Measurement of Power and Wattmeters

Measurement of Power

1. D.C. Circuits

Ammeter connected between load and voltmeter

Power consumed by load:

$$P = VI - I^2 R_a$$

where, V = Voltage across voltmeter

I = Current through ammeter

R_a = Resistance of ammeter

Voltmeter connected between load and ammeter

Power consumed by load:

$$P = VI - \frac{V^2}{R_V}$$

where, V = Voltage across voltmeter

1 = Current through ammeter

R_V = Resistance of voltmeter

2. A.C. Circuits

□ Instantaneous power

$$p = Vi = V_m I_m \sin \omega t \cdot \sin(\omega t - \phi)$$

where, $v = V_m \sin \omega t$

 $i = I_m \sin(\omega t - \phi)$

□ Average power

$$P = VI\cos\phi = \frac{V_{in}I_{in}}{2}\cos\phi$$

where, V, I = Rms values of voltage and current

cos = Power factor of the load

□ Let
$$v = V_0 + \sum_{n=1}^{m} V_n \sin(n\omega t + \theta_n)$$
 and $i = I_0 + \sum_{n=1}^{m} I_n \sin(n\omega t + \phi_n)$

then

$$P_{\text{avg.}} = V_0 I_0 + \frac{1}{2} \sum_{n=1}^{m} V_n I_n \cos[\theta_n - \phi_n]$$

Remember:

Wattmeter reads average active power.

electrodynamorneter wattmeter

Instantaneous torque

$$T_i = i_1 i_2 \left(\frac{dM}{d\theta} \right)$$

where i_1 , i_2 = instantaneous value of current in pressure and current coils

Deflecting torque

$$T_{d} = \frac{VI}{R_{p}} \cos \phi \cdot \frac{dM}{d\theta}$$

where, R_n = resistance of pressure coil circuit

Controlling torque

$$T_c = K\theta$$

where

K = spring constant

 θ = final steady deflection

Deflection

$$\theta = \left(K_1 \frac{dM}{d\theta}\right) P$$

where, P = power being measured = VI coso

$$K_1 = \frac{1}{R_p K}$$

Note:

Scale is linear in terms of power as $\theta \propto P$.

Errors in Electrodynamometer Wattmeters

Correction Factor (K)

The correction factor is a factor by which the actual wattmeter reading is multiplied to get the true power.

For lagging power factor

$$K = \frac{\cos \phi}{\cos \beta \cos (\phi - \beta)}$$

For leading power factor

$$K = \frac{\cos \phi}{\cos \beta \cos (\phi + \beta)}$$

where, φ = Angle between current in the current coil and voltage of pressure coil

 β = Angle between current and voltage of pressure coil

True power = Correction factor × actual wattmeter reading

For β very small

Actual wattmeter reading = true power
$$(1 + \tan \phi \tan \beta)$$

Error =
$$\tan \phi \tan \beta \times \text{true power} = VI \sin \phi \tan \beta$$

%error =
$$\tan \phi \tan \beta \times 100$$

where, V = Voltage applied to pressure coil
I = Current in current coil

Power in Poly-Phase Systems

Biondel's Theorem

If a network is supplied through n conductors, the total power is measured by summing the reading of n wattmeters so arranged that a current element of a wattmeter is in each line and the corresponding voltage element is connected between that line and a common point, if the common point is located on one of the lines, then the power may be measured by (n-1) wattmeters.

Two wattmeter method

Reading of P1 wattmeter

$$P_1 = \sqrt{3} \text{ Vicos}(30^\circ - \phi)$$

Reading of P₂ wattmeter

$$P_2 = \sqrt{3} \text{ VIcos} (30^\circ + \phi)$$

Total power consumed by load

$$\mathsf{P} = \mathsf{P}_1 + \mathsf{P}_2$$

Power factor

$$\cos \phi = \cos \left[\tan^{-1} \left(\sqrt{3} \, \frac{P_1 - P_2}{P_1 + P_2} \right) \right]$$

$$\tan \phi = \sqrt{3} \, \frac{P_1 - P_2}{P_1 + P_2}$$

where, V = Phase voltage

! = Phase current

φ = Angle between phase current and phase voltage

Reading of Wattmeter at Different Power Factor

S.No	ф	COS Ø	, P _i	P_2	$P = P_1 + P_2$	Comment *
1.	0	1	$\frac{\sqrt{3}}{2}$ V _L I _L	$\frac{\sqrt{3}}{2}$ V _L I _L	√3 V ₋ I ₋	$P_1 = P_2$ (eqaul reading)
2.	30°	0.866	V _L I _L	<u>V. l.</u> 2	1.5 V _L I _L	$P_1 = 2P_2$
3.	60°	0.5	√3 2 1/2 L	0	<u>√3</u> V_ I_	$P_2 = 0, P_2 = P$
4.	90°	0	+ V _L I _L	_ <u>V_ l_</u> 2	0	$P_1 = -P_2$

Note:

When wattmeter reading comes into negative, reverse either P.C. or C.C. terminal and then take the reading of negative wattmeter.

Measurement of Energy

For the measurement of energy, we use energy meter. Energy meter is an integrating instrument which adds the energy cumulatively over a period of time.

Energy =
$$\int_{0}^{t} P \cdot dt$$
 kWhr

Note:

- Energy meter works on principle of induction motor.
- The meter which measure A.C. energy is called watt hour meter.
- The meter which measure D.C. energy is called amp-hour meter.
- Deflection torque

Breaking torque

$$T_B \propto N$$

where, N =Speed of disc in rps

□ At balance

$$T_d = T_B$$

$$\int P \cdot dt = K \int N \cdot dt$$

□ Energy meter constant (EMC)

$$K = \frac{N}{P \times t}$$

where,

P = Power in kW

t = Time in hrs.

.	% Creeping Error	Revolution at disc due to creeping per	hour
_	w creeping ciron	Revolution of disc due to total load per	hour

Remember:

Potential coil of energy meter should be highly inductive so that it measures true energy.

Compensation in Energy Meter

- t. Lag compensation: Through lag coil or shading coil.
- 2. Low load or friction adjustment: By using shading loop.
- 3. Over friction or creeping: By providing holes or slots on rotating disc.
- 4. **Over load compensation:** By keeping saturable shunt magnet in series magnet or current coil.
- Over voltage compensation: By keeping saturable shunt magnet in shunt magnet.
- 6. **Temperature compensation**: By making permanent magnet of "mutemp" material.
- 7. Speed adjustment: By adjusting position of break magnet.

Damember.

- Creeping error is always positive.
- If either potential coil or current coil is wrongly connected then the disc rotates in opposite direction.