Formulae

Similarities of triangles: When two triangles are similar, their corresponding angles are equal and corresponding sides are proportional.

For example :

If \triangle ABC is similar to \triangle DEF, *i.e.*, \triangle ABC ~ \triangle DEF; \angle A = \angle D, \angle B = \angle E, \angle C = \angle F, and $\frac{AB}{DE} \stackrel{\checkmark}{=} \frac{BC}{EF} = \frac{AC}{DF}$. The sign '~' is read as, 'is similar to'.

F

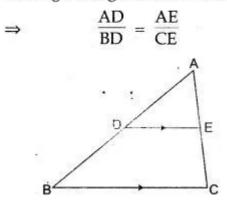
Axioms of similarity of triangles: (i.e., three similarity postulates for triangle)

- 1. If two triangles have a pair of corresponding angles equal and the sides including them proportional; then the triangles are similar (SAS postulate).
- 2. If two triangles have two pairs of corresponding angles equal; the triangles are similar (AA or AAA postulate).
- 3. If two triangles have their three pairs of corresponding sides proportional, the triangles are similar (SSS postulate).

Basic Theorem of Proportionality:

1. A line drawn parallel to any side of a triangle, divides the other two sides proportionally. (Basic proportionality theorem).

In the given figure, DE // BC



Conversely: If a line divides two sides of a triangle proportionally, the line is parallel to the third side.

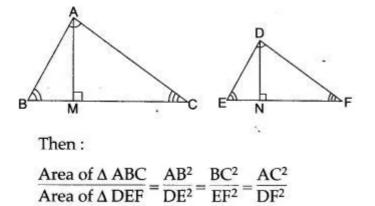
i.e., if $\frac{AD}{BD} = \frac{AE}{CE} \Rightarrow DE / / BC$.

2. **Relation between the areas of two triangles: Theorem:** The areas of two similar triangles are proportional to the squares on their corresponding sides.

If $\triangle ABC \sim \triangle DEF$

such that $\angle BAC = \angle EDF$,

 $\angle B = \angle E$ and $\angle C = \angle F$.



Determine the Following

Question 1. The model of a building is constructed with scale factor 1:30.

(i) If the height of the model is 80 cm, find the actual height of the building in metres.

(ii) If the actual volume of a tank at the top of the building is 27 m^3 , find the volume of the

tank on the top of the model.

```
Height of model
Solution: (i)
                Height of actual building
                                                30
                   80
                          1
                          30
                   H
                   H = 2,400 \text{ cm} = 24 \text{ m}. Ans.
\Rightarrow
      Volume of model
                             (1
(ii)
       Volume of tank
                      = 27,000
                   27
                   V = \frac{1}{1,000} m^3
                       = 1,000 \text{ cm}^3.
                                                  Ans.
```

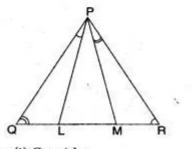
Question 2. Triangles ABC and DEF are similar. (i) If area ($\triangle ABC$) = 16 cm², area ($\triangle DEF$) = 25 cm^2 and BC = 2.3 cm find EF. (ii) If area ($\triangle ABC$) = 9 cm², area ($\triangle DEF$) = 64 cm^2 and DE = 5.1 cm, find AB. (iii) If AC = 19 cm and DF = 8 cm, find the ratio between the areas of two triangles. (iv) If area ($\triangle ABC$) = 36 cm², area ($\triangle DEF$) = 64 cm^2 and DE = 6.2 cm, find AB. Solution : (i) We have area (\triangle ABC) = 16 cm² area (Δ DEF) = 25 cm² and BC = 2.3 cm $\frac{\text{area}\left(\Delta \text{ ABC}\right)}{\text{area}\left(\Delta \text{ DEF}\right)} = \frac{BC^2}{EF^2}$ Since, $\frac{16}{25} = \frac{(2.3)^2}{EF^2}$ - $\frac{2\cdot 3}{\mathrm{EF}} = \frac{4}{5}.$ \Rightarrow $4 \text{ EF} = 5 \times 2.3$ = $\mathbf{EF} = \frac{11.5}{2}$ -EF = 2.875 cm.= Ans. (ii) We have area (\triangle ABC) = 9 cm² area (Δ DEF) = 64 cm² $DE = 5.1 \, \text{cm}$ and area (Δ ABC) AB² Since, area (Δ DEF) $^{-}$ DE² 9 AB² = -64 DE² AB 3 -DE 8 AB 5-1 38 = \Rightarrow $AB = \frac{3}{8} \times 5 \cdot 1 =$ = \Rightarrow AB = 1.9125 cm.Ans. (iii) In \triangle ABC and \triangle DEF, AC = 19 cm, DF = 8 cm.area (AABC) AC2 (19)2 361 Since, $\frac{1}{\text{area}} (\Delta \text{ DEF}) = \frac{1}{\text{DF}^2} = \frac{1}{(8)^2} = \frac{1}{64}$ Hence, the required ratio is 361 : 64. Ans. (iv) Area (Δ ABC) = 36 cm² Area (Δ DEF) = 64 cm². DE = 6.2 cmAB = ?We have area (Δ ABC) = AB² DE² area (Δ DEF) AB² 36 \Rightarrow 64 $(6.2)^2$ AB = 6 × 6·2 AB = 8 AB = 4.65 cm.=

Prove the Following

Question 1. In \triangle PQR, L and M are two points on the base QR, such that \angle LPQ = \angle QRP and \angle RPM = \angle RQP.

Prove that : (i) Δ PQL ~ Δ RPM

- (ii) QL. RM = PL. PM
- (iii) $PQ^2 = QR. QL.$



Solution : (i) Consider Δ PQL and Δ RPM Since \angle PQL = \angle RPM and \angle QPL = \angle RPM and \angle QPL = \angle PRM

By A. A. Criterion Hence proved.

(ii) li	η Δ PQI	_~ΔF	RPM	
		$\frac{QL}{RL} =$	PL	8
	RP ⁻	PM ⁻	MR PL	
then		$\frac{QL}{PM} =$	MR	
	QL·	MR =	PL · PM.	Hence Proved.

(iii) In \triangle PQR and \triangle LQP \angle PQR = \angle LQP PQ = PQ Hence \triangle PQR ~ \triangle LQP $\frac{QR}{PQ} = \frac{PQ}{LQ}$ PQ² = QR · QL. H

 $\Delta PQL \sim \Delta RPM.$

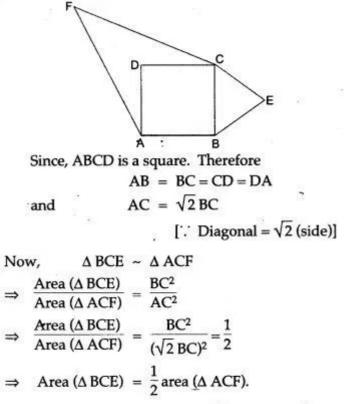
Hence proved.

Question 2. D and E are points on the sides AB and AC respectively of a \triangle ABC such that DE || BC and divides \triangle ABC into two parts, equal in area. Find $\frac{BD}{AB}$.

Solution: We have area (\triangle ADE) = area (trapezium BCED) \Rightarrow area (\triangle ADE) + area (\triangle ADE) = area (trapezium BCED) + area (A ADE) \Rightarrow 2 area (\triangle ADE) = area (\triangle ABC) ...(i) In \triangle ADE and \triangle ABC, we have $\angle ADE = \angle B$, [: DE | | BC] $\therefore \angle AED = \angle C$ (corresponding angles)] $\angle A = \angle A$, [Common] and D F в C $\Delta ADE \sim \Delta ABC$... area (Δ ADE) AD² -AB² area (Δ ABC) area (Δ ADE) AD² $\frac{1}{2 \operatorname{area} (\Delta \operatorname{ADE})} = \frac{1}{\operatorname{AB}^2}$ $\frac{1}{2} = \left(\frac{AD}{AB}\right)^2$ \Rightarrow $\frac{AD}{AB} = \frac{1}{\sqrt{2}}$ = $AB = \sqrt{2} AD$ = $AB = \sqrt{2} (AB - BD)$ = $(\sqrt{2}-1)$ AB = $\sqrt{2}$ BD => $\frac{BD}{AB} = \frac{\sqrt{2}-1}{\sqrt{2}}$ => $=\left(\frac{2-\sqrt{2}}{2}\right)$

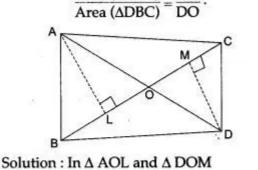
Question 3. Prove that the area of the triangle BCE described on one side BC of a square ABCD as base is one half of the area of similar triangle ACF described on the diagonal AC as base.

Solution : ABCD is a square Δ BCE is described on side BC is similar to Δ ACF described on diagonal AC.



Hence proved.

Question 4. In figure ABC and DBC are two triangles on the same base BC. Prove that Area (ΔABC) AO



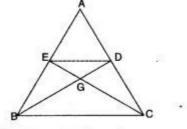
 $\angle ALO = \angle DMO, \quad (90^{\circ} \text{ each})$ $\angle AOL = \angle DOM, \quad (Vertically opposite 2 \text{ sides})$ (Vert. opp-angles) $\therefore \quad \Delta AOL \sim \Delta DOM$ $\therefore \quad \frac{AL}{DM} = \frac{AO}{DO} \qquad \dots (1)$

If two Δ 's are similar the ratio between their corresponding sides is the same.

Now,
$$\frac{\operatorname{area}(\Delta \operatorname{ABC})}{\operatorname{area}(\Delta \operatorname{DBC})} = \frac{\frac{1}{2} \times \operatorname{BC} \times \operatorname{AL}}{\frac{1}{2} \times \operatorname{BC} \times \operatorname{DM}} = \frac{\operatorname{AL}}{\operatorname{DM}}$$

From (1), we get
 $\frac{\operatorname{area}(\Delta \operatorname{ABC})}{\operatorname{area}(\Delta \operatorname{DBC})} = \frac{\operatorname{AO}}{\operatorname{DO}}$. Hence proved.

Question 5. In the adjoining figure, the medians BD and CE of a \triangle ABC meet at G. Prove that



(i) $\Delta EGD \sim \Delta CGB$ and

(ii) BG = 2GD for (i) above.

Solution : Since D and E are mid-point of AC and AB respectively in Δ ABC, ED is parallel to BC.

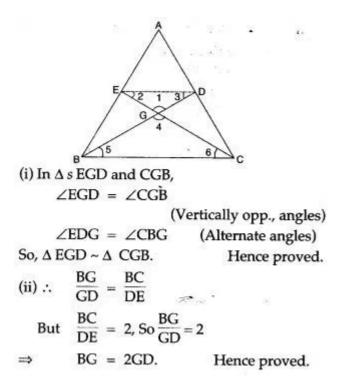
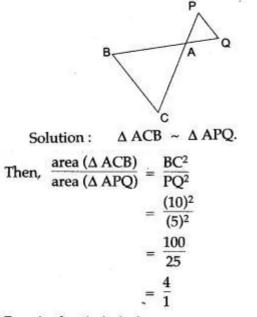


Figure Based Questions

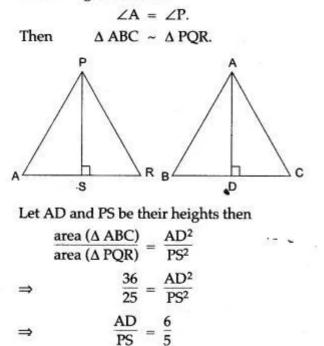
Question 1. In the adjoining figure, \triangle ACB ~ \triangle APQ. If BC = 10 cm, PQ = 5 cm, BA = 6.5 cm and AP = 2.8 cm find the area (\triangle ACB) : area (\triangle APQ).



Required ratio is 4:1.

Question 2. Two isosceles triangle have equal vertical angles and their areas are in the ratio of 36 : 25. Find the ratio between their corresponding heights.

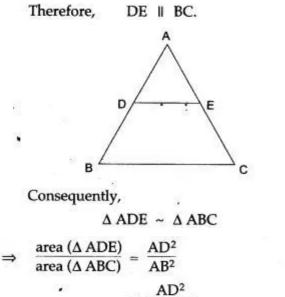
Solution : \triangle ABC and \triangle PQR be the two isosceles triangles such that



$$\Rightarrow$$
 AD: PS = 6:5. Ans.
Question 3. In \triangle ABC, D and E are the mid

points of AB and AC respectively. Find the ratio of the areas of \triangle ADE and \triangle ABC.

Solution : Since, D and E are the mid-points of AB and AC respectively.



$$= \frac{11D}{(2AD)^2}$$
$$= \frac{1}{4} \qquad (\therefore AB = 2AD)$$

Question 4. In the given figure, AB and DE are perpendicular to BC.

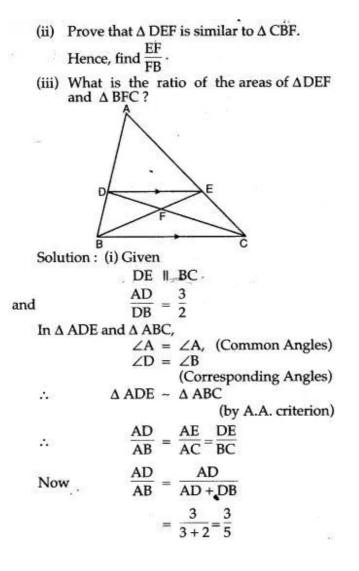
(i) Prove that \triangle ABC ~ \triangle DEC

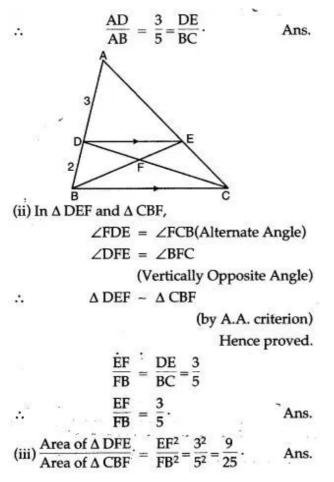
(ii) If AB = 6 cm; DE = 4 cm and AC = 15 cm. Calculate CD.

(iii) Find the ratio of the area of \triangle ABC : area of \triangle DEC.

в Е Solution : (i) GivenAB \perp BC $DE \perp BC$ \triangle ABC ~ \triangle DEC To prove Proof : In \triangle ABC and \triangle DEC $\angle ABC = \angle DEC = 90^{\circ}$ each (given) $\angle C = \angle C$ {common} $\triangle ABC \sim \triangle DEC$ λ. {A.A criteria} Hence proved. (ii) AB = 6 cm, DE = 4 cmAC = 15 cm, CD = ?Since \triangle ABC ~ \triangle DEC $\frac{AB}{DE} = \frac{AC}{CD}$ ⇒ {Correspondings sides of similar Δ 's are proportional} $\frac{6}{4} = \frac{15}{CD}$... $CD = \frac{15 \times 4}{6} = 10.$ Ans. \Rightarrow $\frac{\text{Area of } \Delta \text{ ABC}}{\text{Area of } \Delta \text{ DEC}} = \frac{\text{AB}^2}{\text{DE}^2} \text{ {Area theorem}}$ (iii) $=\frac{36}{16}=\frac{9}{4}$ or 9:4. Ans.

Question 5. In the given figure, ABC is a triangle. DE is parallel to BC and $\frac{AD}{DB} = \frac{3}{2}$. (i) Determine the ratios $\frac{AD}{AB}, \frac{DE}{BC}$.



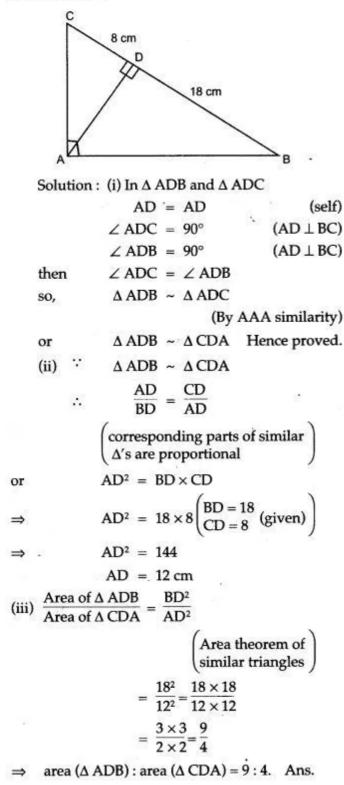


Question 6. In the adjoining figure ABC is a right angled triangle with \angle BAC = 90°, and AD \perp BC.

(i) Prove $\triangle ADB \sim \triangle CDA$.

(ii) If BD = 18 cm, CD = 8 cm find AD.

(iii) Find the ratio of the area of Δ ADB is to area of Δ CDA.



Question 7. Equilateral triangles are drawn on the sides of a right angled triangle. Show that the area of the triangle on the hypotenuse is equal to the sum of the areas of triangles on the other two sides.

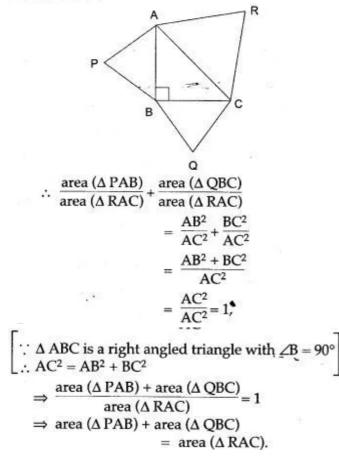
Solution :

Given. A right angled triangle ABC with right angle at B. Equilateral triangles PAB, QBC and RAC are described on sides AB, BC and CA respectively.

To Prove.

Area (\triangle PAB) + Area (\triangle QBC) = Area (\triangle RAC).

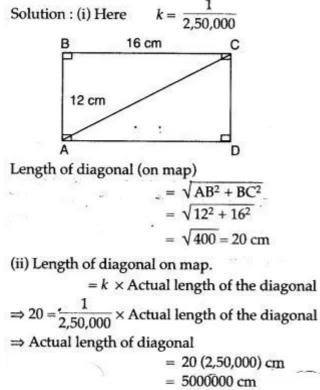
Proof. Since, triangles PAB, QBC and RAC are equilateral. Therefore they are equiangular and hence similar.



Question 8: On a map drawn to scale of 1 : 2,50,000 a rectangular plot of land ABCD has the following measurement AB = 12 cm, BC = 16 cm angles A, B, C, and D are 900 each. Calculate:

(i) The diagonal distance of the plot of land in

(ii) Actual length of diagonal.



Question 9. On a map drawn to a scale of 1 : 2,50,000, a triangular plot of land has the following measurements, AB = 3 cm, BC = 4 cm, $\angle ABC = 90^{\circ}$. Calculate :

(i) The actual length of AB in kms.

(ii) The area of plot in sq. kms.

is

Solution : The scale of a map = 1 : 2,50,000 that

 (ii) Area of triangular plot

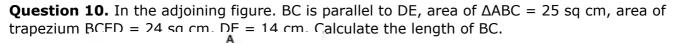
$$= \frac{1}{2} AB \times BC$$

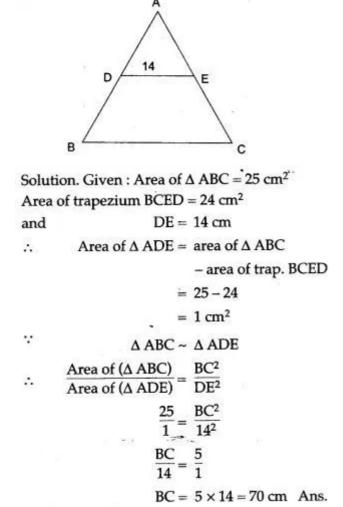
$$= \frac{1}{2} \times 3 \times 4$$

$$= 6 cm^{2}$$

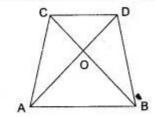
$$= 6 \times 2.5 \times 2.5 km^{2}$$

$$= 37.5 km^{2}. Ans.$$





Question 11. In fig. ABCD is a trapezium in which AB | | DC and AB = 2DC. Determine the ratio between the areas of \triangle AOB and \triangle COD.



Solution : In triangles AOB and COD, we have

$$\angle AOB = \angle COD$$

[Vertically opposite angles]

and $\angle OAB = \angle OCD$,

[Corresponding angles]

So, by AA-criterion of similarity, we have

$$\Delta AOB \sim \Delta COD$$

$$\Rightarrow \frac{Area (\Delta AOB)}{Area (\Delta COD)} = \frac{AB^2}{DC^2}$$

$$\Rightarrow \frac{Area (\Delta AOB)}{Area (\Delta COD)} = \frac{(2DC)^2}{(DC)^2}$$

$$= \frac{4}{1}$$

Hence, area (\triangle AOB) : area (\triangle COD) = 4 : 1.

Question 12. In the given figure ABC is a triangle with \angle EDB = \angle ACB.

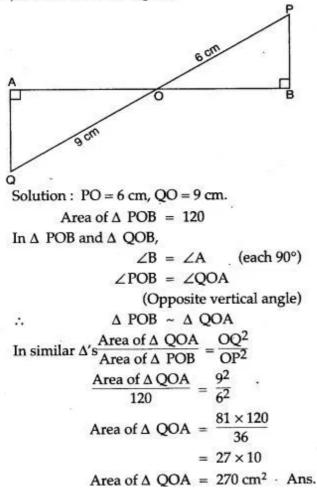
(i) Prove that \triangle ABC ~ \triangle EBD.

5

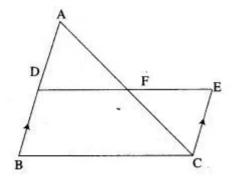
(ii) If BE = 6 cm, EC = 4 cm, BD = 5 cm and area of $\Delta BED = 9$ cm². Calculate the length of AB and area of ΔABC .

$$B = \frac{A}{E} + \frac{A}{C}$$
Solution : (i) In \triangle ABC and \triangle EBD,
 \angle ACB = \angle EDB (given)
 \angle ABC = \angle EBD (common)
 $\therefore \quad \triangle$ ABC $\sim \triangle$ EBD
Hence Proved.
(ii) We have, $\frac{AB}{BE} = \frac{BC}{BD}$
 $\Rightarrow \qquad AB = \frac{6 \times 10}{5} = 12 \text{ cm}.$ Ans.
(iii) $\frac{\text{Area of } \triangle \text{ ABC}}{\text{Area of } \triangle \text{ BED}} = \left(\frac{AB}{BE}\right)^2$
 $\Rightarrow \qquad \text{Area of } \triangle \text{ ABC} = \left(\frac{12}{6}\right)^2 \times 9 \text{ cm}^2$
 $= 4 \times 9 \text{ cm}^2 = 36 \text{ cm}^2.$

Question 13. In the figure given below, PB and QA are perpendiculars to the line segment AB. If PO = 6 cm, QO = 9 cm and the area of $\Delta POB = 120 \text{ cm}^2$, find the area of ΔQOA .



Question 14. In the given figure ABC and CEF are two triangles where BA is parallel to CE and AF : AC = 5 : 8.



- (i) Prove that $\triangle ADF \sim \triangle CEF$
- (ii) Find AD if CE = 6 cm.

(iii) If DF is parallel to BC find area of $\triangle ADF$: area of $\triangle ABC$.

Solution : (i) In \triangle ADF and \triangle CFE

$$\angle DAF = \angle FCE$$

(alternate angles)

$$\angle AFD = \angle CFE$$

(vertically opp. angles)

 $\angle ADF = \angle CEF$

$$\therefore$$
 $\Delta ADF \sim \Delta CEF (by A.A.)$

Hence Proved

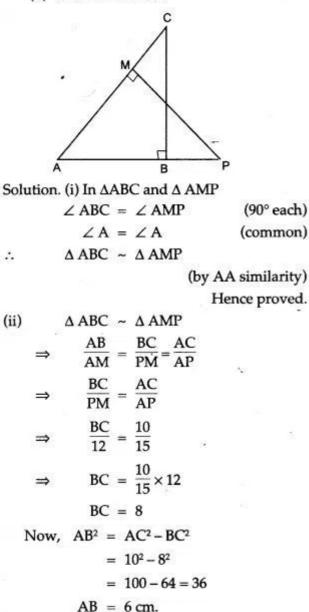
(ii)	$\Delta ADF \sim \Delta CEF$
÷	$\frac{AD}{CE} = \frac{AF}{FC}$
	FC = AC - AF
	= 8 - 5 = 3
÷	$\frac{AD}{6} = \frac{5}{3}$
⇒	AD = 10 cm.
(iii) I	$DF \mid \mid BC \therefore \Delta ADF \sim \Delta ABC$
∵∠Ċ	$D = \angle B$ and $\angle F = \angle C$.
÷	$\frac{\text{Ar. of } \Delta \text{ ADF}}{\text{Ar. of } \Delta \text{ ABC}} = \frac{\text{AF}^2}{\text{AC}^2}$
	$=\left(\frac{5}{8}\right)^2=\frac{25}{64}$

Question. 15. In the given figure \triangle ABC and \triangle AMP are right angled at B and M respectively.

Given AC = 10 cm, AP = 15 cm and PM = 12 cm.

-

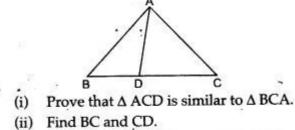
- (i) Prove \triangle ABC ~ \triangle AMP.
- (ii) Find AB and BC.



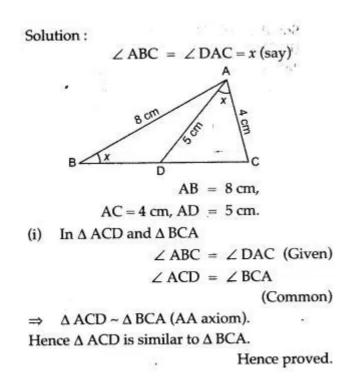
Question 16. Triangles ABC and DEF are similar. (i) If area ($\triangle ABC$) = 16 cm², area ($\triangle DEF$) = 25 cm^2 and BC = 2.3 cm find EF. (ii) If area ($\triangle ABC$) = 9 cm², area ($\triangle DEF$) = 64 cm^2 and DE = 5.1 cm, find AB. (iii) If AC = 19 cm and DF = 8 cm, find the ratio between the areas of two triangles. (iv) If area ($\triangle ABC$) = 36 cm², area ($\triangle DEF$) = 64 cm^2 and DE = 6.2 cm, find AB. Solution : (i) We have area (Δ ABC) = 16 cm² area (Δ DEF) = 25 cm² and BC = 2.3 cm $\frac{\text{area}\left(\Delta \text{ ABC}\right)}{\text{area}\left(\Delta \text{ DEF}\right)} = \frac{\text{BC}^2}{\text{EF}^2}$ Since, $\frac{16}{25} = \frac{(2.3)^2}{\mathrm{EF}^2}$ ⇒ $\frac{2\cdot 3}{EF} = \frac{4}{5}$ \Rightarrow $4 \text{ EF} = 5 \times 2.3$ \Rightarrow $EF = \frac{11.5}{4}$ \Rightarrow EF = 2.875 cm. \Rightarrow (ii) We have area (ΔABC) = 9 cm² area (ΔDEF) = 64 cm² DE = 5.1 cmand $\frac{\text{area}\left(\Delta \text{ ABC}\right)}{(\Delta \text{ DEC})} = \frac{\text{AB}^2}{\text{DE}^2}$ Since, area (Δ DEF) DE² $\frac{9}{64} \cong \frac{AB^2}{DE^2}$ => $\frac{AB}{DE} = \frac{3}{8}$ \Rightarrow $\frac{AB}{5\cdot 1} = \frac{3}{8}$ \Rightarrow $AB = \frac{3}{8} \times 5 \cdot 1 = \frac{15 \cdot 3}{8}$ \Rightarrow AB = 1.9125 cm.-> (iii) In \triangle ABC and \triangle DEF, AC = 19 cm, DF = 8 cm.

Since, $\frac{\text{area} (\Delta \text{ ABC})}{\text{area} (\Delta \text{ DEF})} = \frac{\text{AC}^2}{\text{DF}^2} = \frac{(19)^2}{(8)^2} = \frac{361}{64}$ Hence, the required ratio is 361:64. (iv) Area (\triangle ABC) = 36 cm² Area (Δ DEF) = 64 cm². DE = 6.2 cmAB = ?We have area (Δ ABC) AB² $area (\Delta DEF) = DE^2$ $\frac{36}{64}$ AB² $=\frac{1}{(6\cdot 2)^2}$ \Rightarrow AB 6.2 $=\frac{6}{8}$ = $AB = \frac{6 \times 6 \cdot 2}{8}$ => AB = 4.65 cm. \Rightarrow

Question 17. In \triangle ABC, \angle ABC = \angle DAC. AB = 8 cm, AC = 4 cm, AD = 5 cm.



(iii) Find area of \triangle ACD : area of \triangle ABC.



(ii) As we			<u>N</u>	
	AC	-	$\frac{CD}{CA} = \frac{AD}{BA}$	
	_4	_	$\frac{CD}{4} = \frac{5}{8}$	
7	BC	-	4 8	
	$\frac{4}{BC}$		5	
⇒	BC	=	8	
	DC.		$\frac{8 \times 4}{5} = \frac{32}{5}$	
\Rightarrow	BC	7	5 5	
		=	6.4 cm.	
	CD		5	
and	$\frac{CD}{4}$	=	8	
	1000		$\frac{5 \times 4}{8}$	
⇒	CD	=	8	
⇒			2.5 cm.	Ans.
	$\frac{\text{Area of } \Delta \text{ ACD}}{\text{Area of } \Delta \text{ ABC}}$		$(AC)^2$	
(iii)	Area of A ABC	==	AB	
		_	$\left(\frac{4}{8}\right)^2$	
	1		(8)	
			1	
		=	$\overline{4}$	
server of the black	a of ∆ ACD : area o	6		

Ans.