MATHEMATICS

DPP No. 49

Total Marks: 33

Max. Time: 33 min.

Sequence & Series, Fundamentals of Mathematics, Quadratic Equation, Straight Line Topics:

Type of Questions		M.M.	, Min.
Comprehension (no negative marking) Q.1 to Q.4 Single choice Objective (no negative marking) Q.5 Multiple choice objective (no negative marking) Q. 6 Subjective Questions (no negative marking) Q. 7,8	(3 marks, 3 min.) (3 marks, 3 min.) (5 marks, 4 min.) (4 marks, 5 min.)	[12, [3, [10, [8,	12] 3] 8] 10]
Comprehension (Q. NO. 1 TO 4)			
Consider the different positive infinite geometric progre	ssion with their sums S ₁ and	l S ₂ as	

 $S_1 = a + ar + ar^2 + ar^3 + \dots \infty$ $S_2 = b + bR + bR^2 + bR^3 + \dots \infty$

If $S_1 = S_2 = 1$, ar = bR and ar² = $\frac{1}{8}$ then answer the following:

1. The sum of their common ratio is

(A)
$$\frac{1}{2}$$

(B)
$$\frac{3}{4}$$

(D)
$$\frac{3}{2}$$

The sum of their first terms is 2.

(C) 3

(D) none of these

3. Common ratio of first G.P. is

(A)
$$\frac{1}{2}$$

(B)
$$\frac{1-\sqrt{5}}{4}$$
 (C) $\frac{\sqrt{5}-1}{4}$

(C)
$$\frac{\sqrt{5}-1}{4}$$

(D)
$$\frac{\sqrt{5}+1}{4}$$

Common ratio of the second G.P. is 4.

(A)
$$\frac{3+\sqrt{5}}{4}$$

(B)
$$\frac{3-\sqrt{5}}{4}$$
 (C) $\frac{1}{2}$

(C)
$$\frac{1}{2}$$

(D) none of these

If ω be a imaginary n^{th} root of unity , then $\sum_{r\,=\,1}^{n}\,$ (a r + b) $\omega^{r\,\text{--}1}$ is equal to : 5.

(A)
$$\frac{n(n+1)}{2}$$
 a (B) $\frac{n b}{1-n}$ (C) $\frac{n a}{\omega - 1}$

(B)
$$\frac{n b}{1-n}$$

(C)
$$\frac{n a}{\omega - 1}$$

(D) none of these

The complete solution set of the inequation $x-\frac{2(K-1)}{K} \leq \frac{2}{3K} \ (x+1)$ is given by 6.

(A)
$$(-\infty, 2]$$
 if K > $\frac{2}{3}$

(B) [2,
$$\infty$$
) if $0 < K < \frac{2}{3}$

(C)
$$(-\infty, 2]$$
 if K < 0

(D) R if K =
$$\frac{2}{3}$$

If α , β are the roots of x^2 + px + q = 0 and also of x^{2n} + p^nx^n + q^n = 0 and if $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$ are the roots of 7. $x^n + 1 + (x + 1)^n = 0$, then prove that n must be an even integer.

The sides of a rhombus are parallel to y = 2x + 3 and 2y = x + 5. The diagonals of the rhombus 8. intersect at (1, 2). If one vertex of the rhombus lies on the y-axis and possible values of the ordinates of this vertex are a & b, then find the value of (a + b).

Answers Key

1. (C) **2.** (A) **3.** (D) **4.** (B)

5. (C) **6.** (A)(B)(C)(D) **8.** 4