
Chapter 2

Structured Query Language

 Relational algebra

 Select operator

 Project operator

 Set operators

 Union compatible relations

 Union operation

 Aggregate operators

 Correlated nested queries

 Relational calculus

 Tuple relational calculus

 Tuple relational calculus

 DML

 Super key

 SQL commands

LEARNING OBJECTIVES

RelaTional algeBRa
1. A set of operators (unary or binary) that take relation instances

as arguments and return new relations.
 2. Gives a procedural method of specifying a retrieval query
 3. Forms the core component of a relational query engine
 4. SQL queries are internally translated into RA expressions
 5. Provides a framework for query optimization

SQL query

Relational algebra expression

Query expression plan

Executable code

Figure 1 Role of relational algebra in DBMS:

Relational Operations
A collection of simple ‘low-level’ operations used to manipulate
relations.

 1. It provides a procedural way to query a database.
 2. Input is one (or) more relations.
 3. Output is one relation.

Relational operations

Unary operators Binary operators
1. Select 1. Union
2. Project 2. Intersection

3. Difference
4. Join
5. Divide
6. Cartesian product

Select Operator (s)
Select operator is an unary operator. It can be used to select those
tuples of a relation that satisfy a given condition.

Notation: sθ (r)
s : Select operator(read as sigma)
θ : Selection condition
r : Relation name

Result is a relation with the same scheme as r consisting of the
tuples in r that satisfy condition θ
Syntax: s

condition
 (relation)

Example:
Table 2.1 Person

Id Name Address Hobby

112 John 12, SP Road Stamp collection

113 John 12, SP Road Coin collection

114 Mary 16, SP Road Painting

115 Brat 18, GP Road Stamp collection

4.22 | Unit 4 • Databases

In the output table, John name has appeared once, project
operation eliminated duplicates.

 2. p
Name, address

 (person)

Output:

Name Address

John 12, SP Road

Mary 16, SP Road

Bart 18,GP Road

Expressions:

p
id
,
name

 (s
hobby = ‘stamp collection’ OR Hobby= ‘coin collection’

(person))

Output:

Id Name

112 John

115 Bart

The above given relational algebra expression gives Ids,
names of a person whose hobby is either stamp collection
(or) coin collection.

Set Operators
Union (∪), Intersection (∩), set difference (–) are called
set operators. Result of combining two relations with a set
operator is a relation ⇒ all its elements must be tuples hav-
ing same structure. Hence scope of set operations is limited
to union compatible relations.

Union Compatible Relations
Two relations are union compatible if
 1. Both have same number of columns
 2. Names of attributes are same
 3. Corresponding fields have same type
 4. Attributes with the same name in both relations have

same domain.
 5. Union compatible relations can be combined using

Union, Intersection, and set difference.

Example:

Consider the given tables.
Person (SSN, Name, Address, Hobby)
Professor (Id, Name, office, phone)
person and professor tables are not union compatible.

Union
The result of union will be a set consisting of all tuples
appearing in either or both of the given relations. Relations
cannot contain a mixture of different kinds of tuples, they
must be ‘tuple – homogeneous’. The union in the relational
algebra is not the completely general mathematical union;
rather, it is a special kind of union, in which we require the
two input relations to be of the same type.

s
 Hobby = ‘stamp. Collection’

(person)

The above given statement displays all tuples (or) records
with hobby ‘stamp collection’.

Output:

Id Name Address Hobby

112 John 12, SP Road Stamp collection

115 Brat 18, GP Road Stamp collection

Selection condition can use following operators:
<, ≤, >, ≥, =, ≠

 1. <attribute> operator <attribute>
 2. <attribute> operator <constant>

Example: Salary ≥ 1000

 3. <Condition> AND/OR <condition>

Example: (Experience > 3) AND (Age < 58)

 4. NOT <condition>

Selection operation examples:
 1. s

Id > 112 OR Hobby = ‘paint’
 (person)

 It displays the tuples whose ID > 112 or Hobby is paint
 2. s

Id > 112 AND Id < 115
 (person)

 It displays tuples whose ID is greater than 112 and less
than 115

 3. s
NOT (hobby = ‘paint’)

 (person)

 It displays tuples whose hobby is not paint
 4. s

Hobby ≠ ‘paint’
 (person)

 It displays tuples whose hobby is not paint, displays all
tuples other than hobby paint.

 Selection operator: Produces table containing subset
of rows of argument table which satisfies condition.

Project Operator (p)
The project operator is unary operator. It can be used to
keep only the required attributes of a relation instance and
throw away others.

Notation: p
A2, A2, … Ak(r)

 Where A
1
, A

2
, … A

K
 is a list L of

desired attributes in the scheme of r.

Result = { (V
1
, V

2
, … V

K
)/V

i
 ∈ DOM (A

i
), 1< i < k and

there is some tuple t in r, such that t.A
1
 = v

1
, t.A

2

= v
2
, … t.A

K
 = V

K
}

 p
Attribute List

 (Relation)

Take table 2.1 as reference.
 1. p

Name
 (person)

Output:
Name
John
Mary
Bart

Chapter 2 • Structured Query Language | 4.23

Difference
Like union and intersection, the relational difference opera-
tor also requires its operands to be of the same type. Given
are two relations ‘a’ and ‘b’ of the same type, Then, the dif-
ference between those two relations, ‘a’ MINUS ‘b’ (in that
order), is a relation of the same type, with body consisting
of all types t such that t appears in a and not b.

 1. MINUS has a directionality to it, just as subtraction
does in ordinary arithmetic (e.g., ‘6 – 3’ and ‘3 – 6’ are
not the same thing)

 2. Redundant duplicate rows are always eliminated from
the result of UNION, INTERSECTION, EXCEPT
operations.

 3. SQL also provides the qualified variants UNION ALL,
INTERSECT ALL and EXCEPT ALL, where dupli-
cates are retained

Set difference operation returns the tuples in the first
table which are not matching with the tuples of other table.

Table 4 Result of R – S

Roll
no. Name Semester Percentage

22 Arun 7 45%

Table 5 Result of S – R

Roll no. Name Semester Percentage
28 Suresh 4 65%

44 Pinky 4 75%

* R – S ≠ S –R (both are different)

Example:
A

Supplier number Supplier name Status City

SN1

SN3

MAHESH

SURESH

40

40

HYDERABAD

HYDERABAD

B

Supplier number Supplier number Status City

SN3

SN4

SURESH

RAMESH

40

30

HYDERABAD

CHENNAI

UNION (A ∪ B)

Supplier number Supplier name Status City

SN1

SN3

SN4

MAHESH

SURESH

RAMESH

40

40

30

HYDERABAD

HYDERABAD

CHENNAI

INTERSECTION (A ∩ B)

Supplier number Supplier name Status City

SN3 SURESH 40 HYDERABAD

R – S =

S – R =

The general definition of relational union operator:
Given are two relations ‘a’ and ‘b’ of the same type. The

union of those two relations, a union b, is a relation of the
same type, with body consisting of all tuples ‘t’ such that ‘t’
appears in a or b or both.

* Union operation eliminates duplicates.

Here is a different but equivalent definition:
Given are two relations ‘a’ and ‘b’ of the same type. The

union of those two relations, a union b, is a relation of the
same type, with body consisting of all tuples t such that t is
equal to (i.e., is a duplicate of) some tuple in a or b or both.

Union Operation (U)
When union operation is applied on two tables it gives all
the tuples in both without Repetition.

Example:

Table 2 Result of union operation

Roll. no. Name Semester Percentage

22 Arun 7 45%

31 Bindu 6 55%

58 Sita 5 35%

Roll no. Name Semester Percentage

28 Suresh 4 65%

31 Bindu 6 55%

44 Pinky 4 75%

58 Sita 5 35%

Roll no. Name Semester Percentage

22 Arun 7 45%

31 Bindu 6 55%

58 Sita 5 35%

44 Pinky 4 75%

28 Sita 5 35%

Intersection
Like union, Intersection operator requires its operands to
be of the same type. Given are two relations a and b of the
same type, then, the intersection of those two relations, ‘a’
INTERSECT ‘b’, is a relation of the same type, with body
consisting of all tuples t such that t appears in both ‘a’ and
‘b’.

Intersection operation returns tuples which are common
to both tables

Table 3 Result of intersection operation

Roll no. Name Semester Percentage

31 Bindu 6 55%

58 Sita 5 35%

R

S

R ∪ S

R ∩ S =

4.24 | Unit 4 • Databases

DIFFERENCE (A – B)

Supplier name Supplier name Status City

SN1 MAHESH 40 HYDERABAD

DIFFERENCE (B – A)

Supplier name Supplier name Status City

SN4 RAMESH 30 CHENNAI

Cartesian Product
The Cartesian product of two sets is the set of all ordered
pairs such that in each pair, the first element comes from
the first set and the second element comes from second
set.

The result consists of all the attributes from both of the
two input headings. We define the Cartesian product of two
relations ‘a’ and ‘b’, as

‘a’ times ‘b’, where a and b have no common attrib-
ute names (If we need to construct the Cartesian product
of two relations that do have any such common attribute
names, therefore, we must use the RENAME operator first
to rename attributes appropriately).

The Cartesian product operation is also known as CROSS
PRODUCT. This is also a binary set operation, but the rela-
tions on which it is applied need not to be union compatible.
This operation is used to combine tuples from two relations
in a combinational fashion.

Example:
A B
X1 X2

X3 X4

C D

Y1 Y2

Y3 Y4

A B C D
X1 X2 Y1 Y2

X1 X2 Y3 Y4

X3 X4 Y1 Y2

X3 X4 Y3 Y4

Example: Transcript (StuId, coursecode, semester, grade)
Teaching (ProfId, coursecode, semester)

p
stuId,coursecode

 (Transcript) × p
profId,coursecode

 (Teaching)

The above expression returns

Table 6 Result of cross product

Stu Id Course code Prof Id Course code

...

Aggregate Operators
SQL Supports the usual aggregate operators COUNT,
SUM, AVG, MAX, MIN, EVERY and ANY, but there are a
few SQL-specific points.

 1. The argument can optionally be preceded by the key-
word DISTINCT, for example SUM (DISTINCT
column -name) to indicate that duplicates are to be
eliminated before the aggregation is done. For MAX,
MIN, EVERY and ANY, however, DISTINCT has no
effect and should not be specified.

 2. The operator COUNT (*), for this DISTINCT is not
allowed, and is provided to count all rows in a table
without any duplicate elimination.

 3. Any NULLS in the argument column are eliminated
before the aggregation is done, regardless of whether
DISTINCT is specified, except in the case of COUNT
(*), where nulls behave as if they were values.

 4. After NULLS if any have been eliminated, if what is
left is an empty set, COUNT returns zero. The other
operators return NULL.

AVG, MIN, MAX, SUM, COUNT

These functions operate on the multiset of values of col-
umn of a relation and returns a value.

 1. Find the average account balance at the Perryridge
branch.

Solution: SELECT AVG (balance) FROM account
WHERE branch.name = ‘perryridge’

 2. Find the number of tuples in customer relation.

Solution: SELECT count (*) FROM customer

 3. Find the number of depositors for each branch.

Solution: SELECT branch.name, COUNT (distinct
customer-name) FROM depositor, account WHERE
depositor. account-no = account account-no GROUPBY
branch-name.

Nested Queries
Some queries require that existing values in the database be
fetched and then used in a comparison condition.

Such queries can be conveniently formulated by using
nested queries, which are complete SELECT – FROM
–WHERE blocks within the WHERE clause of another
query. The other query is called the outer query.

In-Comparison Operator
The comparison operator IN, which compares a value ‘v’
with a set of values ‘V’ and evaluates to TRUE if ‘v’ is one
of the elements in V.

R

S

R × S =

Chapter 2 • Structured Query Language | 4.25

 1. In co-related nested queries, the inner query depends
on the outer query for its value.

 2. Sub-query is executed repeatedly, once for each row
that is selected by the outer query.

 3. A correlated subquery is a sub query that contains a
reference to a table that also appears in the outer query.

Example: Consider the following correlated nested query:
SELECT *
FROM table1
WHERE col1 ≥ ALL
 (SELECT col1 FROM table2 WHERE table2. col2 =
table1. col2)

 1. The subquery contains reference to a column of table1,
even though the sub-queries FROM clause does not
mention a table table1

 2. SQL has to check outside the sub-query and find Table
1 in the outer query

 3. Suppose that Table 1 contains a row where col1 = 3 and
col2 = 4 and Table 2 contains a row where col1 = 5 and
col2 = 4

 4. The expression

WHERE col1 ≥ All (SELECT col1
FROM table2

 3 ≥ 5 (false)

(WHERE condition TRUE) Table1.
col2 = table2. col2 4 = 4

 So the expression as a whole is FALSE.

 5. It is evaluated from outside to inside

Relational Calculus
Relational calculus can define the information to be retrieved

 1. In this, there is no specific series of operations.
 2. Relational algebra defines the sequence of operations.
 3. Relational calculus is closer to how users would for-

mulate queries, in terms of information requirements,
rather than in terms of operations.

Relational Calculus

Tuple Relational
calculus (variables
range over tuples)

Domain Relational
Calculus (variables
range over domain
attributes)

 4. Relational calculus is based on predicate logic, gives
the usual quantifiers to construct complex queries.

Example: Consider the given database scheme and the
statement:

EMPLOYEE

FNAME INITIAL LNAME ENO DOB ADDRESS SALARY DNO

DEPARTMENT

D NAME DNO MANAGER-NO

DEPARTMENT–LOCATIONS

DNO D-LOCATION

PROJECT

PNAME PNO P-LOCATION DNO

WORKS–ON

ENO PNO HOURS

Example: Select distinct PNO from project where PNO
IN (select PNO from project, department, employee where
P. DNO = D. DNO AND MANAGER. NO = ENO AND
LNAME = ‘RAMYA’)

The first query selects. The project numbers that have a
‘Ramya’ involved as manager, while the second selects the
project numbers of projects that have a ‘Ramya’ involved
as worker.

If a nested returns a single value, in such cases, it is per-
missible to use = instead of IN for the comparison operator.

In general, the nested query will return a table, Which is
a set of multiset of tuples.

* SQL allows the use of tuples of values in comparisons by
placing them within parentheses.

Example: SELECT DISTINCT ENO FROM WORKS -
ON WHERE (PNO, HOURS) IN (SELECT PNO, HOURS
FROM WORKS - ON WHERE ENO = 929).

This query will select the employee numbers of all
employees who work on the same (PROJECT, HOURS)
combination on some project a particular employee whose
ENO = ‘929’ works on. In this example, the IN operator
compares the subtuple of values in parentheses (PNO,
HOURS) for each tuple in works on with the set of union-
compatible tuples produced by the nested query.

Correlated nested queries: Nested queries can be evaluated
by executing the sub query (or) Inner query once and sub-
stituting the resulting value (or) values into the WHERE
clause of the outer query.

4.26 | Unit 4 • Databases

 Example: ∃ × ((X ∈ Boats) ∧ X.color) = ‘Red’)
 There exists a tuple X in the boats relation whose color

is red.
 (or)
 ∃ × ∈ Boats (X.color = ‘Red’)

 Examples:
 1. Find all sailors with rating above 8.

Sid Sname Rating Age

28 Yuppy 9 35

Sailors: 35 Rubber 8 55

44 grove 5 35

58 rusty 10 35

 Solution: {s|s ∈ sailors ∧ s. rating > 8}

 Output

Sid Sname Rating Age

R = 28 yuppy 9 35

58 rusty 10 35

 2. Find names and ages of sailors with rating > 8.

 Solution: {R | ∃ S ∈ sailors (s.rating > 8 ∧ R.sname =
s.name ∧ R.age = s.age)

 Output:

sname age

yuppy 35

rusty 35

Join Operation in Tuple Relational Calculus
Examples:
 3. Find sailors rated > 7 who have reserved boat = 103.

Solution: {S | S ∈ sailors ∧ s.rating > 7 ∧ ∃ R (R ∈ reserves
∧ R.sid = s.sid ∧ R.bid = 103)}

 4. Find sailors rated > 7 who have reserved a red boat.

Solution: {S | S ∈ sailors ∧ s.rating > 7 ∧ ∃ R (R ∈ reserves ∧
R.sid = s.sid ∧ ∃ B(Boats ∧ B.bid = R.bid ∧ B.color = ‘Red’))}

Division Operation in Tuple
Relational Calculus
Examples
 1. Find sailors who have reserved all boats.

Solution: {S | S ∈ sailors ∧ ∀ B ∈ boats (∃ R ∈ reserves
(s.sid = R.sid ∧ B.bid = R.bid))}

Domain Relational Calculus
 1. Tuple relational and domain relational are semantically

similar.
 2. In TRC, tuples share an equal status as variables, and

field referencing can be used to select tuple parts.

Tuple Relational Calculus
Example: Employee

E Id F Name L Name S alary

201
202
203
204
205

John
Brat
Mary
Adam
Smith

James
Frank

Jennifer
Borg
Joyce

3000
2000
3000
2000
1000

Query 1: Display the employees whose salary is above 2000.

{E | ∃ E ∈ Employee(E.salary > 2000)}

Output:

E Id F Name L Name Salary

201
203

John
Mary

James
Jennifer

3000
3000

Query 2: Display the employee Ids whose salary is above
1000 and below 3000.

{P | ∃ E ∈ Employee ((E.salary > 1000 ∧ E.salary <
3000) ∧ P.EId = E.EId)}

P is a table, in which EIds are stored, from tuples which
satisfies the given condition.

Tuple RelaTional CalCulus
A non-procedural language, where each query is of the
form {t| p(t)}. It is a set of all tuples t such that predicate p
is true for t, t is a tuple variable, t [A] denotes the value of
tuple ‘t’ on attribute A.

{T| p (T)}
T is a tuple and P (T) denotes a formula in which tuple vari-
able T appears.

 1. ∀ × (P(X))
 ∀ is called the universal or ‘for all’ quantifier because

every tuple in ‘the universe of’ tuples must make F
true to make the quantified formula true.

 Only true if p(X) is true for every X in the universe.

 Example: ∀ × (x.color = ‘Red’)
 means everything that exists is red.

 Example: ∀ × ((x ∈ Boats) ⇒ (X. color = ‘Red’))
 ‘⇒’ is a logical implication. a ⇒ b means that if a is

true, b must be true
 (or)
 ∃ × ∈ Boats (X.color = ‘Red’)
 For every ‘x’ in the boats relation, the color must be

red.

 2. ∃ × (P(X))
 ∃ is called the existential or ‘there exists’ quantifier

because any tuple that exists in ‘the universe of’ tuples
may take F true, to make the quantified formula true.

Chapter 2 • Structured Query Language | 4.27

Features
 1. Strong data protection
 2. Robust transactional support
 3. High performance
 4. High availability
 5. Security and flexibility to run anything
 6. Easy to manage
 7. User friendly

General Structure
SELECT ... FROM ... WHERE
SQL is divided into two languages

 1. DML (data manipulation language)
 SELECT: Extracts data from a database table.
 UPDATE: Updates data in a database table.
 DELETE: Deletes data from a database table.
 INSERT INTO: Inserts new data into database table.
 2. DDL (data definition language)
 CREATE TABLE - creates a new database table.
 ALTER TABLE - Alters a database table.
 DROP TABLE - deletes a database table.
 CREATE INDEX - Creates an index (search key).
 DROP INDEX - Deletes an index.
 RENAME – Changes the name of the table.

Types of keys:

 1. Candidate key
 2. Primary key
 3. Super key
 4. Foreign key
 5. Composite primary key

In relational database, ‘keys’ play a major role. Keys are
used to establish and identify relation between relations (or)
tables.

Keys are used to ensure that each record within a table
can be uniquely identified by combining one or more fields
(or) column headers within a table.

Candidate key: A candidate key is a column or set of col-
umns in a table that contains unique values, with these we
can uniquely identify any database record without referring
to any other columns data.

Each table may have one or more candidate keys, among
the available candidate keys, one key is preserved for pri-
mary key.

A candidate key is a subset of a super key.

Example: Student

StudentId First
name Last name Course Id

CS00345 Jim Black C2
CS00254 Carry Norris C1
CS00349 Peter Murray C1
CS00196 John Mc Cloud C3
CS00489 Brat Holland C4
CS00553 Mary Smith C5

 3. In DRC formed variables are explicit.
 4. DRC query has the following form.
 {<x

1
, x

2
, … x

n
 > /P(<x

1
, x

2
, … , x

n
>}

 Result included all tuples <x
1
, x

2
, … x

n
 >

 That make the formula p(<x
1
, x

2
, … x

n
>) true.

 5. Formula given in DRC is recursively defined. First start
with simple atomic formula and expand the formulas
by using the logical connectives.

 6. A variable that is not bound is free.
 7. The variable X

1
, X

2
,

…, X

n
 that appear in the left side of

‘/’ must be the only free variable in the formula p(…).

Example: Consider the employee table given in the above
Example.
The use of quantifiers ∃ x and ∀ x in a formula is said to
bind x

Query 1: Display the Employees whose salary is above
2000?

{<I, F, L, S> / <I, F, L, S> ∈ Employee ∧ S > 2000}

Query 2: Display the EIds of Employees, whose salary is
above 1000 and below 3000?
{<I> / ∃F, L, S(<I, F, L, S > ∈ Employee ∧ (S > 1000 ∧ S < 3000))}

sQl (sTRuCTuRed QueRy language)
When a user wants to get some information from a database
file, he/she can issue a query. A query is a user-request to
retrieve data (or) information with a certain condition. SQL
is a query language that allows user to specify the condi-
tions (instead of algorithms)

Concept of SQL
The user specifies a certain condition. The program will go
through all the records in the database file and select those
records that satisfy the condition. The result of the query
will be stored in the form of a table.

Features of SQL
 1. SQL is a language of database. It includes database

creation, deletion, fetching rows and modifying rows.
 2. SQL is a structured query language for storing, manip-

ulating and retrieving data stored in relational database.
 3. It allows users to describe the data.
 4. It allows users to create and drop database and tables.
 5. It allows users to create view, functions in a database.
 6. Allows users to set permissions on tables and views.
 7. The standard SQL commands to interact with rela-

tional database are CREATE, SELECT, UPDATE,
INSERT, DROP and DELETE.

 8. The commands can be classified as follows:
 • Data query language: SELECT – It retrieves par-

ticular rows which satisfies the given condition.
 • Data definition language: CREATE, ALTER, DROP.
 • Data manipulation language: INSERT, UPDATE,

DELETE

4.28 | Unit 4 • Databases

In the above table, we have studentId that uniquely identifies
the students in a student table. This would be a candidate
key.

In the same table, we have student’s first name and last
name, which are also candidate keys.

 1. If we combine first name and last name then also it
becomes a candidate key.

 2. Candidate key must (have)
 • Unique values
 • No null values
 • Minimum number of fields to ensure uniqueness.
 • Uniquely identify each record in the table.

 3. The candidate keys which are not selected for primary
key are known as secondary keys or alternative keys.

Primary key: A primary key is a candidate key that is most
suitable (or) appropriate to become main key of the table.

 1. It is a special relational database table column ((or)
combination of columns)

 2. Primary key main features are
 • It must contain a unique value for each row of data.
 • It cannot contain null values.

Example: We can choose primary key as studentId which
is mentioned in the table given in above example.

Composite primary key: A key that consists of two or more
attributes that uniquely identify an entity is called compos-
ite key or composite primary key.

Example: Customer

Cust-Id Order-Id Sale-details

C1 O – 2 Sold

C1 O – 3 Sold

C2 O – 2 Sold

C2 O – 3 Sold

Composite primary key is {cust-Id, order-Id}

Super key: A super key is a combination of attributes that
can be uniquely used to identify a database record. A table
can have any number of super keys.

 1. Candidate key is a special subset of super keys.

Example: Customer

Customer name Customer Id SSN Address DOB

Assume that we can guarantee uniqueness only for SSN
field, then the following are some of the super keys possible.

 1. {Name, SSN, DOB}
 2. {ID, Name, SSN}

In a set of attributes, there must be at least one key (could
be primary key or candidate key)

Foreign key: A foreign key is a column or group of columns
in a relational database table that provides connectivity
between data in two tables.

 1. The majority of tables in a relational database system
adhere to the concept of foreign key.

 2. In complex databases, data must be added across mul-
tiple tables, thus the link or connectivity has to be
maintained among the tables.

 3. The concept of Referential Integrity constraint is
derived from Foreign key.

Example: Emp

EId EName Dept – No

Dept

Dept-No DName

In the above specified tables, Dept-No is common to both
the tables, In Dept table it is called as primary key and in
Emp table it is called as foreign key.

These two tables are connected with the help of
‘Dept-No’ field

 1. For any column acting as a foreign key, a correspond-
ing value should exist in the link (or) connecting table.

 2. While inserting data and removing data from the for-
eign key column, a small incorrect insertion or dele-
tion destroys the relationship between the two tables.

SQL Commands
SELECT statement
The most commonly used SQL command is SELECT state-
ment. The SQL SELECT statement is used to query or retrieve
data from a table in the database. A query may retrieve infor-
mation from specified columns or from all of the columns in
the table. To create a simple SQL SELECT statement, you
must specify the column(s) names and the table name.

Syntax: SELECT column-name (s) from table name

Example: Persons

Lastname Firstname Address City

Hansen Ola SpRoad,-20 Hyd

Svendson Tove GPRoad,-18 Secbad

Petterson Kari RpRoad,-19 Delhi

 1. SELECT lastname FROM persons

 Output:

Lastname

Hansen

Svendson

Petterson

Chapter 2 • Structured Query Language | 4.29

BETWEEN - Between an inclusive range.
LIKE - Search for a pattern

Example: Persons

Lastname Firstname Address City Year

Hansen Ola SPRoad, 16 Hyd 1956

Svendson Tiva GPRoad, 18 Sec 1977

Smith Ole RPRoad, 19 Hyd 1986

Petterson Kari SPRoad, 17 Sec 1985

 1. SELECT * FROM persons
 Output: It displays the entire table

 2. SELECT * FROM persons WHERE city = ‘Hyd’

 Output:

Lastname Firstname Address City Year

Hansen Ola SPRoad, 16 Hyd 1956

Smith Ole RPRoad, 19 Hyd 1986

LIKE condition
The LIKE operator is used to list all rows in a table whose
column values match a specified pattern. It is useful when
you want to search rows to match a specific pattern, or when
you do not know the entire value. For this purpose, we use a
wildcard character ‘%’.

The LIKE condition is used to specify a search for a pat-
tern in a column.

A ‘%’ sign can be used to define wildcards (missing let-
ters in the pattern) both before and after the pattern.

Syntax: SELECT column FROM table WHERE column
LIKE pattern

 1. SELECT * FROM persons WHERE Firstname LIKE
‘O%’

Solution: SQL statement will return persons with first
names that start with a letter ‘O’

Output:

Lastname Firstname Address City Year

Hansen Ola SPRoad, 16 Hyd 1956

Smith Ole RPRoad, 19 Hyd 1986

 2. SELECT * FROM persons WHERE Firstname LIKE
‘%a’

Solution: SQL statement will return persons whose first
name ends with letter ‘a’.

Output:

Last name First name Address City Year

Hansen Ola SPRoad, 16 Hyd 1956

Svendson Tiva GPRoad, 18
Sec.
bad

1977

 2. SELECT lastname, firstname FROM persons

 Output:

Lastname Firstname

Hansen Ola

Svendson Tove

Petterson Kari

DISTINCT statement
Returns distinct values. It eliminates duplicate values.

Syntax: Select DISTINCT column_name (s) from table-name

Example: Orders

Company Order.No

IBM 3412

DELL 5614

WIPRO 4412

DELL 4413

 1. SELECT company FROM orders

 Output:
Company

IBM
DELL

WIPRO
DELL

 2. SELECT DISTINCT company FROM orders

Company

IBM

DELL

WIPRO

WHERE statement
The WHERE clause is used when you want to retrieve spe-
cific information from a table excluding other irrelevant
data. By using WHERE clause, we can restrict the data that
is retrieved. The condition provided in the WHERE clause
filters the rows retrieved from the table and gives only those
rows which were expected. WHERE clause can be used
along with SELECT, DELETE, UPDATE statements.

The WHERE clause is used to specify a selection condi-
tion. All conditions are specified in this clause.

Syntax: SELECT column FROM table WHERE column
operator value.

Operates used in where clause:
=
< > (not equal) (or) ! =
>
<
> =
< =

4.30 | Unit 4 • Databases

 3. SELECT * FROM persons WHERE firstname LIKE
‘%la%’

Solution: SQL statement returns persons whose firstname
contains ‘la’. The word sequence ‘la’ may come at any place
in the word.

Output:

Last name First Name Address City Year

Hansen Ola SPRoad, 16 Hyd 1956

String operations
 1. ‘%idge%’ matches ‘Rockridge’, ‘Ridgeway’, ‘Perryridge’.
 2. ‘_____’ matches a string of three characters.
 3. ‘_____%’ matches a string of at least rhree characters.

INSERT INTO statement
This statement is used to insert new rows into a table. While
inserting a row, if you are adding values for all the columns
of the table you need not specify the column(s) name in the
SQL query. But you need to make sure the order of the val-
ues is in the same order as the columns in the table. When
adding a row, only the characters or data values should be
enclosed with single quotes and ensure the data type of the
value and the column matches. One can specify the columns
for which you want to insert data

Syntax: INSERT INTO table-name (column1, column2 . . .)
VALUES (value 1, value2 . . .)

 1. INSERT INTO persons VALUES (‘Hetland’, ‘Camilla’,
‘HPRoad 20’, ‘Hyd’)

Output:

Last name First Name Address City

Hansen Ola S.P Road 16 Hyd

Svesdon Tiva GP Road 18 Secbad

Smith Ole RP Road 19 Hyd

Petterson Kari SP Road 17 Secbad

Hetlan Camilla HPRoad, 20 Hyd

 2. Insert data into specified columns
 INSERT INTO persons (Lastname, Address) VALUES

(‘Rasmussen’, ‘street 67’)

Output:

Last name First Name Address City

Hansen Ola SP Road 16 Hyd

Svesdon .Tiva GP Road 18 Secbad

Smith Ole RP Road 19 Hyd

Petterson Kari SP Road 17 Secbad

Hetlan Camilla HP Road 20 Hyd

Rasmussen Street 67

UPDATE
The update statement is used to modify the data in a table.

Syntax: UPDATE table_name
SET Column_name = new_value
WHERE column_name = some_value.

 1. Add a first name (Nine) to the person whose last name
is ‘Rasmussen’?

Solution: UPDATE person SET Firstname = ‘Nine’
WHERE Lastname = ‘Rasmussen’

 2. Change the address and add the name of the city as
Hyd of a person with last name Rasmussen?

Solution: UPDATE person
SET Address = ‘street 12’,
city = ‘Hyd’
WHERE Lastname = ‘Rasmussen’

DELETE statement
The DELETE statement is used to delete rows from a table.
The WHERE clause in the SQL delete command is optional,
and it identifies the rows in the column that gets deleted. If
you do not include the WHERE clause, all the rows in the
table will be deleted.

Syntax: DELETE FROM table_name
WHERE column_name = some_value

 1. Delete all rows?

Solution: DELETE * FROM table_name

Cartesian product
The Cartesian product of two sets is the set of all ordered
pairs of elements such that the first element in each pair
belongs to the first set and the second element in each pair
belongs to the second set. It is denoted by cross(X).

For example, given two sets:

S1 = {1, 2, 3} and S2 = {4, 5, 6}

The Cartesian product S1 × S2 is the set

{(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5),
(3, 6)}

Example:

Female Male

Name Job Name Job

Komal Clerk Rohit Clerk

Ankita Sales Raju Sales

Assume that the tables refer to male and female staff,
respectively. Now, in order to obtain all possible inter-staff
marriages, the cartesian product can be taken.

Chapter 2 • Structured Query Language | 4.31

Male-Female

Female name Female job Male name Male job

Komal Clerk Rohit Clerk

Komal Clerk Raju Sales

Ankita Sales Rohit Clerk

Ankita Sales Raju Sales

Examples:

 1. Find the Cartesian product of borrower and loan?

Solution: SELECT * FROM borrower, loan

 2. Find the name, loan-no, and loan amount of all cus-
tomers having a loan at the Perryridge branch?

Solution: SELECT customer_name, borrower. loan_
number, amount FROM borrower, loan WHERE borrower.
loan-no = Loan.loan_no AND branch_name = ‘perryridge’

 3. Find all loan numbers for loans made at the perryridge
branch with loan amount greater than 1200?

Solution: SELECT loan-no FROM loan WHERE branch.
name = ‘perryridge’ AND amount > 1200

Comparison operator
Relation algebra includes six comparison operators (=, < >,
<, >, < =, > =). These are proposition forming operators on
terms. For example, x < > 0 asserts that x is not equal to 0.
It also includes three logical operators (AND, OR, NOT).
These are proposition forming operators on propositions.

Example: x > 0 and x < 8
Comparison results can be combined using the logical con-
nections AND, OR NOT

 1. Find the loan-no of those loans with amounts between
90,000 and 1,00,000?

Solution: SELECT loan-no FORM loan WHERE amount
BETWEEN 90,000 AND 1,00,000. SQL allows renewing
relations and attributes using ‘AS’ clause

 2. Find the name, loan-no and loan amount of all custom-
ers, rename the column name loan-no as loan.id?

Solution: SELECT customer.name, borrower.loan no AS
loan.id, amount FROM borrower, loan, WHERE borrower.
loan-no = loan.loan-no

Ordering of Tuples
It lists the tuples in alphabetical order.

Example: List in alphabetic order, the names of all customers
having a loan in Perryridge branch?

Solution: SELECT customer-name FROM borrower
WHERE branch.name = ‘perryridge’ ORDERBY customer-
name

We may specify ‘desc’ for descending order (or) ‘asc’ for
ascending order. - ‘asc’ is default.

Example: ORDERBY customer-name desc.

Join (⋈)
SQL Join is used to get data from two (or) more tables,
which appear as single table after joining.

 1. Join is used for combining columns from two or more
tables by using values common to both tables.

 2. Self Join: A table can also join to itself is known as self
join. Types of JOIN

 1. INNER JOIN
 2. OUTER JOIN

 (i) LEFT OUTER JOIN
 (ii) RIGHT OUTER JOIN
 (iii) FULL OUTER JOIN

 1. INNER JOIN (or) EQUI JOIN

It is a simple JOIN in which result is based on matching
tuple, depending on the equality condition specified in the
query.

Syntax: SELECT Column-names FROM table name1
INNER JOIN table name 2 WHERE table name 1. Column
name = table name 2.column – name.

Example: Class

SID Name

11 Ana

12 Bala

13 Sudha

14 adam

Info

SID City

11

12

13

Bangalore

Delhi

Hyderabad

SELECT *
FROM Class INNER JOIN Info
WHERE Class.SID = Info.SID

Result:

SID Name SID City

11

12

13

Ana

Bala

Sudha

11

12

13

Banglore

Delhi

Hyderabad

NATURAL JOIN:
NATURAL JOIN is a type of INNER JOIN which is based
on column having same name and same data type present in
two tables on which join is performed.

4.32 | Unit 4 • Databases

Syntax: SELECT *
FROM table-name1 NATURAL JOIN table-name 2

Example: Consider the tables class and Info, and the
following Query

SELECT *
FROM class NATURAL JOIN Info

Result:

SID Name City

11

12

13

Ana

Bala

Sudha

Bangalore

Delhi

Hyderabad

Both tables being joined have SID column (same name and
same data type), the tuples for which value of SID matches
in both the tables, appear in the result.

Dangling tuple: When NATURAL JOIN is performed on
two tables, there would be some missing tuples in the result
of NATURAL JOIN

Those missing tuples are called Dangling tuples. In the
above example, the number of dangling tuples is 1 that is

14 Adam

OUTER JOIN: Outer Join is based on both matched and
unmatched data.

LEFT OUTER JOIN: Left outer Join returns the tuples
available in the left side table with the matched data of 2
tables and null for the right tables column.

Example: Consider the table’s class and Info

SELECT *
FROM class LEFT OUTER JOIN Info
 ON(class.SID = Info. SID)
Result:

SID Name City

11

12

13

14

Ana

Bala

Sudha

adam

Banglore

Delhi

Hyderabad

NULL

RIGHT OUTER JOIN: RIGHT OUTER JOIN returns the
tuples available in the Right side table with the matched
data of 2 tables and NULL for the left table’s column.

Example: Class 1

SID Name

16

17

Arun

Kamal

Info 1

SID City

16

17

Chennai

Noida

Query:
SELECT *
FROM Class1 RIGHT OUTER JOIN Info1
 ON(class1.SID = Info1.SID)

Result:

SID Name City

16

18

Arun

NULL

Chennai

Noida

FULL OUTER JOIN: The full outer Join returns the tuples
with the matched data of two tables, remaining rows of both
left table and Right table are also included.

Example: Consider the tables class 1 and Info1

Query:
SELECT *
FROM class1 FULL OUER JOIN Info1
 ON(class1.SID = Info1.SID)

Result:

SID Name City

16

17

18

Arun

Kamal

NULL

Chennai

NULL

Noida

ALTER command: ALTER command is used for altering the
table structure

 1. It is used to add a new column to existing table.
 2. To rename existing column.
 3. ALTER is used to drop a column.
 4. It is used to change data type of any column or modify

its size.

Add new column: By using alter command, we can add a
new column to the table.

Syntax: ALTER table table-name ADD(column-name data
type).

Example: Consider a student table.

SID S Name Grade

Add a new column called address

ALTER table student ADD (address char);

Example: Add multiple columns, parent-name, course-
Name, date-of-birth to student table.

ALTER table student ADD (parent-name
varchar(60), course-Name varchar(20),
date-of-birth date);

Example: Change the data type of column address to varchar?

ALTER table student modify(address varchar(30))

Chapter 2 • Structured Query Language | 4.33

Example: Rename a column address to Location

ALTER table student rename address to Location

TRUNCATE command: Truncate command removes all
tuples from a table, this command will not destroy the tables
structure.

Syntax: Truncate table table-name

DROP Command: DROP query removes a table completely
from database. This command will destroy the table structure.

Syntax: Drop table table-name

Rename: This command is used to rename a table.

Syntax: Rename table old-table-name to new-table-name.

Example: Rename table Employee to New-Employee.

DROP a column: Alter command can be combined with
DROP command to remove columns from a table.

Syntax: alter table table-name DROP(column-name)

Example: Alter table student DROP (grade)

exeRCises

Practice Problems 1
Directions for questions 1 to 20: Select the correct alterna-
tive from the given choices.

 1. Consider the given table called Persons

P-Id Lastname Firstname Address City

1 Hansen ola Timoteivn -10 Sandnes

2 Svendson Tove Brazil-50 Sandnes

3 Petterson Kari Storgt-20 Stavanger

4 Joseph ole Brazil-20 Sandnes

 Write a query to select the persons with first name
‘Tove’ and last name ‘Svendson’?

 (A) SELECT *
 FROM Persons
 WHERE first-name=’tove’
 AND last-name=’svendson’
 (B) SELECT *
 FROM Persons
 WHERE first-name=’tove’
 OR last-name=’svendson’
 (C) SELECT first-name
 FROM Persons
 WHERE first-name=’tove’
 AND last-name=’svendson’
 (D) SELECT last-name
 FROM Persons
 WHERE first-name=’tove’
 AND last-name=’svendson’

 2. Write a query to select only the persons with last name
‘Svendson’ and the first name equal to ‘Tove’ or ‘ola’?

 (A) SELECT *
 FROM Persons
 WHERE last-name=’svendson’
 AND first-name=’tove’
 (B) SELECT *
 FROM Persons
 WHERE last-name=’svendson’
 AND (first-name=’tove’ OR first-name=’ola’)

 (C) SELECT *
 FROM Persons
 WHERE last-name=’svendson’
 AND (first-name=’tove’ AND first-name=’ola’)
 (D) SELECT *
 FROM Persons
 WHERE last-name=’svendson’
 OR (first-name=’tove’ AND first-name=’ola’)
 3. Write an SQL statement to add a new row, but only in

specified columns, for the persons table add data into
columns ‘P-Id’, ‘Last name’ and the ‘First name’ with
values (5, Teja, Jakob)?

 (A) INSERT INTO Persons VALUES(5,‘teja’,‘jakob’)
 (B) INSERT INTO Persons VALUES(5,teja,jakob)
 (C) INSERT INTO Persons (P-Id, last-name, first-

name) VALUES(5,’teja’,’jakob’)
 (D) INSERT INTO Persons(P-Id, last-name, first-

name) VALUES(5,teja,jakob)
 4. Write an SQL statement:
 (i) To select the persons living in a city that starts

with ‘S’ from the ‘Persons’ table?
 (A) SELECT *
 FROM Persons
 WHERE city LIKE ‘s__’.
 (B) SELECT *
 FROM Persons
 WHERE city LIKE ‘s%’.
 (C) SELECT *
 FROM Persons
 WHERE city LIKE ‘%s’.
 (D) SELECT *
 FROM Persons
 WHERE city LIKE ‘_s%’.
 (ii) To select the persons living in a city that contains

the pattern ‘tav’ from ‘Persons’ table?
 (A) SELECT *
 FROM Persons
 WHERE city LIKE ‘_tav_’.
 (B) SELECT *
 FROM Persons
 WHERE city LIKE ‘_tav%’.

4.34 | Unit 4 • Databases

 (C) SELECT *
 FROM Persons
 WHERE city LIKE ‘%tav_’.
 (D) SELECT *
 FROM Persons
 WHERE city LIKE ‘%tav%’.
 (iii) To select the persons whose last name starts with

‘b’ or ‘s’ or ‘p’ ?
 (A) SELECT *
 FROM Persons
 WHERE last-name LIKE ‘b-s-p’
 (B) SELECT *
 FROM Persons
 WHERE last-name LIKE ‘b%s%p’
 (C) SELECT *
 FROM Persons
 WHERE last-name LIKE ‘b%s%p%’
 (D) SELECT *
 FROM Persons
 WHERE last-name LIKE ‘[bsp]%’

 5. Consider the given table called ‘Persons’

P-Id Last-name First-name Address City

1 Hansen ola Timoteivn-10 Sandnes

2 Svendson Tove Brazil-50 Sandnes

3 Petterson Kari Storgt-20 Stavanger

 and the ‘Orders’ table

O-Id Order No P-Id

11 77895 3

12 44678 3

13 22456 1

14 24562 1

15 34764 5

 perform NATURAL JOIN operation on both the tables
and what is are the O_Id’s displayed in the result?

 (A) 11, 12, 13 (B) 11, 13, 14
 (C) 11, 12, 13, 14 (D) 12, 13, 14

 6. Write an SQL to perform FULL JOIN operation on
both ‘Person’ and ‘Orders’ tables and What is the num-
ber of tuples in the Result?

 (A) 4 (B) 5
 (C) 6 (D) 7

 7. Consider the given table ‘Result’.

Student Name Marks

A 55

B 90

C 40

D 80

E 85

F 95

G 82

 (i) Find out the students who have scored more than
80 marks, and display them in descending order
according to their marks?

 (A) SELECT student-name,marks
 FROM Result
 WHERE marks > 80
 ORDERBY marks DESC
 (B) SELECT *
 FROM Result
 WHERE marks > 80
 ORDERBY marks DESC
 (C) SELECT student-name,marks
 FROM Result
 WHERE marks > 80
 ORDERBY marks
 (D) (A) and (B)
 (ii) From the above table, find out the top-most three

students.
 (A) SELECT student-name
 FROM Result
 ORDERBY marks DESC > 3
 (B) SELECT student-name
 FROM Result
 ORDERBY marks DESC = 3
 (C) SELECT student-name
 FROM Result
 ORDERBY marks DESC limit 3
 (D) None of these

 8. From the table ‘Results’, Identify the suitable SQL
expression?

 (i) Find out the student Who stood 2nd?
 (A) SELECT student-name
 FROM Result
 ORDERBY marks DESC limit 2
 (B) SELECT student-name
 FROM Result
 ORDERBY marks DESC limit 1,1
 (C) SELECT student-name
 FROM Result
 ORDERBY marks DESC limit 1,2
 (D) SELECT student-name
 FROM Result
 ORDERBY marks DESC limit 2,1
 (ii) Find out how many students scored > = 80.
 (A) SELECT COUNT(*)
 FROM Result
 WHERE marks > = 80
 (B) SELECT COUNT
 FROM Result
 WHERE marks > = 80
 (C) SELECT SUM(*)
 FROM Result
 WHERE marks > = 80
 (D) SELECT SUM
 FROM Result
 WHERE marks > = 80

Chapter 2 • Structured Query Language | 4.35

 9. Consider the given tables:

 Customer

Customer name Customer street Customer city

Sonam

Sonam

Anusha

Nandy

Mirpurroad

Aga KhaRoad

XYZRoad

MirpurRoad

Dhaka

Bogra

Kanchi

Dhaka

 Account

Account number Customer name Balance

A-101

A-102

A-103

A-104

Anusha

Anusha

Sonam

Nandy

1000

1500

2000

2500

 From the customer table, find out the names of all the
customers who live in either Dhaka or Bogra?

 (A) SELECT customer-name
 FROM customer
 WHERE customer-city=’dhaka’ OR
 customer-city=’bogra’

 (B) SELECT customer-name
 FROM customer
 WHERE customer-city=dhaka OR
 customer-city=’bogra’

 (C) SELECT customer-name
 FROM customer
 WHERE customer-city=’dhaka’ AND
 customer-city=’bogra’

 (D) SELECT customer-name
 FROM customer
 WHERE customer-city=’dhaka’ EXIST
 customer-city=’bogra’

 10. Consider the given tables

 Loan

Loan Number Branch Name Amount

L-101 Dhaka 1000

L-103 Khulna 2000

 Borrower:

Customer name Loan number

Sonam L-101

Nandy L-103

Anusha L-103

 (i) What are the number of tuples present in the result
of cross product of the above two tables?

 (A) 4 (B) 5
 (C) 6 (D) 7

 (ii) Find the loan-numbers from loan table where
branch-name is Dhaka?

 (A) SELECT loan-number
 FROM loan
 WHERE branch-name=’dhaka’
 (B) SELECT loan-number
 FROM branch-name=’dhaka’
 (C) SELECT loan-number
 FROM Loan × Borrower
 (D) Both (A) and (C)

 11. (i) Find all customers who have only accounts but no
loans.

 (A) SELECT customer-name
 FROM depositor LEFT OUTER JOIN Bor-

rower ON
 Depositor.customer-name=Borrower.cus-

tomer-name
 WHERE loan-number IS NULL
 (B) SELECT customer-name
 FROM depositor LEFT OUTER JOIN Bor-

rower ON
 Depositor.customer-name = Borrower.cus-

tomer-name
 WHERE loan-number=NULL
 (C) SELECT customer-name
 FROM depositor RIGHT OUTER JOIN

Borrower ON
 Depositor.customer-name=Borrower.cus-

tomer-name
 WHERE loan-number IS NULL
 (D) SELECT customer-name
 FROM depositor RIGHT OUTER JOIN

Borrower ON
 Depositor.customer-name=Borrower.cus-

tomer-name
 WHERE loan-number=NULL
 (ii) Find the names of all customers who have either

an account or loan but not both.

Borrower

Customer name Loan no.

Sonam L-101

Sonam L-102

Anusha L-103

Depositor

Customer name Account no.

Anusha A-102

Sonam A-103

Nandy A-104

4.36 | Unit 4 • Databases

 (A) SELECT customer name
 FROM depositor FULL OUTER JOIN
 Borrower ON
 Depositor.customer-name=Borrower.customer-

name
 WHERE loan-number IS NULL OR Account-

number=NULL
 (B) SELECT customer-name
 FROM depositor FULL OUTER JOIN
 Borrower ON
 Depositor.customer-name = Borrower.customer-

name
 WHERE loan-number IS NULL OR Account-

number IS NULL
 (C) SELECT customer-name
 FROM depositor FULL OUTER JOIN
 Borrower ON
 Depositor.customer-name = Borrower.customer-

name
 WHERE loan-number = NULL OR Account-num-

ber = NULL
 (D) SELECT customer-name
 FROM depositor FULL OUTER JOIN Borrower

ON
 Depositor.customer-name = Borrower.customer-

name
 WHERE loan-number=NULL OR Account-num-

ber IS NULL

 12. Consider the following ‘employee’ table

Employee name Branch name Branch city Salary

A DU Dhaka 1000

B DU Dhaka 2000

C BUET Dhaka 3000

D KUET Khulna 4000

E KU Khulna 5000

F RU Rajshahi 6000

 (i) Find the distinct number of branches appearing in
the employee relation.

 (A) SELECT COUNT(branch-name)
 FROM Employee
 (B) SELECT COUNT(DISTINCT branch-name)
 FROM Employee
 (C) SELECT DISTINCT COUNT(branch-name)
 FROM Employee
 (D) SELECT COUNT(*)
 FROM Employee
 (ii) Find the total salary of all employees at each

branch of the bank.
 (A) SELECT branch-name, SUM(salary)
 FROM Employee
 GROUP BY Branch-city
 (B) SELECT branch-name, SUM(salary)
 FROM Employee
 GROUP BY Branch-name

 (C) SELECT SUM(salary)
 FROM Employee
 GROUP BY Branch-name
 (D) SELECT branch-name, SUM(salary)
 FROM Employee
 (iii) Find branch city, branch name Wise total salary,

average salary and also number of employees.
 (A) SELECT branch-city, branch-name,
 SUM (salary), AVG(salary),
 COUNT (Employee-name)
 FROM Employee
 GROUP BY branch-city, branch-name
 (B) SELECT branch-city, branch-name,
 SUM (salary), AVG (salary),
 COUNT (Employee-name)
 FROM Employee
 GROUP BY branch-city
 (C) SELECT branch-city, branch-name,
 SUM (salary), AVG (salary), COUNT (Em-

ployee-name)
 FROM Employee
 GROUP BY branch-name
 (D) SELECT branch-name, SUM (salary),
 AVG (salary), COUNT (Employee-name)
 FROM Employee
 GROUP BY branch-city, branch-name

Common data for questions 13 to 15: Consider the SHIP-
MENTS relation and write the SQL statements for the below

SUPPLIERS

Supplier number Supplier name Status City

SN1 Suma 30 Hyderabad
SN2 Hari 20 Chennai
SN3 Anu 10 Hyderabad
SN4 Mahesh 20 Bombay
SN5 Kamal 30 Delhi

PARTS

Part number Part name Color Weight City

PN1 X Red 13.0 Chennai
PN2 Y Green 13.5 Bombay
PN3 X Yellow 13.2 Hyderabad
PN4 Y Green 14.1 Calcutta
PN5 Z Red 14.3 Hyderabad
PN6 Z Blue 14.2 Bombay

PROJECT

Project number Project name City
PJ1 Display Chennai
PJ2 OCR Bombay
PJ3 RAID Chennai
PJ4 SORTER Hyderabad
PJ5 EDS Chennai
PJ6 Tape Bombay
PJ7 Console Hyderabad

Chapter 2 • Structured Query Language | 4.37

SHIPMENTS

Supplier number Part number Project number Quantity

SN1 PN1 PJ1 300

SN1 PN1 PJ4 400

SN2 PN3 PJ1 350

SN2 PN3 PJ2 450

SN2 PN3 PJ3 640

SN2 PN3 PJ4 320

SN2 PN3 PJ5 330

SN2 PN3 PJ6 520

SN2 PN3 PJ7 480

SN2 PN5 PJ2 460

SN3 PN3 PJ1 440

SN3 PN4 PJ2 410

SN4 PN6 PJ3 310

SN4 PN6 PJ7 320

SN5 PN2 PJ2 340

SN5 PN2 PJ4 350

SN5 PN5 PJ5 360

SN5 PN5 PJ7 370

SN5 PN6 PJ2 380

SN5 PN1 PJ4 420

SN5 PN3 PJ4 440

SN5 PN4 PJ4 450

SN5 PN5 PJ4 400

SN5 PN6 PJ4 410

13. (i) For each part supplied, get the part number and the
total shipment quantity?

 (A) SELECT shipments.part-number, SUM (ship-
ments.quantity)

 FROM Shipments
 GROUP BY shipments.part-number
 (B) SELECT SUM(shipments.quantity)
 FROM Shipments
 GROUP BY shipments.part-number
 (C) SELECT shipments.part-number, SUM (ship-

ments.quantity)
 FROM Shipments
 GROUP BY shipments.quantity
 (D) SELECT shipments.part-number, SUM (ship-

ments. part-number)
 FROM Shipments
 GROUP BY shipments.part-number
 (ii) Get part numbers for parts supplied by more than

two suppliers?
 (A) SELECT shipments.part-number
 FROM Shipments
 GROUP BY shipments.part-number
 HAVING COUNT(shipments.supplier-num-

ber) > 2

 (B) SELECT shipments.part-number
 FROM Shipments
 GROUP BY shipments.part-number
 HAVING COUNT(shipments.supplier-num-

ber)>=2
 (C) SELECT shipments.part-number
 FROM Shipments
 GROUP BY shipments.part-number>2
 (D) SELECT shipments.part-number, COUNT

(shipments.supplier-number)>2
 FROM Shipments
 GROUP BY shipments.part-number

 (iii) Get supplier names for suppliers who supply part
PN3?

 (A) SELECT DISTINCT suppliers.supplier-name
 FROM Supplier
 WHERE suppliers.supplier-number IN (SE-

LECT Shipments.supplier-number
 FROM Shipments
 WHERE Shipments.part-number=’PN3’)
 (B) SELECT DISTINCT suppliers.supplier-name
 FROM Supplier
 WHERE suppliers.supplier-number NOT

IN(SELECT Shipments.supplier-number
 FROM Shipments
 WHERE Shipments.part-number=’PN3’)
 (C) SELECT DISTINCT suppliers.supplier-name
 FROM Supplier
 WHERE suppliers.supplier-number EXCEPT

(SELECT Shipments.supplier-number
 FROM Shipments
 WHERE Shipments.part-number=’PN3’)
 (D) SELECT DISTINCT suppliers, supplier-name
 FROM Supplier
 WHERE suppliers.supplier-number
 UNION
 SELECT Shipments.supplier-number
 FROM Shipments
 WHERE Shipments.part-number=’PN3’

 14. (i) Get supplier names for suppliers who supply at
least one blue part.

 (A) SELECT DISTINCT suppliers.supplier-name
 FROM Suppliers
 WHERE suppliers.supplier-number
 IN (SELECT Shipments.supplier-number
 FROM Shipments
 WHERE Shipments.part-number
 IN (SELECT Parts.part-number
 FROM Parts
 WHERE Parts.color=’Blue’))
 (B) SELECT DISTINCT suppliers.supplier-name
 FROM Suppliers
 WHERE suppliers.supplier-number
 IN (SELECT Shipments.supplier-number
 FROM Shipments

4.38 | Unit 4 • Databases

 WHERE Shipments.part-number NOT
 IN(SELECT Parts.part-number
 FROM Parts
 WHERE Parts.color=’Blue’))
 (C) SELECT DISTINCT suppliers.supplier-name
 FROM Suppliers
 WHERE suppliers.supplier-number NOT

IN(SELECT Shipments.supplier-number
 FROM Shipments
 WHERE Shipments.part-number
 IN (SELECT Parts.part-number
 FROM Parts
 WHERE Parts.color=’Blue’))
 (D) SELECT DISTINCT suppliers.supplier-name
 FROM Suppliers
 WHERE suppliers.supplier-number
 IN (SELECT Shipments.supplier-name
 FROM Shipments
 WHERE Shipments.part-number
 IN (SELECT Parts.part-number
 FROM Parts
 WHERE Parts.color=’Blue’))

 (ii) Get supplier numbers for suppliers with status less
than the current maximum status in the suppliers
table:

 (A) SELECT Suppliers.supplier-number
 FROM suppliers
 WHERE Suppliers.status < (SELECT MAX

(Suppliers.status)
 FROM Suppliers)
 (B) SELECT Suppliers.supplier-number
 FROM suppliers
 WHERE Suppliers.status<=(SELECT MAX

(Suppliers.status)
 FROM Suppliers)
 (C) SELECT Suppliers.supplier-number,
 MAX (Suppliers.status)
 FROM suppliers
 WHERE Suppliers.status
 (D) SELECT Suppliers.supplier-number
 FROM suppliers
 WHERE Suppliers.status=MAX(Suppliers.

status)

 (iii) Get supplier names for suppliers who supply part
PN2?

 (A) SELECT DISTINCT suppliers.supplier-name
 FROM Suppliers
 WHERE EXIST(SELECT *
 FROM Shipments
 WHERE Shipments.supplier-number = sup-

pliers.supplier-number
 AND
 Shipments.part-number=’PN2’)

 (B) SELECT DISTINCT suppliers.supplier-name
 FROM Suppliers
 WHERE NOT EXIST(SELECT *
 FROM Shipments
 WHERE Shipments.supplier-number = sup-

pliers.supplier-number
 AND
 Shipments.part-number=’PN2’)
 (C) SELECT DISTINCT suppliers.supplier-name
 FROM Suppliers
 WHERE EXIST(SELECT *
 FROM Shipments
 WHERE Shipments.supplier-number = sup-

pliers.supplier-number
 OR
 Shipments.part-number=’PN2’)
 (D) SELECT DISTINCT suppliers.supplier-name
 FROM Suppliers
 WHERE EXIST(SELECT *
 FROM Shipments
 WHERE Shipments.supplier-number = sup-

pliers.supplier-number
 UNION
 Shipments.part-number=’PN2’)

 15. (i) Get supplier names for suppliers who do not sup-
ply part PN2.

 (A) SELECT DISTINCT suppliers.supplier-name
 FROM Suppliers
 WHERE NOT EXIST(SELECT *
 FROM Shipments
 WHERE Shipments.supplier-number = sup-

pliers.supplier-number
 AND
 Shipments.part-number=’PN2’)
 (B) SELECT DISTINCT suppliers.supplier-name
 FROM Suppliers
 WHERE EXIST(SELECT *
 FROM Shipments
 WHERE Shipments.supplier-number = sup-

pliers.supplier-number
 AND
 Shipments.part-number=’PN2’)
 (C) SELECT DISTINCT suppliers.supplier-name
 FROM Suppliers
 WHERE EXCEPT(SELECT *
 FROM Shipments
 WHERE Shipments.supplier-number = sup-

pliers.supplier-number
 AND
 Shipments.part-number=’PN2’)
 (D) SELECT DISTINCT suppliers.supplier-name
 FROM Suppliers
 WHERE NOT EXIST(SELECT *
 FROM Shipments

Chapter 2 • Structured Query Language | 4.39

 WHERE Shipments.supplier-number = sup-
pliers.supplier-number

 OR
 Shipments.part-number=’PN2’)

 (ii) Get supplier names for suppliers who supply all
parts.

 (A) SELECT DISTINCT suppliers.supplier-name
 FROM Suppliers
 WHERE NOT EXIST(SELECT *
 FROM Part
 WHERE NOT EXIST(SELECT * FROM

Shipments
 WHERE Shipments.supplier-number = sup-

pliers.supplier-number
 AND
 Shipments.part-number=Parts.part-number))
 (B) SELECT DISTINCT suppliers.supplier-name
 FROM Suppliers
 WHERE EXIST(SELECT *
 FROM Part
 WHERE NOT EXIST(SELECT * FROM

Shipments
 WHERE Shipments.supplier-number = sup-

pliers.supplier-number
 AND
 Shipments.part-number=Parts.part-number))
 (C) SELECT DISTINCT suppliers.supplier-name
 FROM Suppliers
 WHERE NOT EXIST(SELECT *
 FROM Part
 WHERE EXIST(SELECT * FROM Shipments
 WHERE Shipments.supplier-number = sup-

pliers.supplier-number
 AND
 Shipments.part-number=Parts.part-number))
 (D) SELECT DISTINCT suppliers.supplier-name
 FROM Suppliers
 WHERE EXIST(SELECT *
 FROM Part
 WHERE EXIST(SELECT * FROM Shipments
 WHERE Shipments.supplier-number = sup-

pliers.supplier-number
 AND
 Shipments.part-number=Parts.part-number))

 (iii) Get part numbers for parts that either weigh more
than-16 pounds or are supplied by supplier SN3, or
both?

 (A) SELECT parts.part-number
 FROM parts
 WHERE Parts.weight>18
 UNION
 SELECT Shipments.part-number
 FROM shipments
 WHERE Shipments.supplier-number=’SN2’

 (B) SELECT parts.part-number
 FROM parts
 WHERE Parts.weight>18
 UNION
 SELECT Shipments.supplier-name
 FROM shipments
 WHERE Shipments.supplier-number=’SN2’
 (C) SELECT parts.part-number
 FROM parts
 WHERE Parts.weight>18
 UNION
 SELECT Shipments.part-number,Shipments.

supplier-name
 FROM shipments
 WHERE Shipments.supplier-number=’SN2’
 (D) SELECT parts.part-Number, parts.color
 FROM parts
 WHERE Parts.weight>18
 UNION
 SELECT Shipments.part-number
 FROM shipments
 WHERE Shipments.supplier-number=’SN2’

Common data for questions 16 and 17: Consider the fol-
lowing relation: Teach

Name Address course

Zohar 40B,east city MD
Nisha 16/2, hyd BDS
Zohar 40B, East city MS
Ravi New York MBA

 16. The teacher with name Zohar teaching the course MS?
 (A) s

Name
 = ‘Zohar’ teach = MS.

 (B) p
Name

 = ‘Zohar’ teach = MS.
 (C) s

name
 = ‘Zohar’ and course = ‘MS’

(teach).

 (D) p
Name

 = ‘Zohar’ and course = ‘MS’ (teach).

 17. Select the names of courses taught by Zohar?
 (A) p

course
(s

Name = ‘Zohar’
(Teach))

 (B) s
course

(p
Name = ‘Zohar’

(Teach))
 (C) p

course
(s

Name = ‘MD’
(Teach))

(D) None

 18. Consider the join of a relation A with a relation B. If A
has m tuples and B has n tuples. Then the maximum and
minimum sizes of the join respectively are.

 (A) mn and m + n (B) m + n and (m –n)
 (C) mn and m (D) mn and 0

 19. Match the following:

I Set intersection 1 R | × | S

II Natural join 2 r – (r – s)

III Division 3 ←

IV Assignment 4

pR – S(r) – pR –S

(())

, ()

π
π
R S

R S

r s

s r
−

−

×

−

4.40 | Unit 4 • Databases

 (A) I – 2, II – 1, III – 4, IV – 3
 (B) I – 3, II – 4, III – 2, IV – 1
 (C) I – 1, II – 2, III – 3, IV – 4
 (D) I – 2, II – 3, III – 4, IV – 1

 20. Which one is correct for division operations for rela-
tion r and s

 (A) r ÷ s
 (B) π π π πR S R S R S R Sr r s s r− − − −− × −() ((())), ()
 (C) Temp 1 ← p

R – S
 (r)

 Temp 2 ← p
R – S

(temp1 × s) –p
R – S

, s(r)
 result = temp 1 – temp 2
 (D) All the above

Practice Problems 2
Directions for questions 1 to 20: Select the correct alterna-
tive from the given choices.

 1. The correct order of SQL expression is
 (A) Select, group by, where, having
 (B) Select, where, group by, having
 (C) Select, group by, having, where
 (D) Select, having, where, group by

 2. Which one is not a query language?
 (A) SQL (B) QBE
 (C) Data log (D) MySQL

 3. Like ‘a b \ % c d’ escape ‘\’ matches all the strings
 (A) Ending with a b c d
 (B) Beginning with a b c d
 (C) Beginning with a b c d
 (D) Beginning with a b % c d

 4. ‘_ _ _%’ matches any string of
 (A) At least three characters
 (B) At most three characters
 (C) Exactly three characters
 (D) exactly three characters ending with %

 5. Which of the following are set operations?
 (i) Union
 (ii) Intersection
 (iii) Set Difference
 (iv) Cartesian Product
 (A) (i), (ii), (iii)
 (B) (i), (iii), (iv)
 (C) (i), (iii), (ii), (iv)
 (D) (i), (ii), (iv)

 6. What is the purpose of project operation?
 (A) It selects certain columns
 (B) It selects certain rows
 (C) It selects certain strings
 (D) It selects certain integers

Common data for questions 7 and 8: Person

Id Name Age Hobby

11 Anu 21 Stamp Collection

22 Kamal 32 Painting

33 Ravi 24 Dancing

44 Ram 22 Singing

 7. Select the persons whose hobby is either painting (or)
singing.

 (A) s
Hobby = ‘painting’ OR Hobby = ‘singing’

 (person)

 (B) s
Hobby = ‘painting’,’ singing’

 (person)

 (C) s
Hobby = ‘painting’ OR ‘singing’

 (person)

 (D) All are correct

 8. Select the persons whose age is above 21 and below 32:
 (A) s

age > 21 AND age < 32
 (person)

 (B) s
21 < age < 32

 (person)

 (C) s
age > 21 OR age

< 32

 (person)

 (D) s
age < 21 AND age > 32

 (person)

Common data for questions 9 and 10: Consider the fol-
lowing relation: Teach

Name course Rating Age

Zohar MD 7 35

Nisha BDS 8 27

Zohar MS 7 34

Ravi MBA 9 33

 9. Select the teachers whose rating is above 7 and whose
age is less than 32?

 (A) s
Rating > 7 AND Age < 32

 (Teach)

 (B) s
Rating ≥ 7 AND Age < 32

 (Teach)

 (C) s
Rating > 7 AND < 32

 (Teach)

 (D) Both (A) and (B)

 10. Select the courses with rating above 7?

 (A) p
course

 (s
rating > 7

(Teach))

 (B) s
course

 (p
rating > 7

(Teach))

 (C) p
name, course

(s
rating > 7

(Teach))

 (D) None

Common data for questions 11 and 12: Consider the follow-
ing schema of a relational database employee (empno, ename,
eadd) project (pno, pname) Work–on (empno, pno) Part(partno,
partname, qty-on-hand, size) Use (empno, pno, partno, number)

 11. Display the names of the employees who are working
on a project named ‘VB’.

 (A) s
name

(employee ⋈ (s
pname

 = ‘VB’
 project) ⋈ worked on)

 (B) s
name

 (employee ⋈ (p
pname

 = ‘VB’
 (project) ⋈ work on)

 (C) p
name

 (employee ⋈ (s
pname

 = ‘VB’
 (project) ⋈ work on)

 (D) p
name

 (employee ⋈ (p
pname

 = ‘VB’ (project) ⋈ work on)

Chapter 2 • Structured Query Language | 4.41

 12. Display the names of the people who are not working
for any project.

 (A) p
name

 (employee ⋈(p
name

 (employee + work on)

 (B) p
name

 (employee – p
name

 (employee ∩ work on)

 (C) p
name

 (employee – p
name

 (employee ⋈ work on)

 (D) s
name

 (employee – s
name

 (employee ⋈ work on)

 13. Consider the following tables:

A B C D C D

b c e f e f

a b i j g h

b c g h

b c a d

d i g h

d j j k

d i e f

R ÷ S

A B

b c

d i

 Which of the following statements is true?

 (A) R ÷ S = p
A, B

(R) – p
A, B

(p
A, B

(R) × S + R)

 (B) R ÷ S = p
A, B

(R) – p
A, B

(p
A, B

R × S – R)

 (C) R ÷ S = p
A, B

(R) – p
A, B

((p
A, B

(R) × S) – R)

 (D) R ÷ S = p
A, B

(R) – p
A, B

(p
A, B

(R) × R – S)

Common data for questions 14 and 15: Consider the fol-
lowing schema of a relational data base
student (sno, name, address)
project (pno, Pname) work-on (sno, pno)
Part (part no, part name, qtyon hand size)
Use (sno, pno, part no, number)

 14. List the names of the students who are participating in
every project and have used every part.

 (A) s
name

(student ⋈(((Workon) ÷ s
pro

(project)) ∩ (s
sno

,
part

no
(use) ÷ s

part no
 (part)))

 (B) p
name

(student ⋈(((Workon) ÷ p
pro

(project)) ∩ (p
sno

,

partno
(use) ÷ s

part no
 (part)))

 (C) p
name

(student ⋈(((Workon) ÷ p
partno

 (project)) ∩ (p
sno,

partno
(use) ÷ s

part no
 (part)))

 (D) p
name

(student ∞ (((Workon) ÷ p
pro

(project)) ∪ (p
ssno

,

partno
(use) ÷ p

part no
 (part)))

 15. The following query gives p
name

 (employee ⋈(work on ÷

p
pro

(s
Pname

 = ‘MS’ AND ‘MD’
(project)))

 (A) Names of the students who are working in either
projects ‘MS’ or ‘MD’

 (B) Names of the students who are working in both the
projects ‘MS’ or ‘MD’

 (C) Names of the students who are not working in any of
the projects ‘MS’ or ‘MD’

 (D) None of the above

 16. ‘All rows corresponding to students whose sno’s are
between 10 and 20

 (i) Select * form student where SNo are between 5
AND 10

 (ii) Select * from student where SNO IN(5, 10)
 (A) Only (i) (B) Only (ii)
 (C) Both (A) and (B) (D) None

 17. UPDATE account SET
 DA = basic * .2,
 GROSS = basic * 1.3, Where basic > 2000;
 (A) The above query displays DA and gross for all

those employees whose basic is ≥ 2000
 (B) The above query displays DA and Gross for all

employees whose basic is less than 2000
 (C) The above query displays updated values of DA as

well as gross for all those employees whose basic
is > 2000

 (D) All the above

 18. Given two union compatible relations R
1
(A, B) and R

2
(C,

D), what is the result of the operation
 R

1
 A = CAB = DR

2
?

 (A) R
1
 ∪ R

2
(B) R

1
 × R

2

 (C) R
1
 – R

2
 (D) R

1
∩ R

2

 19. Which of the following queries finds the clients of banker
Agassi and the city they live in?

 (A) p
client

.
cname

.
Ccity

(s
client.cname

 = customer c name (s
Banker

.

name = Aggassi
 (client × customer)

 (B) p
Client.c city

 (s
Banker name = ‘Aggasi’

(client × customer)

 (C) p
client

.
c name

.
Cucity

(s
client.c name

 = ‘Aggasi’
 (s

client
.
name

 = Cutome
r

(client × customer)

 (D) p

.
c name

.
Cucity

(s
Bankers

name = name (s
Banker. = agassi

 (cli-

ent × customer)

 20. Consider the following schema pertaining to students data
Student (rno, name, add)

 Enroll (rno, Cno, Cname) Where the primary keys are
shown Underlined. The no. of tuples in the student and
Enroll tables are 120 and 8 respectively. What are the
maximum and minimum no. of tuples that can be pre-
sent in (student * Enroll) where ‘*’ denotes natural join.

 (A) 8, 8 (B) 120, 8
 (C) 960, 8 (D) 960, 120

4.42 | Unit 4 • Databases

pRevious yeaRs’ QuesTions

 1. Consider the relation account (customer, balance)
where customer is a primary key and there are no null
values. We would like to rank customers according
to decreasing balance. The customer with the largest
balance gets rank 1, ties are not broke but ranks are
skipped; if exactly two customers have the largest bal-
ance they each get rank 1 and rank 2 is not assigned.

 Query 1: select A.customer, count (B.customer) from
account A, account B where A.balance <= B.balance
group by A.customer

 Query 2: select A.customer, 1 + count (B.balance)
from account A, account B where A.balance <
B.balance group by A.customer Consider these state-
ments about Query1 and Query2.

 1. Query1 will produce the same row set as Query2
for some but not all databases.

 2. Both Query1 and Query2 are correct implementa-
tion of the specification.

 3. Query1 is a correct implementation of the specifi-
cation but Query2 is not.

 4. Neither Query1 nor Query2 is a correct implemen-
tation of the specification.

 5. Assigning rank with a pure relational query takes
less time than scanning in decreasing balance or-
der assigning ranks using ODBC.

 Which two of the above statements are correct? [2006]
 (A) 2 and 5 (B) 1 and 3
 (C) 1 and 4 (D) 3 and 5

 2. Consider the relation enrolled (student, course) in
which (student, course) is the primary key, and the
relation paid (student, amount) where student is the
primary key. Assume no null values and no foreign
keys or integrity constraints. Given the following four
queries:

 Query1: select student from enrolled where student in
(select student from paid)

 Query2: select student from paid where student in (se-
lect student from enrolled)

 Query3: select E.student from enrolled E, paid P
where E.student = P.student

 Query4: select student from paid where exists (select
* from enrolled where enrolled.student = paid.stu-
dent)

 Which one of the following statement is correct? [2006]

 (A) All queries return identical row sets for any data-
base

 (B) Query2 and Query4 return identical row sets for
all databases but there exist databases for which
Query1 and Query2 return different row sets

 (C) There exist databases for which Query3 returns
strictly fewer rows than Query2

 (D) There exist databases for which Query4 will en-
counter an integrity violation at runtime

 3. Consider the relation enrolled (student, course), in
which (student, course) is the primary key, and the
relation paid (student, amount) where student is the
primary key. Assume no null values and no foreign
keys or integrity constraints. Assume that amounts
6000, 7000, 8000, 9000 and 10000 were each paid by
20% of the students. Consider these query plans (plan
1 on left, plan 2 on right) to ‘list all courses taken by
students who have paid more than x’

Enrolled EnrolledPaid Paid

Probe index
on student

Probe index
on student

Sequential
scan, select
amout > x

Sequential scan

Indexed nested loop join
Indexed nested loop join

Project on course
Project on course

Select on amount > x

 A disk seek takes 4 ms, disk data transfer bandwidth
is 300 MB/s and checking a tuple to see if amount is
greater than x takes 10 ms. Which of the following
statements is correct? [2006]

 (A) Plan 1 and Plan 2 will not output identical row
sets for all databases

 (B) A course may be listed more than once in the
output of Plan 1 for some databases

 (C) For x = 5000, Plan 1 executes faster than Plan 2
for all databases

 (D) For x = 9000, Plan 1 executes slower than Plan 2
for all databases

 4. Information about a collection of students is given by
the relation studinfo (studId, name, sex). The rela-
tion enroll (studId, courseId) gives which student has
enrolled for (or taken) what course(s). Assume that
every course is taken by at least one male and at least
one female student. What does the following rela-
tional algebra expression represent?

Π
courseld

((Π
studid

(s
sex = ‘female’

(studInfo))

 × Π
courseld

(enroll)) - enroll) [2007]

 (A) Courses in which all the female students are en-
rolled

 (B) Courses in which a proper subset of female stu-
dents are enrolled.

Chapter 2 • Structured Query Language | 4.43

 (C) Courses in which only male students are en-
rolled.

 (D) None of the above

 5. Consider the relation employee (name, sex, super-
visorName) with name as the key. supervisorName
gives the name of the supervisor of the employee
under consideration. What does the following Tuple
Relational Calculus query produce?

 e e⋅ ∧name employee| ()

()[()

]}

∀ ¬ ∨ ⋅ ≠ ⋅ ∨
⋅ =
x x x e

x

employee supervisor Name name

sex male" " [2007]

 (A) Names of employees with a male supervisor.
 (B) Names of employees with no immediate male

subordinates.
 (C) Names of employees with no immediate female

subordinates.
 (D) Names of employees with a female supervisor.

 6. Consider the table employee (empId, name, depart-
ment, salary) and the two queries Q

1
, Q

2
 below.

Assuming that department 5 has more than one
employee, and we want to find the employees who
get higher salary than anyone in the department 5,
which one of the statements is TRUE for any arbi-
trary employee table?

 Q
1
: SELECT e.empId

 FROM employee e
 WHERE not exists
 (Select * From employee s where s.department = ‘5’

and s.salary >=e.salary)
 Q

2
: SELECT e.empId

 FROM employee e
 WHERE e.salary > Any
 (Select distinct salary From employee s Where

s.department = ‘5’) [2007]
 (A) Q

1
 is the correct query

 (B) Q
2
 is the correct query

 (C) Both Q1 and Q2 produce the same answer.
 (D) Neither Q

1
 nor Q

2
 is the correct query

 7. Let R and S be two relations with the following schema
 R (P, Q, R1, R2, R3)
 S (P, Q, S1, S2)
 Where {P, Q} is the key for both schemas. Which of

the following queries are equivalent?

 I. Π
P
 (R ⋈ S)

 II. Π
P
 (R) ⋈ Π

P
 (S)

 III. Π
P
 (Π

P, Q
 (R) ∩ Π

P, Q
 (S))

 IV. Π
P
 (Π

P, Q
 (R) – (Π

P, Q
 (R) – (Π

P, Q
 (S))) [2008]

 (A) Only I and II (B) Only I and III
 (C) Only I, II and III (D) Only I, III and IV

 8. Let R and S be relational schemes such that R =
{a,b,c} and S = {c}. Now consider the following que-
ries on the database:

 I. π π π πR S R S R S R S Sr r s r− − − −− × −() (() ()),

 II. { | () (([]

[]))}

t t r u s v r u v s t

v R S
R S∈ ∧∀ ∈ ∃ ∈ = ∧

= −
−π

 III. { | () (([]

[]))}

t t r v r u s u v s t

v R S
R S∈ ∧∀ ∈ ∃ ∈ = ∧

= −
−π

 IV. SELECT R.a, R.b
 FROM R, S
 WHERE R.c = S.c

 Which of the above queries are equivalent? [2009]
 (A) I and II (B) I and III
 (C) II and IV (D) III and IV

Common data for questions 9 and 10: Consider the fol-
lowing relational schema: Suppliers (sid: integer, sname:
string, city: string, street: string) Parts(pid: integer, pname:
string, color: string) Catalog (sid: integer, pid: integer,
cost: real)

 9. Consider the following relational query on the above
database:

 SELECT S.sname
 FROM Suppliers S
 WHERE S.sid NOT IN (SELECT C.sid
 FROM Catalog C
 WHERE C.pid NOT IN (SELECT P.pid FROM Parts P
 WHERE P.color <> ‘blue’))

 Assume that relations corresponding to the above
schema are not empty. Which one of the following is
the correct interpretation of the above query? [2009]

 (A) Find the names of all suppliers who have sup-
plied a non-blue part.

 (B) Find the names of all suppliers who have not sup-
plied a non-blue part.

 (C) Find the names of all suppliers who have sup-
plied only blue parts.

 (D) Find the names of all suppliers who have not sup-
plied only blue parts.

 10. A relational schema for a train reservation database is
given below

 Passenger (pid, pname, age)
 Reservation (pid, cass, tid)

 Table :Passenger
 Table :Reservation

Pid pname Age Pid class tid

0 ‘Sachin’ 65 0 ‘AC’ 8200

1 ‘Rahul’ 66 1 ‘AC’ 8201

2 ‘Sourav’ 67 2 ‘SC’ 8201

4.44 | Unit 4 • Databases

3 ‘Anil’ 69 5 ‘AC’ 8203

1 ‘SC’ 8204

3 ‘AC’ 8202

What pids are returned by the following SQL query for the
above instance of the tables?

SELECT pid
FROM Reservation
WHERE class = ‘AC’ AND
EXISTS (SELECT *
 FROM Passenger
 WHERE age > 65 AND
 Passenger.pid = Reservation.pid) [2010]
 (A) 1, 0 (B) 1, 2
 (C) 1, 3 (D) 1, 5

 11. Consider a relational table r with sufficient number of
records, having attributes A

1
, A

2
, … A

n
 and let 1 ≤ p ≤ n.

Two queries Q1 and Q2 are given below.

 Q1: π σA A An p c
r

1… =
(()) where c is a constant.

 Q2: π σA A c A cn p
r

1 1 2… ≤ ≤(()) where c
1
 and c

2
 are constants.

 The database can be configured to do ordered indexing
on A

P
 or hashing on A

p
. Which of the following state-

ments is TRUE? [2011]
 (A) Ordered indexing will always outperform hash-

ing for both queries
 (B) Hashing will always outperform ordered index-

ing for both queries.
 (C) Hashing will outperform ordered indexing on

Q1, but not on Q2.
 (D) Hashing will outperform ordered indexing on

Q2, but not on Q1.

 12. Database table by name Loan_Records is given below.

Borrower Bank manager Loan amount

Ramesh Sunderajan 10000.00

Suresh Ramgopal 5000.00

Mahesh Sunderajan 7000.00

 What is the output of the following SQL query?
 SELECT count (*)
 FROM (Select Borrower, Bank_Manager FROM

Loan Records) AS S
 NATURAL JOIN
 (SELECT Bank_Manager, Loan_Amount FROM

Loan_Records) AS T; [2011]
 (A) 3 (B) 9
 (C) 5 (D) 6

 13. Consider a database table T containing two columns
X and Y each of type integer. After the creation of the
table, one record (X = 1, Y = 1) is inserted in the table.

Let MX and MY denote the respective maximum values
of X and Y among all records in the table at any point
in time. Using MX and MY, new records are inserted
in the table 128 times with X and Y values being MX
+ 1, 2 * MY + 1 respectively. It may be noted that each
time after the insertion, values of MX and MY change.
What will be the output of the following SQL query
after the steps mentioned above are carried out?

 SELECT Y FROM T WHERE X = 7; [2011]
 (A) 127 (B) 255
 (C) 129 (D) 257

 14. Which of the following statements are true about an
SQL query?

 P: An SQL query can contain a HAVING clause
even if it does not have a GROUP BY clause

 Q: An SQL query can contain a HAVING clause
only if it has a GROUP BY clause

 R: All attributes used in the GROUP BY clause must
appear in the SELECT clause

 S: Not all attributes used in the GROUP BY clause
need to appear in the SELECT clause [2012]

 (A) P and R (B) P and S
 (C) Q and R (D) Q and S

 15. Suppose R
1
(A, B) and R

2
(C, D) are two relation

schemas. Let r
1
 and r

2
 be the corresponding relation

instances. B is a foreign key that refers to C in R
2
.

If data in r
1
 and r

2
 satisfy referential integrity con-

straints, which of the following is always true? [2012]

 (A) Π
B
 (r

1
) – Π

C
(r

2
) = ∅

 (B) Π
C
(r

2
) – Π

B
(r

1
) = ∅

 (C) Π
B
 (r

1
) = Π

C
 (r

2
)

 (D) Π
B
 (r

1
) – Π

C
 (r

2
) ≠ ∅

Common data for questions 16 and 17: Consider the fol-
lowing relations A, B and C:
 (A)

Id Name Age

12 Arun 60

15 Shreya 24

99 Rohit 11

 (B)

Id Name Age

15 Shreya 24

25 Hari 40

98 Rohit 20

99 Rohit 11
 (C)

Id Phone Area

10 2200 02

99 2100 01

Chapter 2 • Structured Query Language | 4.45

 16. How many tuples does the result of the following
SQL query contain?

 SELECT A.Id
 FROM A
 WHERE A. Age > ALL (SELECT B. Age
 FROM B
 WHERE B. Name = ‘Arun’) [2012]
 (A) 4 (B) 3
 (C) 0 (D) 1

 17. How many tuples does the result of the following
relational algebra expression contain? Assume that
the schema of A ∪ B is the same as that of A.

 (A⋃B) ⋈
A.Id > 40 V C.Id <15

C [2012]
 (A) 7 (B) 4
 (C) 5 (D) 9

 18. Consider the following relational schema. Students
(rollno: integer, sname: string) Courses (courseno:
integer, cname: string) Registration(rollno:integer,co
urseno: integer, percent: real)

 Which of the following queries are equivalent to
this query in English?

 ‘Find the distinct names of all students who score
more than 90% in the course numbered 107’

 (I) SELECT DISTINCT S.sname FROM Students
as S, Registration as R WHERE R.rollno=S.rollno
AND R.courseno=107 AND R.percent>90

 (II) p
sname

(s
courseno=107^percent>90

 Registration⑅Students)

 (III) {T |∃ S ∈ Students, ∃R∈ Registration (S.rollno=R.
rollno ∧  R.courseno=107 ∧ R.percent>90∧T.
sname=S.sname)}

 (IV) {<S
N
> |∃S

R
∃R

P
 (<S

R
, S

N
> ∈ Students ∧ <S

R
, 107,

R
P
> ∈ Registration ∧ R

P
>90)} [2013]

 (A) I, II, III and IV (B) I, II and III only
 (C) I, II and IV only (D) II, III and IV only

 19. Given the following statements:
 S

1
: A foreign key declaration can always be replaced

by an equivalent check assertion in SQL.
 S

2
: Given the table R (a, b, c) where a and b together

form the primary key, the following is a valid ta-
ble definition.

 CREATE TABLE S (
 a INTEGER
 d INTEGER,
 e INTEGER,
 PRIMARY KEY (d),
 FOREIGN KEY (a) references R)
 Which one of the following statements is CORRECT?
 [2014]
 (A) S

1
 is TRUE and S

2
 is FALSE

 (B) Both S1 and S
2
 are TRUE

 (C) S
1
 is FALSE and S

2
 is TRUE

 (D) Both S
1
 and S

2
 are FALSE

 20. Given the following schema:
 Employees (emp–id, first-name, last– name, hire–

date, dept–id, salary)
 Departments (dept–id, dept–name, manager–id,

location–id)
 you want to display the last names and hire dates of

all latest hires in their respective departments in the
location ID 1700. You issue the following query:

 SQL > SELECT last–name, hire–date
 FROM employees
 WHERE (dept–id, hire–date) IN
 (SELECT dept–id, MAX (hire–date)
 FROM employees JOIN departments USING

(dept–id)
 WHERE location–id = 1700
 GROUP BY dept–id);
 What is the outcome? [2014]
 (A) It executes but does not give the correct result.
 (B) It executes and gives the correct result.
 (C) It generates an error because of pair wise compari-

son.
 (D) It generates an error because the GROUP BY

clause cannot be used with table joins in a sub-
query.

 21. Given an instance of the STUDENTS relation as
shown below:

Student ID
Student
Name Student Email

Student
Age CPI

2345 Shankar shaker @ math X 9.4

1287 Swati swati @ ee 19 9.5

7853 Shankar shankar @ cse 19 9.4

9876 Swati swati @ mech 18 9.3

8765 Ganesh ganesh@ civil 19 8.7
 For (StudentName, StudentAge) to be a key for this

instance, the value X should NOT be equal to _____.
 [2014]

 22. Consider a join (relation algebra) between relations
(r(R)) and (s(S)) using the nested loop method. There
are three buffers each of size equal to disk block size,
out of which one buffer is reserved for intermediate
results. Assuming size r(R) < size s(S), the join will
have fewer number of disk block accesses if [2014]

 (A) Relation r(R) is in the outer loop
 (B) Relation s(S) is in the outer loop
 (C) Join selection factor between r(R) and s(S) is

more than 0.5
 (D) Join selection factor between r(R) and s(S) is less

than 0.5

 23. SQL allows duplicate tuples in relations, and corre-
spondingly defines the multiplicity of tuples in the
result of joins. Which one of the following queries
always gives the same answer as the nested query
shown below:

4.46 | Unit 4 • Databases

 Select * from R where a in (select S. a from S) [2014]

 (A) Select R.* from R, S where R. a = S. a
 (B) Select distinct R * from R, S where R . a = S . a
 (C) Select R.* from R, (select distinct a from S) as S1

where R.a = S1.a
 (D) Select R.* from R, S where R.a = S.a and is unique

R

 24. What is the optimized version of the relation algebra
expression π π σ σA A F F r1 2 1 2

((())),() where A
1
, A

2
 are sets

of attributes in r with A
1
 ⊂ A

2
 and F

1
, F

2
 are Boolean

expressions based on the attributes in r? [2014]

 (A) π σA F F r
1 1 2
()

()()∧

 (B) π σA F F r
1 1 2
()

()()∨

 (C) π σA F F r
2 1 2
()

()()∧

 (D) π σA F F r
2 1 2
()

()()∨

 25. Consider the relational schema given below, where
eld of the relation dependent is a foreign key refer-
ring to empId of the relation employee. Assume that
every employee has at least one associated dependent
in the dependent relation.

 Consider the following relational algebra query:
 employee (empId, empName, empAge)
 dependent (depId, eId, depName, depAge)
   p

empId(employee)- p
empId (employee ⋈ 

(empId = eID) ∧ (empAge ≤

depAge)
 dependent)

 The above query evaluates to the set of empIds of em-
ployees whose age is greater than that of [2014]

 (A) some dependent.
 (B) all dependents.
 (C) some of his/her dependents.
 (D) all of his/her dependents.

 26. Consider the following relational schema:
 employee (empId, empName, empDept)
 customer(custId, custName, salesRepid, rating)
 salesRepId is a foreign key referring to empId of the

employee relation. Assume that each employee makes
a sale to at least one customer. What does the follow-
ing query return?

 SELECT empName
 FROM employee E
 WHERE NOT EXISTS
 (SELECT custId
 FROM customer C
 WHERE C.salesRepId = E.empId
 AND C.Rating < > ‘GOOD’); [2014]
 (A) Names of all the employees with at least one of

their customers having a ‘GOOD’ rating.
 (B) Names of all the employees with at most one of

their customers having a ‘GOOD’ rating.

 (C) Names of all the employees with none of their cus-
tomers having a ‘GOOD’ rating.

 (D) Names of all the employees with all their customers
having a ‘GOOD’ rating.

 27. SELECT operation in SQL is equivalent to [2015]
 (A) The selection operation in relational algebra
 (B) The selection operation in relational algebra,

except that SELECT in SQL retains duplicates.
 (C) The projection operation in relational algebra.
 (D) The projection operation in relational algebra,

except that SELECT in SQL retains duplicates.

 28. Consider the following relations:

 Student

Roll No Student Name

1 Raj

2 Rohit

3 Raj

 Performance

Roll No Course Marks

1 Math 80

1 English 70

2 Math 75

3 English 80

2 Physics 65

3 Math 80

 Consider the following SQL query.

 SELECT S.Student_Name, sum (P.Marks)
 FROM Student S, Performance P
 WHERE S.Roll_No = P.Roll_No
 GROUP BY S.Student_Name
 The number of rows that will be returned by the SQL

query is ______ [2015]

 29. Consider two relations R
1
(A, B) with the tuples (1, 5),

(3, 7) and R
2
(A, C) = (1, 7), (4, 9). Assume that R(A, B,

C) is the full natural outer join of R
1
 and R

2
. Consider

the following tuples of the form (A, B, C): a = (1, 5,
null), b = (1, null, 7), c = (3, null, 9), d = (4, 7, null), e
= (1, 5, 7), f = (3, 7, null), g = (4, null, 9). Which one
of the following statements is correct? [2015]

 (A) R contains a, b, e, f, g but not c, d.
 (B) R contains all of a, b, c, d, e, f, g.
 (C) R contains e, f, g but not a, b.
 (D) R contains e but not f, g.

 30. Consider the following relation

 Cinema (theater, address, capacity)

 Which of the following options will be needed at the
end of the SQL query

Chapter 2 • Structured Query Language | 4.47

 SELECT P
1
.address

 FROM Cinema P
1

 such that it always finds the addresses of theaters with
maximum capacity? [2015]

 (A) WHERE P
1
.capacity > = All (select P

2
. Capacity

from Cinema P
2
)

 (B) WHERE P
1
.capacity >= Any (select P

2
. Capacity

from Cinema P
2
)

 (C) WHERE P
1
.capacity > All (select max(P

2
.

capacity) from Cinema P
2
)

 (D) WHERE P
1
.capacity > Any (select max(P

2
.

capacity) from Cinema P
2
)

 31. Which of the following is NOT a superkey in a rela-
tional schema with attributes V, W, X, Y, Z and primary
key VY? [2016]

 (A) V XYZ (B) V WXZ
 (C) V WXY (D) V WXYZ

 32. Consider a database that has the relation schema EMP
(EmpId, EmpName and DeptName). An instance of
the schema EMP and a SQL query on it are given
below.

EMP

()

()
()

()

SELECTIVE AVG EC.Num

FROM EC

WHERE DeptName, Num IN

(SELECT DeptName, COUNT EmpId AS

EC DeptName, Num

FROM EMP

GROUP BY DeptName)

EmpId EmpName DeptName

1 XYA AA

2 XYB AA

3 XYC AA

4 XYD AA

5 XYE AB

6 XYF AB

7 XYG AB

8 XYH AC

9 XYI AC

10 XYJ AC

11 XYK AD

12 XYL AD

13 XYM AE

 The output of executing the SQL query is ______.
 [2017]

 33. Consider a database that has the relation sche-
mas EMP(EmpId, EmpName, DeptId), and
DEPT(DeptName, DeptId), Note that the DeptId
can be permitted to be NULL in the relation EMP.
Consider the following queries on the database
expressed in tuple relational calculus.

 (I) {t | ∃u ∈ EMP(t[EmpName] = u[EmpName] ∧ ∀
v ∈ DEPT(t[DeptId] ≠ v[DeptId]))}

 (II) {t | ∃u ∈ EMP(t[EmpName] = u[EmpName] ∧ ∃
v ∈ DEPT(t[DeptId] ≠ v[DeptId]))}

 (III) {t | ∃u ∈ EMP(t[EmpName] = u[EmpName] ∧ ∃
v ∈ DEPT(t[DeptId] = v[DeptId]))}

 Which of the above queries are safe? [2017]
 (A) (I) and (II) only
 (B) (I) and (III) only
 (C) (II) and (III) only
 (D) (I), (II) and (III)

 34. Consider a database that has the relation schema CR
(studentName, CourseName). An instance of the
schema CR is as given below.

CR

StudentName CourseName

SA CA

SA CB

SA CC

SB CB

SB CC

SC CA

SC CB

SC CC

SD CA

SD CB

SD CC

SD CD

SE CD

SE CA

SE CB

SF CA

SF CB

SF CC

4.48 | Unit 4 • Databases

answeR Keys

exeRCises

Practice Problems 1
 1. A 2. B 3. C 4. (i) B (ii) D (iii) D 5. C 6. C 7. (i) A (ii) C
 8. (i) B (ii) A 9. A 10. A 11. (i) A (ii) B 12. (i) B (ii) B (iii) A
 13. (i) A (ii) A (iii) A 14. (i) A (ii) A (iii) A 15. (i) A (ii) A (iii) A 16. C
 17. A 18. D 19. A 20. D

Practice Problems 2
 1. B 2. D 3. D 4. A 5. C 6. A 7. A 8. A 9. A 10. A
 11. C 12. C 13. C 14. C 15. C 16. B 17. C 18. D 19. B 20. A

Previous Years’ Questions
 1. C 2. A 3. C 4. B 5. C 6. B 7. D 8. A 9. A 10. C
 11. C 12. C 13. A 14. C 15. A 16. B 17. A 18. A 19. D 20. B
 21. 19 22. A 23. C 24. A 25. D 26. D 27. D 28. 2 29. C 30. A
 31. B 32. 2.6 33. D 34. 4 35. 7 36. D 37. C

 The following query is made on the database.

' '1 ((CR))CouraseName StudentName SAT p s =←

2 1T CR T← ÷
 The number of rows in T2 is . [2017]
 35. Consider the following database table named

top_scorer.

top_scorer

player country goals

Klose Germany 16

Ronaldo Brazil 15

G Miiller Germany 14

Fontaine France 13

Pelé Brazil 12

Klinsmann Germany 11

Kocsis Hungary 11

Batistuta Argentina 10

Cubillas Peru 10

Lato Poland 10

Lineker England 10

T Muller Germany 10

Rahn Germany 10

 Consider the following SQL query:

 SELECT ta.player FROM top_scorer AS ta
 WHERE ta.goals >ALL (SELECT tb.goals
 FROM top_scorer AS tb
 WHERE tb.country = ‘Spain’)
 AND ta.goals >ANY (SELECT tc.goals
 FROM top_scorer AS tc
 WHERE tc. country = ‘Germany’)

 The number of tuples returned by the above SQL
query is _________. [2017]

 36. Consider the following two tables and four queries in
SQL.

 Book (isbn, bname), Stock (isbn, copies)

 Query 1: SELECT B.isbn, S.copies
 FROM Book B INNER JOIN Stock S
 ON B.isbn = S.isbn;

 Query 2: SELECT B.isbn, S.copies
 FROM Book B LEFT OUTER
 JOIN Stock S
 ON B.isbn = S.isbn;

 Query 3: SELECT B.isbn, S.copies
 FROM Book B RIGHT OUTER
 JOIN Stock S
 ON B.isbn = S.isbn;

 Query 4: SELECT B.isbn, S.copies
 FROM Book B FULL OUTER
 JOIN Stock S
 ON B.isbn = S.isbn;

 Which one of the queries above is certain to have an
output that is a superset of the outputs of the other
three queries? [2018]
(A) Query 1 (B) Query 2
(C) Query 3 (D) Query 4

 37. Consider the relations r(A, B) and s(B, C), where s ⋅ B
is a primary key and r ⋅ B is a foreign key referencing
s ⋅ B. Consider the query

Q: r (σ
B<5

(S))

 Let LOJ denote the natural left outer-join operation.
Assume that r and s contain no null values.

 Which one of the following queries is NOT equiva-
lent to Q? [2018]
(A) σ

B<5
(r s) (B) σ

B<5
(r LOJ s)

(C) r LOJ (σ
B<5

(s)) (D) σ
B<5

(r) LOJ s

	Unit 4: Databases
	Chapter 2: Structured Query Language
	Relational Algebra
	Tuple Relational Calculus
	SQL (Structured Query Language)
	Exercises
	Previous Years’ Questions
	Answer Keys

