢, ¢ + h), then f has a local minimum value at c.

(3) If f'(x) does not change sign as x takes values in (¢ — h, ¢ + h) for any h > 0,
f has neither maximum nor minimum value at x = ¢. Such a point is called a point

of inflexion.
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For some A > 0

f'(x) changes from +ve in (¢ — A, ¢) to —ve in (¢, ¢ + h) f(c) is a local maximum

f'(x) changes from —ve in (¢ — A, ¢) to +ve in (¢, ¢ + h) f(c) is a local minimum

Sometimes, it may not be easy to handle first derivative test. Then we may use following second
derivative test.

Second Derivative Test : Let f be defined on an interval I = [a, b]. Let ¢ € (a, b). Suppose
f"(c) exists. Then

(1) f has local maximum at x = ¢, if f'(¢c) =0, f'"(c) < 0.

(2) f has local minimum at x = ¢, if f'(c) = 0, f"(c) > 0.

(3) The test fails to give any conclusion if f'(c) = f'"(c) = 0.

Note : f'"(c) < 0, f'(¢c) = 0 means f'(x) is decreasing at x = ¢ and since f'(c) = 0,
f'(x) changes from +ve to —ve.

f(x) has a local maximum at x = c.

Similarly if f'(c¢) > 0, f'(¢) = 0 we can conclude that f(x) has a local minimum at x = c.
3
Example 53 : Find the critical points for /(x) = x> (4 — x), x € Rt U {0}.

3

3 8
Solution : f(x) = 4x° — x°

2 3
' - 12,75 _ 8,5
f'(x) X X
3

_4(3 _ 5.5
_g(; 2")

f'x) =0, if x = % and f'(x) does not exist at x = 0 but 0 € Df.
The cricital points are 0 and %

Example 54 : Find local maximum or minimum values of f(x) = |x|. x € R

Solution : f'is not differentiable at x =0, 0 € Df. So 0 is a critical point and the second derivative
of f does not exist at x = 0.

f(x)={x x=20

—X x<0
flx) =1 if x>0

and f'(x) =—1 if x<O.

f'(x) changes from negative to positive as x passes through 0 and f is not differentiable
at x = 0.

f'(x) changes from negative to positive as x changes from (=4, 0) to (0, &), & > 0.

f has a local minimum value f(0) = 0 at x = 0. f has no maximum value.
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Obviouslyf(x) =|x|=20 Vxe R

f has a local and global minimum at x = 0.

To find extreme values for a function defined on a closed interval [a, b].
(1) Find local maximum and local minimum values of f.
(2) Find values of f at end-points.

The largest of the values obtained in (1) and (2) is global maximum and the smallest of the values
obtained in (1) and (2) is the global minimum value of f.

Example 55 : Examine for maximum and minimum values : f(x) = 3x* — 16x3 + 18x%, x € [—1, 4]
Solution : f(x) = 3x* — 16x3 + 18x2
f'(x) = 12x3 — 48x% + 36x
12x (x2 — 4x + 3)
2x(x —3)x — 1)
f'x) =0=x=0,1 or 3.

f"(x) = 36x2 — 96x + 36

f"0)=36>0,7"(1) =-24<0,f"3)=72>0

£(0) is local minimum and f(0) = 0 is local minimum.

f has local maximum at x = 1 and (1) = 5 is local maximum.

f has local minimum at x = 3 and f(3) = —27 is local minimum.
Local maximum or minimum values can occur only at an interior point of [—1, 4].
For global maxinum and minimum values, consider f(—1) and f(4).

f(=1) =37, f(4) =32

SO) =0, f(1) =5, f(3) =27, f(=1)=37, f(4) =32

f(=1) =37 is global maximum occuring at an end-point.

f(3) =—27 is global minimum and it occurs at an interior point 3 € (—1, 4).
Example 56 : Find maximum and minimum values of the function f(x) = x3 — 12x + 1, x € [-3, 5]

Solution : f(x) = x3 — 12x + 1

f'(x) =3x2 — 12 = 3(x — 2)(x + 2)

flx)=0=>x=12

Sf"(x) = 6x

f")y=12>0

f(2)=8—24+1=—15is local minimum value.

f"=2)y=-12<0

f(=2)=—-8+24 + 1 =17 is local maximum value.
Moreover, f(=3) =27 +36 + 1 =10, f(5) =125—-60 + 1 = 66

F(2)=—15, f(=2) = 17
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f(5) = 66 is global maximum and

f(2) =—15 is global minimum.
Example 57 : Find maximum and minimum values of the function £ (x) = 3x> — 5x3 — 1, x € [-2, 2]
Solution : f'(x) = 15x* — 15x2
=15x2(x2 = 1)
=15x2(x — D(x + 1)

f'x)=0 = x=0orx ==l

f"(x) = 60x3 — 30x

f"(1H)=30>0

f(1) ==3 is local minimum value.

f"=1H=-30<0

f(=1)=1 is local maximum value.
But £"(0) = 0

Second derivative test fails.

f'(x) = 15x2(x — D(x + 1)

x2>0,ifx#0
If-l<x<lthenx+1>0andx—1<0

) <0 for—1 <x<1.

f'(x) does not change sign as x increases in (—1, 1).

0 is a point of inflexion.

f(2)=96 —40 — 1 =55

f(=2)=-96 + 40 — 1 = =57. Also f(1) = =3, f(—1) = 1.

f(2) = 55 is global maximum and f(—2) = —57 is global minimum value.

Example 58 : Determine maximum and minimum values of f(x) = x — 2cosx, x € [—T, T]

Solution : f(x) = x — 2cosx

f'x) =1+ 2sinx

f'x) = 0 = sinx = —

0=

x:_%’ —gn X € (|, T

Now f"(x) = 2cosx

PA-E) = 2e0l-5) 2 - i >0

S(E) = - —ocos(-§) --Z-a2xLB -2 3
f(_%) = —% — 3 is local minimum value at x = —%,

APPLICATIONS OF DERIVATIVES 39



7(-38) = 2eos(~5F) = 2005 35 = 2cos{ =)

=2 (@) =—J3<0
f(_S?TE) = —STR +2 (@) = ‘/5 — 5?“ is local maximum value.
f(@@) =T — 2cosTt =T + 2
f(=T) = =Tt — 2cos(—M) = —T — 2cosT = —T0 + 2
f(m) =1 + 2 is global maximum value.

f(—%) =—-J3 - % is global minimum value.

Example 59 : Find maximum and minimum values of f(x) = 4x + cotx; x € (0, )
Solution : Now f'(x) = 4 — cosec’x = 0

cosec’x = 4

sin’x =

-PI»—‘

sinx = x € (0, ©

f"(x) = —2cosecx (—cosecx cotx)

2

2cosecex cotx

a3

(E
6
f (%) =28 4 /3 is local minimum value at x =

and f (?) = IOTR — J3 is local maximum value at x = 5?75_

[Why no global maximum or global minimum ?]
Example 60 : Prove that out of all rectangles with given area, the square has minimum perimeter.
Solution : Let the given area be A and the lengths of the sides of the rectangle be x and y.

A =xy
Now perimeter of the rectangle, p = 2x + 2y
=2y + 24
X
Now & —g=2-24_
dx X
x2=A
X = \/X (Since x is the side of a rectangle, x > 0)
A _ A
Y=< "Ja \/X

Since x = y the rectangle becomes a square.
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d2
Also = P — 0 —2A(2x3) = ‘;—‘? >0

2
X
The perimeter is minimum when the rectangle becomes a square.
[Note : [(x + )2 = (x = »)2 + 4y = (x — »)? + 4A

(x + »)? is minimum when x = y as (x — y)? = 0 and minimum value of (x — y)2 = 0
if x =y and A is a constant.

The perimeter of a square is minimum.

Example 61 : Find a point P on y? = 8x nearest to A(10, 4) and also find minimum distance AP.
Solution : Parametric equations of a parabola are (ar?, 2ar).
Here 4a = 8. So a = 2.

A typical point on the parabola is P(2/2, 4).
Now AP? = (212 — 10)2 + (41 — 4)?
=4 — 402 + 100 + 1612 — 321 + 16
Let f(f) = 4t* — 242 — 32t + 116
f'(H) =166 — 48t — 32
16(83 — 3t —2)
16(t + 1)(* — t — 2)
16(t + D2(t — 2)
f()=0=>t=—lort=2
Let t € (=1 — h, —1 + h) where h > 0. Let¢=—1 +1,
—1—h<—-14+t; <—1+h ie.—h<t<h
f() = 16(t + D2t — 2) t=-1+1)
= 166,23 +1)>0if0<1 <3
f'(®) does not change sign in (—1 — A, —1 + h)

f has no maximum or minimum at r = —1.
f() = 482 — 48

f"2) =192 — 48 =144 > 0

f (@ is minimum, if ¢t =2

AP? is minimum for # = 2. For t = 2, P is (8, 8).

If P(8, 8), then AP = ‘/(10—8)2 +(8—4)2

_ JitT6

= 2\/5 is minimum
The point nearest to A(10, 4) and lying on y> = 8x is P(8, 8).
Example 62 : Find the maximum area of a rectangle inscribed in a semi-circle of radius r.
Solution : Let us consider the semi-circle in upper half-plane of X-axis.
Let A(x, ) be one vertex of the rectangle in the first quadrant. Obviously other vertices are
B(x, 0), C(—x, 0) and D(—x, y).
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AD =2x, AB =y

The area of the rectangle f(x) = 2xy

S
7

Also x% + )2 = 2 D A(xy)

y = r2—x2 >0

X

f) =232 2 c o B
2X(—2x)
' = 2 2 =0 =~/
S =222 + ——

Figure 1.23
Y R ¢
r-—Xx r2 _x2
202 —2x?)
r2 — x2

. . . . I r
Area is maximum for a square and maximum area is A = 2xy = 2 - 5L h r2.

(1) A = 2xy
Now x2 + y2 = (x — y)? + 2xy
=G -yP+A
A =72 — (x — y)? is maximum if (x — ) minimum. But (x — y)? > 0.
(x — »)? has minimum value 0 when x = y. Hence maximum A = 72,
(2) Let x = rcosB, y = rsin® (Parametric equations of xZ + y? = r2)
A = 2xy = 2r25in0 cosO = rZsin20
T

A is maximum when O = 7 as sin20 = 1 is maximum for O = %

Maximum area = 2
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Example 63 : A cylinder is inscribed in a sphere of radius R. Prove that its volume is maximum if its

: . 2R
height is ek
Solution : Let the radius and the height of the cylinder be » and % respectively.
Then R2 = 2 + hTZ

Volume of the cylinder, V = Ttr2h

- 2 _ B2
V=m(R = L),
= MR%h — %h3
4V _ maR2 — 32
h Z(4R 3h°)
av. _ - 2R
d’V _ m_gpy— BUA _ _ Figure 1.24
Also £ = T(—6h) = 21 — J3TR <0
The volume of the cylinder is maximum if /& = ZTl; .
Maximum volume is TT2h = T (R2 - hTZ) h
— 2 _ RZ)2R
T (R 3 ) J3
_ 4mR’®
3/3

Example 64 : A cylindrical can is to be made to hold 1 / oil. Find its radius and height to minimize

the cost.

Solution : The cost of making the can is minimum, if the metal used to make the can is minimum.

Its total surface area S is given by S = 2772 + 2Trh
Now the volume V = 772k and 1 litre is 1000 cm?.

7 C
V = 1r2h = 1000
1000
= mr?
S =212 + 21r X 1000
s r TCr2 h cm
= 22 + 2090
-
ds _ _ 2000 _ 3 _ 500
dr 41t 2 0=r T
1
= (300)3
r= (32 |
5 Figure 1.25
d’s 4000
—_—l = — >

1
500)3 cm and

Surface area and hence the cost is minimum if » = (T

w o

L

= 2(%)3 cm = 2r

1000(70)
2
3

h =
T(500)

Thus the height of the cylinder should equal its diameter for minimum cost.
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Example 65 : Find the point on the line y = 2x — 3 nearest to origin.

Solution : Let M = (x, 2x — 3) be any point on the given line.

OM2 = x2 + (2x — 3)2 Y
=5x2—12x+ 9
Let f(x) =5x2—12x+9
1) =lx—12=0=x=2 (3.0) . o
(@] 6 _3
Also f"(x) =10 > 0 M($.-3)
0,3)
Distance OM is minimum if x = %, y= Z(Q) -3=-3 l/
5 5
- (& _3 v
M_(5’ 5)
Figure 1.26

= (36,9 _ ﬁizzaﬁ _ 3
OM 25 25 25 5 Js

0+0—3 3

= ,/az+b2 B

OM is perpendicular distance of origin from y = 2x — 3 and M is the foot of perpendicular.

-5

Ja+1

Exercise 1.5

Find the maximum and minimum values of following functions (1 to 15) :

1. f(x)=5—3x+ 5x2 —x3 x € R
2. f(x) =x* — 6x2 x € R

1 2
3. f(x) =x3(x + 3)3 x € RT
4. f(x) = 2cosx + sin*xc x € R
5. f(x) = log,(1 + x?) x € R
6. f(x) = xe ™ x € [0, 2]

1
7. fx) = °g;x xe [1,3]
8. f(x)=‘/16—x2 x| <4
9. f® =T x € [1,2]
10. f(x) = sinx + cosx x € [0, 27]
1. f(x) = 528 x € [0, 27]
12. f(x)=x‘/1—x 0<x<1
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13.

14.

15.
16.

17.

18.
19.
20.

21.

22.

23.

24.

25.

26.

f(x) = 3x* — 83 4+ 12x2 — 48x + 125 x € [0, 3]

f(x) = sin2x x € [0, 27]

f(x) =2x3 — 24x + 107 x € [1, 3]

A window is in the form of a rectangle surmounted by semicircular opening. The total
perimeter of the window is 10 m. Find dimensions of the window for maximum air flow
through the window.

Prove that the right circular cone of maximum volume inscribed in a sphere of radius » has
altitude 4%

Find two positive numbers whose sum is 16 and the sum of cubes of them is minimum.

Find positive numbers x, y for which x + y = 35 and the product x2y° is maximum.

Show that the semi-vertical angle of the cone having maximum volume and given slant height
[ is tan_lﬁ .

A open box with a square base is to be made. Its total surface area is ¢2, a constant. Prove

3
. . . C
that its maximum volume is —6 73

Find a point on circle x> + y2 = 25 whose distance from (12, 9) is minimum. Find also the point
for which it is maximum. Explain geometrically.
Sum of circumference of a circle and perimeter of a square is constant. Prove that the

sum of their areas is minimum when the ratio of the radius of the circle to a side of the

square is 1:2.

An open tank with a square base is to be made to hold 4000 litres of water. What are the
dimensions to make the cost minimum ?

f(x) = x3 + 3ax? + 3bx + ¢ has a maximum at x = —1 and minimum zero at x = 1. Find a, b
and c.
If a right triangle has hypotenuse having length 10 cm, what would be its largest area ?

*

Miscellaneous Examples :

Example 66 : Suppose we do not know formula for g(x). But g'(x) = x2+12, Vx € R. Also

2(2) = 4. Find approximate value of g(1.95).
Solution : Here x = 2. Ax = 1.95 — 2 = —0.05

gx + Ax) = g(x) + g'(x) Ax

g(1.95) = g(2) + ¢'(2) (—0.05)

= 4 — (0.05)4
=4—-02
=3.8

APPLICATIONS OF DERIVATIVES 45



Example 67 : Find the common tangents of y = 1 + xZ and y = —1 — x2. Also find their points of contact.

. & 2
Solution : Let PQ touch y = 1 + x< at

P and y = —1 — xZ at Q. Let P have
x-coordinate a.

P(a, 1 + a?), Q = (—a, —(1 + a?))

1+a? - (-1 +d)
a—(—a)

&~
Slope of PQ=

_20+d>) _1+a°

2a a

Alsoy =1+ x> = @ = 2x

Y dx

Slope of tangent at P = 2a.

2

1 + a® = 242

a? =1

a=7*1

P=(1,2),Q=(-1,-2)
Similarly, R = (=1, 2), S(1, —=2)
. .
The equation of PQ isy —2=2(x — 1)
y—2=2x—2
2x —y =0

>
Similarly, the equation of RS is 2x +y = 0.

Y
1 y=1+x2
P
X
o
S
y=—1-x2
v
Figure 1.27

.
(PQ is a tangent)

The equations of common tangent are 2x — y = 0 and 2x + y = 0.

Example 68 : The position of a particle is given by s = £(f) = £ — 612 + 9¢, s is in meters, ¢ is in

seconds.

(1) Find the instantaneous velocity, when ¢ = 2.

(2) When is the particle at rest ?

(3) Find the distance travelled in first 5 seconds.

Solution : % =) =32 —12t+9

M 'O, =, =12 —24 + 9 = —3m/sec

(2) When the particle is at rest, its velocity at that time is zero.

32 —12t+ 9
P —4+3=0
t=1or3

The particle is at rest at # = 1 and ¢ = 3.

B f'()=30—D—3)

Fort < 1 and ¢t > 3, f'(r) > 0, and f(¢) is increasing and f(¢) is decreasing for r € (1, 3).

The motion is divided into 3 parts (0, 1), (1, 3), (3, 5).
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Total distance covered is s; + s, + 55, where

sp =1/ =fO) =4 s =[fC —f()|=]0—4[=4
s3=/(5) = f(3) | = 20

Total distance covered is 20 + 4 + 4 = 28 m.

| £(5) — f(0) | = 20 is not the total distance covered.

Example 69 : An exhibition is to be arranged in a rectangular ground. A fencing of 80 m is done on
three sides of the plot and the fourth side is not to be covered by fencing. What should be the

dimensions of the ground to cover maximum area ?
Solution : We have 2x + y = 80

A = xy = x(80 — 2x) = 80x — 2x?2 Y
A )= 80 —4x =0 = x =20
x
d’A x x
=—4<0
dx?
Largest area is covered if the lengthis |
y=80—2x = 89—40=40 m Figure 1.28
and the breadth is x = 20 m.
Maximum area covered is 40 X 20 = 800 m?
| Only for information :
C(x) is the cost of producing x units. C(x) is the cost function.
C'(x) is the marginal cost.
c(x) = % is the cost per unit. c(x) is average cost function.
, xC'(x) — C(x)
') = —
For minimum of average cost c'(x) = 0.
S xC'(x) = C(x)
s C'(x) = C;x) = ()
If the average cost is minimum, marginal cost = average cost.
If the profit is maximum, marginal revenue ii{_l; = marginal cost % and

R"(x) < C"(x).
If p(x) is the sale price per unit, if x units are sold, p is called demand function.
The total revenue is R(x) = xp(x).

R(x) is called revenue function. R'(x) is marginal revenue function.
If P(x) is the profit function.

P(x) = R(x) — C(x)

For maximum profit P'(x) = 0

S R'(x) = C'(x)

.. Marginal revenue = marginal cost for maximum profit.

Also P"(x) = R"(x) — C"(x) < 0

S R'"(x) < C'"(x) for maximum profit.
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Example : A company estimates that the cost of producing x ball-pens is C(x) = 3000 + 2x + 0.001x2.
(1) Find the cost, average cost and marginal cost of producing 1000 ball-pens.

(2) At what production level, will the average cost be minimum and what is that minimum
average cost ?

q ] 5 C(x
Solution : (1) The average cost function is c(x) = %
_ 3000 + 2x +0.001x>
X
3000

== + 2 + 0.001x
Also marginal cost function is C'(x) = 2 + 0.002x
For production of 1000 ball-pens, C(1000) = 3000 + 2000 + —L_x (1000)2

1000
=73 6000

c(x) = % =¥ 6 per ball-pen.

C'(x) =2 + 5 X 1000 =3 4

(2) For minimum average cost :
Marginal cost = Average cost
C'(x) = cx)

2+ 0.002x = % + 2+ 0.001x

_ 3000
0.001x = "

x2 = 3000 X 1000

x = 1/3,><106 =3 x 103 = 1730

Hence, 1730 ball-pens should be manufactured for minimum average cost.

Minimum average cost = ¢(1730) = 339 + 2 + (0.001)(1730)

— 300
=30 +2+1.73

=173 +2+1.73
=% 546

Example 70 : Find the point on xy = 8, nearest to P(3, 0) having integer coordinates and the

minimum distance. x>0

Solution : Let the required point on xy = 8 be Q(x ,%)

64
PQ? = (x =32+ 7

Let f(x) = (x — 32 +
S@=2-H-Hoo=s -3

=33 —64=0

=D +x2+4x+16)=0
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x =4 (Verify that x3 + x2 + 4x + 16 = 0 has no integer solution !)

o (128)(-3)
S =2 — —F—

X

(128)(3)

1) =2+ —5

:l
5 >0

f(x) is minimum for x = 4.

The point nearest to P(3, 0) and lying on xy = 8 is Q(4, 2).

PQ = Ji+4 =5

Example 71 : Find a point on »? = 2x nearest to (1, 4) and the minimum distance.

Solution : For y2 =2x = 4dax, a = %
Let Q(1, 4) and P (%tz, t) be any point on parabola.
PQ2 = (L2 — 1P+ -4y

A—FC2+1+2-8+16

INES

A =8+ 17

N

Let f(1)= 41— 8+ 17
fHO=0=>F—-8=0=1=2
" =32=12>0
f (@ is minimum, if ¢t =2
P2, 2), Q(1, 4)
PQ = F = /5 is the minimum distance.

Example 72 : A rectangular sheet of tin 45 cm X 24 cm is to be made into an open box by cutting off

squares of the same size from each corner and folding up. Find the side of the square cut off
from each corner for maximum volume of the box.

Solution : Let x cm be the side of the square removed from each corner.
Length and breadth of the box are (45 — 2x) c¢m and (24 — 2x) c¢m. The height is x cm.
The volume V = (45 — 2x)(24 — 2x)x
= 4x3 — 138x% + 1080x

D~ 0 = 1202 — 276x + 1080 = 0 => x2 — 23x + 90 = 0
x=18 or 5 45 cm
X
But if x = 18, breadth 24 — 2x =24 — 36 < 0
x # 18 and so x = 5 24 em
The length of the side of square removed is 5 cm.
2
AN _ 4y — 276 = 120 — 276 < 0
dx

V is maximum if x =5 cm Figure 1.29
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10.

11.
12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.
23.

Exercise 1

Water is dripping out from conical funnel at the rate of 5 cm3/sec. Slant height of the cone
formed by water is 4 cm. Semi-vertical angle of the cone is % Find the rate at which the
slant height decreases.

Height of a kite is fixed at 40 m. The length of the string is 50 m at a moment. Velocity of the
kite in horizontal direction is 25 m/sec at that time. Find the rate of slackening of the string at

that time.

Altitude of a triangle increases at 2 cm/min. Its area increases at the rate 5 cm?/min. Find the
rate of change of length of base when the altitude is 10 cm and the area is 100 cm?.

Find the intervals in which f(x) = 2x3 — 3x%Z — 36x + 25 is (1) strictly increasing (2) strictly
decreasing.

Find the intervals in which £(x) = (x + 1)3(x — 3)3 is (1) strictly increasing (2) strictly decreasing.
Prove x!01 + ginx — 1 is increasing for | x| > 1.

Find the intervals where f(x) = x* + 32x is increasing or decreasing. x € R

Find the intervals in which f(x) = x2¢™* is increasing or decreasing. x € R

Prove that curves xy = a? and x2 + 2 = 242 touch each-other.
_X
Find the equation of tangent to y = be ¢ where it intersects Y-axis.

Find the measure of the angle between 2 = 4ax and x% = 4ay.

Prove that y = 6x3 + 15x + 10 has no tangent with slope 12.

Find points on the ellipse x2 + 2y2 = 9 at which tangent has slope %.

Find maximum and minimum values of f(x) = x — 2sinx x € [0, 2]

Find maximum and minimum values of f(x) = 1 — ™ x=20

Find maximum and minimum values of f(x) = x2 + % x#0

Find where f(x) = 4x — tanx, —% <x< % is increasing or decreasing and find its maximum and
minimum values.

Where does f(x) = x + J1—-x, 0 < x < 1 increase or decrease ? Find its maximum and

minimum values.
2

Determine critical points for f(x) = x3 6 —x)

0 |—

, x € [0, 6] and determine where the function is

increasing or decreasing. Find also maximum and minimum values.
Find the maximum and minimum values of f(x) = sin*x + cos*x. x € [O, E].

X
Show that f(x) = (%) has local maximum at x = %.

Show that out of all rectangles with given area a square has minimum perimeter.

Show that out of all rectangles inscribed in a circle, the square has maximum area.
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24.

25.

26.

27.

28.

29.

Prove that the area of a right angled triangle with given hypotenuse is maximum, if the triangle

is isoceles.

A point on the hypotenuse of a right triangle is at distances a and b from the sides making right
angle. (a, b constant). Prove that the hypotenuse has minimum length (a% + b%)%

Show that the semi-vertical angle of a right circular cone with given surface and maximum volume
is sin~! %

Find the measure of the angle between curves, if they intersect :

(1) xy=6,x% =12 2) y=x%L x2+)y2=20

(3) 22 =x312=32x, (x, ) # (0, 0)  (4) »? = dax, x> = 4by

(5) »* = 8x, x2 =27y (6) x2+y?=2x,3%=x

(1) Prove x% = 4y, x2 + 4y = 8 intersect orthogonally at (2, 1) and (=2, 1).

(2) Prove x2 =y and x> + 6y = 7 intersect at right angles at (1, 1).

Select a proper option (a), (b), (¢) or (d) from given options and write in the box given
on the right so that the statement becomes correct :

(1) The side of an equilateral triangle expands at the rate of V3 cmisec. When the side is

12 c¢m, the rate of increase of its area is ...... . ]
(a) 12 cm?/sec (b) 18 cm?/sec (© 33 cmPisec (d) 10 cm?/sec

(2) The distance s moved by a particle in time 7 is given by s = > — 612 + 61 + 8. When the
acceleration is zero, the velocity is ...... . ]
(a) 5 cml/sec (b) 2 cm/sec (c) 6 cmlsec (d) —6 cm/sec

(3) The volume of a sphere is increasing at the rate of T cm/sec. The rate at which the
radius is increasing is ...... , when the radius is 3 cm. ]
(a) 3_16 cmlisec (b) 36 cm/sec (c) 9 cmlsec (d) 27 cml/sec

(4) There is 4 % error in measuring the period of a simple pendulum. The approximate
percentage error in length is ...... .(Hint : T = 2RE ) ]
(a) 4 % (b) 8 % ©) 2% d) 6 %

(5) Approximate value of (31)% is ...... . ]
(a) 2.01 (b) 2.1 (c) 2.0125 (d) 1.9875

(6) The height and radius of a cylinder are equal. An error of 2 % is made in measuring height.
The approximate percentage error in volume is ...... ]
(a) 6 % (b) 4 % ©)3 % d 2%

(7) The tangent to (ar?, 2at) is perpendicular to X-axis at ]
(@) (4a, 4a) (b) (a, 2a) (©) (0, 0) (d) (a, —2a)
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(8) The line y = mx + 1 touches y? = 4x, if m = ... ]

(a) 0 (b) 1 (c) —1 (d2
2 2 2 4 a
: 3 3 _ 3 _a__4da | .

(9) The equation of normal to x* + y a’ at (2 5 ./5) is ... ]
(@2x+y=0 (b)yy=1 (c) x = dx=y

(10) f(x) = x* decreases in ...... ]

1

@) (0, ¢) ) (0.2) © (0. 1) (d) (0, o)

(1) f(x) =2|x— 2|+ 3|x—4]is ... in (2, 4). ]
(a) decreasing (b) increasing (¢) constant (d) cannot be decided

(12) f(x) = x7 + 5x3 + 125 is ...... . ]
(a) decreasing in (0, o°) (b) decreasing in (—oo, 0)
(¢) increasing on R (d) neither increasing nor decreasing in R

(13) The local maximum value of f(x) = x + é is ... ]
(a) 2 (b) —2 (c) 4 (d) —4

(14) The local minimum value of @ is ... ]
(@) -1 (b) 0 © = d) e

(15) If log,4 = 1.3868, then approximate value of log,4.01 = ...... ]
(a) 1.3867 (b) 1.3869 (c) 1.3879 (d) 1.3893

(16) The circumference of a circle is 20 ¢m and there is an error of 0.02 ¢m in its measurement.
The approximate percentage error in area is ...... ]
(a) 0.02 (b) 0.2 (c) T ) =

(17) If the line y = x touches the curve y = x2 + bx + ¢ at (1, 1), then ...... ]
@b=1,c¢c=2 ®b==l,c=1 (@©b=1c=1 db=0,c=1

(18) y = ae*, y = be™™ intersect at right angles if ...... (a#0,b#0) ]
@a=7% by a=b ©a=—3 da+b=0

(19) Tangent to y = 5x° + 10x + 15... ]

(a) is always vertical
(b) is always horizontal
(c) makes acute angle with the positive X-axis

(d) makes obtuse angle with the positive X-axis
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(20) f(x) = 2x + cof 'x — log | x + 1/1+x2 | is ... ]

(a) decreasing on (—eo, 0) (b) decreasing on (0, <0)

(¢) constant (d) increasing on R

(21) The sum of two non-zero numbers in 12. The minimum sum of their reciprocals

is ... ]
@ 15 ®) 7 © % @ +

(22) The local minimum value of f(x) = x2 + 4x + 5 is ... ]
(a) 2 (b) 4 (c) 1 (d -1

(23) The maximum value of f(x) = 5cosx + 12sinx is ...... ]
(a) 13 (b) 12 © 5 ) 17

(24) The minimum value of f(x) = 3cosx + 4sinx is ...... ]
() 7 (b) 5 (c) =5 (d) 4

(25) f(x) = x log x has minimum value... ]
@ 1 (b) 0 © e ) —=

(26) f(x) = Y3 cosx + sinx, x € [0, %] is maximum for x = ...... ]

T T T

(@ < ®) = © = (d)o

Q7 f®) = (x — a) + (x — b)? + (x — ¢)* has minimum value at x = ...... ]
(@) Yabe Batb+ec (o) Lr2re @ 0

(28) f(x) = (x + 2) e is increasing in ...... ) ]
(@) (=0, —1) (b) (=1, —o=) (©) (2, =) (d) R*

(29) The measure of the angle of intersection between y* = x and x2 = y other than one at
(0, 0) is ...... ]
(@) tan~'% (b) tan™'3 © & @ =

(30) The point where normal to y = x> — 2x + 3 is parallel to Y-axis is ...... ]
(a) (0, 3) (b) (-1, 2) (c) (1, 2) d (3, 6)

(31) The slope of normal to 322+ 1,3 — 1) at¢t=1is ..... ]
@ % (b) —2 (©) 2 (d) -5

(32) The equation of normal to 3x2 — y2 = 8 at (2, —2) is ...... ]
(a)x +2y=-2 (b)yx —3y=28 C)3x+y=4 Wx+y=0
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(33) The angle made by the tangent with the +ve direction of X-axis to x = e’ cost, y = e’ sint

att=%is ...... ]

TT TT TT
(@) & X ©0 @ Z
(34) The equation of tangent to y = cosx at (0, 1) is ...... ]
(@ax=0 (b)yy=20 (©x=1 dy=1
. . T .
(35) The equation of normal to y = sinx at (7,1) is ... ]
@x=1 (b)x=0 (c)y=§ (d)x=%
(36) At ...... on circle x2 + y2 — 2x — 3 = 0, the tangent is horizontal. ]
(a) (0, 243) () (2, £3) © (1,2), (1,=2) () (3, 0)
(37) The point on »?> = x where tangent makes angle of measure % with the positive X-axis
is ... ) ]
@ (4-3) (b) (2. 1) (©) (0, 0) (d) (=1, 1)
(38) A cone with its height equal to the diameter of the base is expanding in volume at the rate
of 50 cm3/sec. If the base has area 1 m?2, the radius is increasing at the rate ...... ]
(a) 0.0025 cm/sec  (b) 0.25 cml/sec (c) 1 cmlsec (d) 4 cm/sec
(39) The rate of increase of f(x) = x> — 5x2 + 5x + 25 is twice the rate of increase of x
for x = ... . ]
-3 -1 1 -3 1 1
(a) =3, — (® 3. 4 (¢) =3, L (d) 3, -

(40) The radius of a cone increases at the rate of 4 cm/sec and the altitude is decreasing at the
rate of 3 cm/sec. When the radius is 3 c¢m and altitude is 4 cm, the rate of change of

lateral surface is ...... ) ]
(a) 30 T cm?/sec  (b) 10 cm?/sec (c) 20 T cm?/sec (d) 22 T cm?/sec
(41) The rate of change of surface area of a sphere w.r.t. radius is ....... . ]

(a) 8 T (diameter) (b) 3 T (diameter) (c) 4 T (radius) (d) 8 T (radius)

(42) The rate of change of volume of a cylinder w.rt. radius whose radius is equal to its

height is ...... . ]
(a) 4 (area of base) (b) 3 (area of base) (c) 2 (area of base) (d) (area of base)
(43) f(x) = tan 'x — x is ... . ]
(a) increasing on R (b) decreasing on R (c) increasing on R (d) increasing on (—oo, 0)
(44) f(x) = tanx — x, x € R—{(2k—l)%|k€ Z} is ... . ]
(a) increasing on its domain (b) decreasing on its domain
(c) increasing on (0,%) (d) decreasing on (0,%)
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A5)f(x) =2x —tan Yx — log | x + J14+ 2 | is oone. . (x € R). ]

(a) increasing on R (b) decreasing on R
(¢) has a minimum at x = 1 (d) has a maximum at x = 1
(46) If ......, then f(x) = x2 — kx + 20 is strictly increasing on [0, 3]. ]
(@ k<0 b o<k<l1 ©1<k<?2 d2<k<3
(47) f(x) = |x — 1| + |x — 2| is increasing if ...... . ]
(a) x >2 b)x<1 )x<o0 d) x < =2
(48) Normal to 92 = x3 at ...... makes equal intercepts on axes. ]
8 8 8 8
@ (-4,-%) () (4,+%) (©) (+4.8) @ (8.8
(49) y = mx + 4 touches y2 = 8x, if m = ... . ]
1 1
(@ % (b) —1 (©) 2 (d) -2
(50) The measure of the angle between the curves y = 2sin?x and y = cos2x at x = %
is ... . ]
T s s b4
@ I RS © L @z
(51) The normal to x2 = 4y passing through (1, 2) has equation ...... ) ]
(@) 2x =y b)yx+y—3=0 ()2x+3y—8=0 dx—y+1=0
(52) The local minimum value of x% + % (x #0) is ...... . ]
(a) 12 (b) 22 (c) —12 (d) 2
(53) The minimum value of secx, x € [Z?R, TC] IS .o . ]
(@) 1 (b) =2 (©) 2 (d 7
(54) The maximum value of cosecx, x € [%, %] is ... . ]
2 s b4
(a) 2 b) 75 © L @z
(55) If f is decreasing in [a, b], its minimum and maximum values are respectively ......
and ...... . ]
(@) f(a) and f(b) (b) f(b) and f(a)
a+b a+b
(© fl—2 ) and f(a) (d) f(b) and f| —
@
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Summary

We have studied the following points in this chapter :
Derivative as a rate measurer.

Increasing and decreasing functions.

Applications to Geometry : Tangents and normals
Angle between two curves.

Differentials and approximate values.

Maximum and minimum values.

N QN N A W N -

Application to optimization problems and practical applications.

RAMANUJAN

He was born on 22nd of December 1887 in a small village of Tanjore
district, Madras.

He failed in English in Intermediate, so his formal studies were
stopped but his self-study of mathematics continued.

He sent a set of 120 theorems to Professor Hardy of Cambridge. As
a result he invited Ramanujan to England.

Ramanujan showed that any big number can be written as sum of

not more than four prime numbers.

He showed that how to divide the number into two or more squares or cubes.

When Mr Littlewood came to see Ramanujan in taxi number 1729, Ramanujan said that

1729 is the smallest number which can be written in the form of sum of cubes of two

numbers in two ways,
ie. 1729 =93 + 103 = 13 + 123

since then the number 1729 is called Ramanujan’s number.
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INDEFINITE INTEGRATION

Science without religion is lame, religion without science is blind.
— Albert Einstein

L 2
A man is like a fraction whose numerator is what he is and whose denominator is what

he thinks of himself. The larger the denominator the smaller the fraction.
— Tolstoy

2.1 Introduction

In semester IlI, we have studied about the definition of indefinite integral, working rules,
standard forms and method of substitution for indefinite integrals. We have also studied trigonometric

X =

> =1 integrals of the type _[ sin™x « cos"x dx, m, n € N,

substitutions, an important substitution fan

integrals of the e dx dx AXTD dx and —AFB dx. Still
& typ fm2+bx+c’ j‘/axz+bx+c’ ax’> +bx +c¢ j‘/a.x2+bx+c ’

there are functions for which integration using these methods is not possible or may be difficult. For

x> +1
(xX* +2)2x* +1)
we have to develop some other techniques.

1

example, log x, sec™ 'x, e*sinx, etc. are such functions. For integrating such functions,

In this chapter, we will learn methods for obtaining integrals of such functions.We know the rule
of differentiating the product of two functions. Now we will learn a method to find integral of
product of two functions. It is known as rule of integration by parts.

2.2 Rule of Integration by Parts
If (1) f and g are differentiable on interval I = (a, b) and

(2) f' and g' are continuous on I, then _[f(x) g'x)dx = f(x)gx) — jf'(x) g(x) dx
Proof : Here f and g are differentiable functions of x. So f-g is also differentiable and
according to working rule for differentiation of a product,

% ) g0] = f(x)-gx) + gx)-f'(x) @
Now, f, g f' and g' are continuous on I and hence they are integrable over I.

f¢' and gf" are also continuous and hence integrable.

From (i), using definition of antiderivative,

@) g = | [/@-g6) + g()-f'@)] dx

= [ /@@ de + [ f100)-gk) dx

@ g@dy = f(x) g = [ @) g) dx )
This rule is known as Rule of Integration by Parts.

Applications of Rule of Integration by Parts in Practice :
Rule of integration by parts is _[ fx) gx)dx = f(x) gx) — f f'(x) - g(x) dx
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If we take f(x) = u and g'(x) = v in this expression, then f'(x) = % and g(x) = _[va’x.

The new form of this rule will be Juv dx = u _[vdx — f(% jv dx) dx. (iii)

(1) In the above formula, we have transformed the problem of integration of product
of two functions into another problem of integration of product of two functions to make the

integration simpler. The new product is the product of the derivative of one function % and integral

of the other jv dx. (i.e. % _[v dx). Thus we do not get the integral of the product 'f u - v dx directly

but the product is transformed into another possibly simpler integrable product f(% Iv dx) dx.

Therefore, it is called the rule of integration by parts.

(2) While using this formula, we must select # and v properly. Let us understand this by an

example.

Find : fx-sinx dx

If we take v = x and v = sinx, then

x-sinx dx = x | sinx dx — ix sin x dx ) dx
J f [ (s T sinxas)

dx

—Xx cosx + _[ (1 - cos x) dx

= —xcosx + sinx + ¢

But, if we choose u = sinx, v = x, then

o . B d ..
_[x sinx dx sme‘x dx J(dx (sin x) J. xdx) dx

2 2
i X s X
sin x - =3 j(cosx 5 )dx

2
X . - 1 )
5t sin x 2J.cosx x- dx

Thus, for this type of choice, power of x increases and the integrand is transformed into
comparatively more complicated integrand having higher power of x. Therefore, the choice of u
and v is very important. The success of this method depends on careful selection of » and v. We
shall keep the following things in mind while using the rule.

(i) Integral of v is known.

.. . . . du
(ii) It is simpler to integrate dx _f v dx.

Keeping these points in mind, we frame a rule.

L : Logarithmic function, I : Inverse trigonometric function, A : Algebraic function, T : Trigonometric
function, E : Exponential function. First letters of above functions generate LIATE. The first function
appearing in this order in product #- v to be integrated is taken as u. This order is formed keeping

above two points in mind. This is a convention, not mandatory.
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1

1

For example : (1) In the product x - sin™ 'x, x is algebraic and sin 'x is inverse trigonometric

function. Now in LIATE rule, inverse trigonometric function precedes algebraic function. Hence

1

we take u = sin” 'x and v = x.

(2) In the product x-e*, x is algebraic and e* is exponential function. Now in LIATE rule,
algebraic function precedes exponential function, so we take ¥ = x and v = e*.

(3) While using rule of integration by parts, when we integrate v we shall not add constant of

integration. If we write the integration of u# = sinx as —cos x + k, where k is any constant,

then J.xsinx dx = x jsinx dx — J(%x f sinxdx)dx

=x (—cosx + k) — f(—cosx + k) dx
= —x cosx + kx + jcosx dx — Jk dx
= —x cosx + kx + sinx — kx + ¢

= —x cosx + sinx + ¢

This shows that, while integrating u = sinx as —cos x + k, k is eliminated. Hence, we will

add arbitrary a constant when we complete integration of product J (% _[ % a’x).

(4) To integrate a function like log x, cosec™lx, tan™!x etc., we are unable to guess a function

1

whose derivatives are log x, cosec™ 'x, tan 1x. So, we take these functions as # and 1 as v. The

integral of 1 is x.

For example, let [ = Jlogx dx, we take
I = J logx-1dx

Here u = log x and v = 1 gives,

I = logx[1dx— J[%long 1ax] dx
- Cxr — 1.
= logx-x J(x x)dx
=xlogx — .[ 1 dx
=xlogx —x+c¢
(5) Some times we have to use this rule repeatedly.

For example consider, 1 = _[xz e dx

Here, u = x? and v = &> gives

I =x2 Iesx dx — f(%xz jesx dx)dx

sx sx
xz-e? — J(er?)dx

2
= X~ ,5x _ 2 S5x
= ¢ 5_[xe dx

%esx—%[xj.esx dx—f (%xj.eSx dx)dx]. u=x,v=e"%
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2 S5X S5X

- X 5x_ 2 e e
= ¢ S[x 5 f(l S)dx]
2 5x

— XD Sy 2 |x x_ 1. e
< e S[Se S 3 + c
2

= X7 p5x . 2X ,5x 4 2 55x
5e 55 ¢ +1256 + c

— x|l 2 2x 2
€ [5 25+125]+c

a

(ii) Generally we will denote the integral by I.

2

. _ —x""
(1) In generalfx” e dx = X [i 5P = %xn I+ %

1t .p!
o4 (l)—"] .

an+1

Example 1 : Evaluate : J x cos(3x + 5) dx
Solution : Let u = x and v = cos(3x + 5)

I = _[xcos(3x + 5) dx

x J. cos(3x + 5) dx — J(%x Jcos(3x + 5) dx) dx

— sm(33x+5) _ f(l . sm(33x+5))dx

=& sin(3x + 5) — % _[sin(3x + 5) dx

cos(3x +5)

3 + c

3
= % sin(3x + 5) +
X

1
3
sin(3x + 5) + é cos(3x + 5) + ¢

(O8]

Example 2 : Evaluate : jsec_lx dx, x >0
Solution : Let u# = sec”!x and v = 1

I = J.sec_lx-l dx

= sec_le 1 dx — f(% sec x f 1 dx) dx

= sec !

1
oy — —_— . ) d
X X J(x '—xz—l x) Ix
=xsec_1x—f 1 dx

-1

x—log|x+ Jx2-1|+c¢

= x sec |

xsec lx —log (x + 2 -1) + ¢

x sin~'x

Example 3 : Evaluate : f ﬁ de, 0<x<1
1— x?

x sin~'x
Solution:1=f— dx, 0<x<1
V1= x>

Letsin_1x=e,0<9<%a50<x<1

(x| =xas x>0

x> 0)
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x = sin0, dx = cosO dO

0 sin®
I = | =——":cosO dO
j‘h—sinzﬁ cos

0 sin®
I = f s - cosO dO
cos0

= jesine do
— 0 [ 5ind do — f(%ejsme ) b

= —0 cosO + I(l - cos0) dO
=—0 cosO + sin® + ¢

=—0 1— sin®0 + s5in® + ¢

=—sin_1x-‘/1_x2 +x+c
_ 2 =1
——‘ll—x csin 'x +x +c

Second Method :

X

Let u = sin” 1x and v = 2

First we find integral of v, i.e., f

X L
f 2dx=J-(1—x2)2-xdx
‘/1—)6

=—1Ja - x2)_% (—2x) dx

1
2 L
1
=—(1—x2)2
X
f 1—x? de = —y1-2?

x sin"'x
Now, I = f dx

V1= x>
= sin x Jﬁ dx — f(% sin Ix jﬁ dx) dx
i ayi=2) = [ T2 o ds

=—J1—2sin'x+x+c¢

(cose > 0)

(cos® = {1—sin’0)
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Example 4 : Evaluate : jex cosx dx
I = Ie" cosx dx

Let u = ¢* and v = cos x

Solution :

|

er J. cosx dx — f (% er Jcosx dx) dx

= eXsinx — J.exsinxdx

= e¥sinx — [exfsinx dx — J(diex Isinx dx)dx]
X

= e‘sinx — [—e* cosx — j(ex (—cos x)) dx]

=e'sinx — [—e¥cosx + _fexcosxdx]

=efsinx + e cosx — Jexcosxdx

I =&fsinx + fcosx—1+ ¢
21 = e* (sinx + cosx) + ¢

1 = d(sinx + cosx) + &
2 2
I = %(sinx + cosx) + ¢

(u = &%, v = sinx)

and v = ¢ also and integrate.

In the product ¢* cosx, trigonometric function precedes exponential function as per LIATE
rule. Hence, u = cosx and v = ¢ must be selected. But we have taken u
Remember earlier we stated that the rule LIATE is for convenience only. But we may take v = cos x

e’ and v = cosx.

Example 5 : Evaluate : Ixz 2% dx

Solution : Let u = x2, v = 2%

1 = sz 2% dx
_ d
= x2 j2x dx — f(a)# I2x dx)dx
_ 5 2.X 2)C
= x og, 2 —j(2x logez)a’x

2 X
X2 2
= —_ X

log,2  log,2 J x2% dx

N Y. Ly 27 ax)a =x,v=2
= Tog,2 Tog,2 X i (dxx ) dx (u=x,v=2
_ x2 2% I A 1-2% 4

log,2 log, 2 _x log,2 log,2 X
_ x% 2% 2 rx - 2% 1 2X +
~ log,2 log,2 [log,2 log,2 logeZ] ¢
s x-28 1! N KX +1
= —— 4 =

log,2 (log,2) (log, 2)?

_[x22x dx = J.xze)‘]og2 dx
2 2
=exlog2[x — 2x2+ 23]+c=2x[x — 2x2 23]+c
log2 (log2) (log2) log2 (log?2) (log2)
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We observe from above illustration that sometimes we have to use formula of

integration by parts repeatedly.

Example 6 : Evaluate : _[xseczx tan x dx

2y tanx dx

Solution : I = _fxsec
Let u = x and v = sec?x tan x

First we find jv dx, i.e. jtanxseczx dx

J tan x sec’x dx = f (tan x) (% (tan x)) dx
_ (tan x)?

2

_ ftan’x
2
2

J.tanxseczx dx = tanTx
Now, I = j x sec’x tanx dx

= x_[tanx sec’x dx — f(ix ftanx°sec2x dx) dx

dx
2 2
— . lan’x _ . tan’x
x - X5 f(l > )dx
=2 ran?x — l.f(seczx — 1) dx
2 2
- X 2. _ 1 _
<= tan<x [tanx — x] + ¢
2 2
=X g2y — L1 X
2tanx 2tamx+2+c
. 1-x?
Example 7 : Evaluate : f cos (1+x2) dx, x >0
) (=X
Solution : I = fcos ( 2) dx
1+x

Let © = fan lx, so that x = tan® and dx = sec?’0dD, 0 < 0 < % as x > 0

1-tan’0
I = Jcos_1 (_) sec?0 do

1+tan’0
= J‘cos_1 (c0s20) - sec?® dO
0<o<Z
0<20<Tm
cos 1 (cos20) = 20 a)
I =2 JG sec20 40
~2 [0 [ sec?0 aB — J (4 6 [ sec20 a0) a0

=2 [G-Iane—fl-tane do]

INDEFINITE INTEGRATION 63



=21[0-1anB — log | secO|] + ¢

Now, 0 = tan x

sec?0 =1 + tan*9 = 1 + x2

secO = 1/1+x2

I =2 [x-tan 'x — log J1+ 21+ ¢

1
=2xtan"'x — 2log (1 +x%)* + ¢
=2xtan 'x — log (1 + x%) + ¢

1- x>
Second Method : Let us transform cos™! (1 N xz)

Letx=tan9,0<9<%asx>0

4 1-x? B 4 1-tan’0
cos (1+x2)_ cos (1+tan26)
= cos~ ! (cos20)
=20

=2 tan x

. 1-x?
Now, fcos (1+x2)dx

= I 2 tan”x dx

A, - d _
=2 _tan Iy jdx— J(amn 1x_[l dx)dx]

T 1
=2 _tan lx.x—J(m.x)dx]

=2 |x.tan 1x — % J 22X dx]

1+ x2

=2 |xtan 'x — % log (1 +x2)] + c

=2xtan 'x — log (1 + x2) + ¢

(sec9>0as0<9<%)

(0 < 20 < m)

[Note : | If x < 0, then —Z < 6 < 0.

-Tt<20<0
0<—-20<m
In step (i) cos (cos 20) = cos !(cos (—20)) = —20
I=—-21[01tn0 — log |secO|] + ¢
= —2x tan 'x + log(1 + x%) + ¢
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Exercise 2.1

Find the integrals of the following functions with respect to x.

1. xZlogx x>0 2. (3 + 5x)cosTx
3. cos lx x € [—1, 1] 4. x2e3
5. x2 tanx 6. sin ! % x> 1
7. sin (log x) x>0 8. secix
9. _1—)ccosx x #2n, n € 7 10. x3 sinx?
11. tan! l_xz ,0<x< 1 12. x coix cosec*x
13. x cos3x 14. x2 1 cos x"
5 logx
15. (1 — x*) logx x>0 16. 117 x>0
17. ) x€ (0, 1) 18. m 0<x<1
%

2.3 Some More Standard Forms of Integration

Now we will obtain integrals of ‘/ 2 +42, ‘/a —x2, ePsin(bx + k), e®cos(bx + k) using

integration by parts or trigonometric substitutions and accept them as standard forms.
a | x2—a2dx=%\/x2—a2 - log|x+ 2 —ad’| + ¢ «?* > a?)
Proof : I = J\/xz—az dx
I = J\/xz—az -1 dx
‘/xz—az Il dx — I(%sz—az _[l dx)dx
\/x —a? J 2 P ) dx

—xyfP-d? - [ =

X—Cl

[2 —a’ +
=xx—a jxaadx

/2 2 /2 2 I . S
xyYx“—a —j x“—a dx—afmdx
—x‘/xz—az —1—a?log|x + x?—a? | + ¢
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21 =x\/x2—a2 — & log |x + yxX*—d®| + ¢

2
I =% x> —a? —%log|x+ 2 —a’|+ ¢

Second Method :

We can obtain the same standard form taking x = a secO. (x > a > 0)

I = J‘/xz—az dx

Proof : Let x = a secO. So dx = asecO tan® dO, 0 < 0 < % as x> a> 0.

I = J‘/az sec?0 — a2 - asec® tan® dO
= J‘Jaz tarte * asec® tan® dO

1 = a® [ sec - 1an®® d0
= a? [ secB (sec?® — 1) dO
= a2 [ (sec®® — secB) dO
= o [ 5ec®® d® — a? [ secB dO

= jsece -sec?0 d0 — a2 Isece do

a? [sece Jsecze do — f(% secO f sec?0 de) de] —a? Jsece do
a? [secO® tan® — J(sece tan® - tan®) dO]— a? jsece do
= a? [secO® tan® — _[ secO - tan’*0 dO] — a? _[ secO dO

a* sec® tan® — azfsece tan*0 db — a? log | sec® + tan®| + ¢'

(@ > 0 and tan® > 0)

I =a? sec® tan® — 1 — a?log | sec® + tan® | + ¢' a = a? _[sece tan?0 dO)

21 = a2 secO tan® — a®log | sec® + tan® | + ¢'

2 2 {
L= secH \/secze—l — &~ log | sec® + \/seczﬁ—l |+ 5
XX a2 ‘1 X ‘ c

aVa? 1 TIOg P + " 1|+ 5

I
Il Il

NIQN

2 2 _ 2 '
—x 2 42 _ a log x+yx>-a ‘_'_Q
2 2 -4 2
_x 2 2 N 2‘ <y a
VX —a 5 log | x + yx" —a +5+ 5 log a
S N P ‘/ 2_42 (L’
VYT —a 5 log |x + yx"—a” | + ¢ 5

2
f‘/xz—az dx = %‘/xz—az - % log ‘x+ ‘/xz—az ‘ + ¢

(tan®

(la]

2
+ %loga

>

0)
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