3.6 Oscillating systems

Free oscillations

			x	oscillating variable
Differential	d^2x dx dx	(2.4.2.6)	t	time
equation	$\frac{1}{\mathrm{d}t^2} + 2\gamma \frac{1}{\mathrm{d}t} + \omega_0^2 x = 0$	(3.196)	γ	damping factor (per unit mass)
			ω_0	undamped angular frequency
	$A = \frac{\gamma t}{\gamma t} \cos(\omega t + t)$	(2, 107)		amplitude constant
Underdamped	$x = Ae + \cos(\omega t + \phi)$	(3.197)		nhase constant
solution ($\gamma < \omega_0$)	where $\omega = (\omega_0^2 - \gamma^2)^{1/2}$	(3.198)	φ	
		()	ω	angular eigenfrequency
Critically damped	$a = e^{-\gamma t} (A + A + A)$	(2, 100)	1	
solution $(\gamma = \omega_0)$	$x = e^{-r} (A_1 + A_2 t)$	(3.199)	A_i	amplitude constants
			1	
Overdamped	$x = e^{-\gamma t} (A_1 e^{qt} + A_2 e^{-qt})$	(3.200)		
solution $(\gamma > \omega_0)$	where $q = (\gamma^2 - \omega_0^2)^{1/2}$	(3.201)		
		()		
Logarithmic	$a_n = 2\pi\gamma$			logarithmic decrement
decrement ^a	$\Delta = \ln \frac{dn}{d} = \frac{dn}{d}$	(3.202)		<i>n</i> th displacement maximum
	u_{n+1} ω			and displacement maximum
Quality factor	$Q = \frac{\omega_0}{2\gamma} \left[\simeq \frac{\pi}{\Delta} \text{if} Q \gg 1\right]$	(3.203)	0	quality factor
				quanty notor

^{*a*} The *decrement* is usually the ratio of successive displacement *maxima* but is sometimes taken as the ratio of successive displacement *extrema*, reducing Δ by a factor of 2. Logarithms are sometimes taken to base 10, introducing a further factor of $\log_{10} e$.

Forced oscillations

Differential equation	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\gamma \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x = F_0 \mathrm{e}^{\mathrm{i}\omega_{\mathrm{f}}t}$	(3.204)	$\begin{array}{c} x \\ t \\ \gamma \end{array}$	oscillating variable time damping factor (per unit mass)
Steady- state solution ^a	$x = Ae^{i(\omega_{f}t - \phi)}, \text{ where}$ $A = F_0[(\omega_0^2 - \omega_f^2)^2 + (2\gamma\omega_f)^2]^{-1/2}$ $\simeq \frac{F_0/(2\omega_0)}{[(\omega_0 - \omega_f)^2 + \gamma^2]^{1/2}} (\gamma \ll \omega_f)$ $\tan \phi = \frac{2\gamma\omega_f}{\omega_0^2 - \omega_f^2}$	(3.205) (3.206) (3.207) (3.208)	$ \begin{array}{c} \omega_0 \\ F_0 \end{array} $ $ \omega_f \\ A \\ \phi \end{array} $	undamped angular frequency force amplitude (per unit mass) forcing angular frequency amplitude phase lag of response behind driving force
Amplitude resonance ^b	$\omega_{\rm ar}^2 = \omega_0^2 - 2\gamma^2$	(3.209)	ω _{ar}	amplitude resonant forcing angular frequency
Velocity resonance ^c	$\omega_{\rm vr} = \omega_0$	(3.210)	ω _{vr}	velocity resonant forcing angular frequency
Quality factor	$Q = \frac{\omega_0}{2\gamma}$	(3.211)	Q	quality factor
Impedance	$Z = 2\gamma + \mathbf{i} \frac{\omega_{\rm f}^2 - \omega_0^2}{\omega_{\rm f}}$	(3.212)	Z	impedance (per unit mass)

^{*a*}Excluding the free oscillation terms.

^bForcing frequency for maximum displacement.

^cForcing frequency for maximum velocity. Note $\phi = \pi/2$ at this frequency.