Question 1:

Comment, sulphuric acid is referred to as:

(a) King of chemicals (b) Oil of vitriol

Solution 1:

- (a) Sulphuric acid is called King of Chemicals because there is no other manufactured compound which is used by such a large number of key industries.
- (b) Sulphuric acid is referred to as Oil of vitriol as it was obtained as an oily viscous liquid by heating crystals of green vitriol.

Question 2:

Sulphuric acid is manufactured by contact process

- (a) Give two balanced equations to obtain SO_2 in this process.
- (b) Give the conditions for the oxidation of SO_2

Solution 2:

(a) Two balanced equations to obtain SO₂ is:

(i)
$$4\text{FeS}_2 + 11\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$$

(ii)
$$S + O_2 \rightarrow SO_2$$

- (b) The conditions for the oxidation of SO_2 are:
 - (i) The temperature should be as low as possible. The yield has been found to be maximum at about $410^{0}C 450^{\circ}C$
 - (ii) High pressure (2 atm) is favoured because the product formed has less volume than reactant.
 - (iii) Excess of oxygen increases the production of sulphur trioxide.
 - (iv) Vanadium pentoxide or platinised asbestos is used as catalyst.
- (c) Sulphuric acid is not obtained directly by reacting SO₃ with water because the reaction is highly exothermic which produce the fine misty droplets of sulphuric acid that is not directly absorbed by water.
- (d) The chemical used to dissolve SO₃ is concentrated sulphuric acid. The product formed is oleum.
- (e) Main reactions of this process are: $S + O_2 \rightarrow SO_2$

 $S + O_2 \rightarrow SO_2$ $2SO_2 + O_2 \xrightarrow{V_2O_5} 2SO_3$ $SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$ $H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$

Question 3:

Why is water not added to concentrated H₂SO₄ in order to dilute it?

Solution 3:

Water is not added to concentrated acid since it is an exothermic reaction. If water is added to the acid, there is a sudden increase in temperature and the acid being in bulk tends to spurt out with serious consequences.

Question 4:

Why the impurity of arsenic oxide must be removed before passing the mixture of SO_4 and air through the catalytic chamber?

Solution 4:

Impurity of ARSENIC poisons the catalyst [i.e. deactivates the catalyst]. So, it must be removed before passing the mixture of SO_2 air through the catalytic chamber.

Question 5:

Give two balanced reactions of each type to show the following properties of sulphuric acid:

(a) Acidic nature. (b) Oxidising agent,

(c) Hygroscopic nature, (d) Non-volatile nature

Solution 5:

Balanced reactions are:

(a) Acidic nature:

- (i) Dilute H_2SO_4 reacts with basic oxides to form sulphate and water.
 - $2 \ NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$
- (ii) $CuO + H_2SO_4 \rightarrow CuSO_4 + H_2O$
- (iii) It reacts with carbonate to produce CO_2 .

 $Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O + CO_2 \uparrow$

(b) Oxidising agent:

 $H_2SO_4 \rightarrow H_2O + SO_2 + [O]$

Nascent oxygen oxidizes non-metals, metals and inorganic compounds.

For example,

Carbon to carbon dioxide

 $C{+}H_2SO_4 \rightarrow CO_2 + H_2O + 2SO_2$

Sulphur to sulphur dioxide

 $S + H_2SO_4 \rightarrow 3SO_2 + 2H_2O$

(c) Hygroscopic nature:

It has great affinity for water. It readily absorbs moisture from atmospheric air.

HCOOH $\xrightarrow{\text{conc.H}_2SO_4}$ CO + H₂O

 $C_6H_{12}O_6 \xrightarrow{conc.H_2SO_4} 6C + 6H_2O$

(d) Non-volatile nature:

It has a high boiling point (356°C) so it is considered to be non-volatile. Therefore, it is used for preparing volatile acids like hydrochloric acid, nitric acid from their salts by double decomposition reaction.

 $NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$

 $KCl + H_2SO_4 \rightarrow KHSO_4 + HCl$

Question 6:

Give a chemical test to distinguish between:

- (a) dilute sulphuric acid and dilute hydrochloric acid
- (b) dilute sulphuric acid and conc. Sulphuric acid

Solution 6:

(a) Bring a glass rod dipped in Ammonia solution near the mouth of each test tubes containing dil. Hel and dil. H₂SO₄each.

Dil HCl	Dil. H ₂ SO ₄
White fumes of ammonium chloride	No such fumes

(b)

- 1. Dilute sulphuric acid treated with zinc gives Hydrogen gas which bums with pop sound. Concentrated H₂SO₄ gives SO₂ gas with zinc and the gas turns Acidified potassium dichromate paper green.
- 2. Barium chloride solution gives white ppt. with dilute H_2SO_4 , This white ppt. is insoluble in all acids.

Concentrated H₂SO₄ and NaCl mixture when heated gives dense white fumes if glass rod dipped in Ammonia solution is brought near it.

Question 7:

Name the products formed when hot and concentrated sulphuric acid reacts with the following:

- (a) Sulphur (b) NaOH,
- (c) Sugar (d) Carbon
- (e) Copper.

Solution 7:

- (a) When sulphuric acid reacts with sulphur the product formed is Sulphur dioxide is formed. S $+2H_2SO_4 \rightarrow 3SO_2 + 2H_2O$
- (b) When sulphuric acid reacts with sodium hydroxide it neutralizes base to form sodium sulphate.

 $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$

- (c) When sulphuric acid reacts with sugar it forms carbon $C_{12} H_{22}O_{11} \xrightarrow{\text{conc.H}_2SO_4} 12C + 11H_2O$
- (d) When sulphuric acid reacts with carbon it forms carbon dioxide and sulphur dioxide gas. $C + 2H_2SO_4 \rightarrow CO_2 + 2H_2O + 2SO_2 \uparrow$
- (e) When sulphuric acid reacts with copper it forms copper sulphate and sulphur dioxide. $Cu + H_2SO_4 \rightarrow CuSO_4 + 2H_2O + SO_2 \uparrow$

Question 8:

Why is:

- (a) Concentrated sulphuric acid kept in air tight bottles?
- (b) H_2SO_4 not a drying agent for H_2S ?

(c) Sulphuric acid used in the preparation of HCI and HNO₃? Give equations in both cases.

Solution 8:

- (a) Concentrated sulphuric acid is hygroscopic substance that absorbs moisture when exposed to air. Hence, it is stored in air tight bottles.
- (b) Sulphuric acid is not a drying agent for H₂S because it reacts with H₂S to form sulphur. H₂SO₄ + H₂S \rightarrow 2H₂O + SO₂ + S \downarrow
- (c) Concentrated sulphuric acid has high boiling point (356°C). So, it is considered to be non-volatile. Hence, it is used for preparing volatile acids like Hydrochloric acid and Nitric acids from their salts by double decomposition.

 $NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$

 $NaNO_3 + H_2SO_4 \rightarrow NaHSO_4 + HNO_3$

Question 9:

What property of conc. H_2SO_4 is made use of in each of in each of the following cases? Give an equation for the reaction on each case:

(a) in the production of HCI gas when it reacts with a chloride,

(b) in the preparation of CO and HCOOH,

- (c) as a source of hydrogen by diluting it and adding a strip of magnesium.
- (d) in the preparation of sulphur dioxide by warming a mixture of conc. Sulphuric acid and copper turnings,
- (e) Hydrogen sulphide gas is passed through concentrated sulphuric acid.

Solution 9:

- (a) Due to its reducing property. i.e, it is a non-volatile acid. NaCl + H₂SO₄ → NaHSO₄ + HCl (Conc.)
- (b) It is a dehydrating agent. HCOOH $\xrightarrow{\text{conc.H}_2SO_4}$ CO + H₂O
- (c) Magnesium is present above hydrogen in the reactivity series so sulphuric acid is able to liberate hydrogen gas by reacting with magnesium strip.

 $Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$

- (d) Due to its oxidizing character $Cu + H_2SO_4 \rightarrow CuSO_4 + 2H_2O + SO_2$
- (e) Due to its oxidizing property Hydrogen sulphide gas is passed through concentrated sulphuric acid to liberate sulphur dioxide and sulphur is formed.

 $H_2S + H_2SO_4 \rightarrow S + 2H_2O + SO_2$

Question 10:

What is the name given to the salts of:

(a) sulphurous acid (b) sulphuric acid?

Solution 10:

The name of the salt of

- (a) Hydrogen sulphites and Sulphites.
- (b) Sulphate and bisulphate.

Question 11:

Give reasons for the following:

- (a) Sulphuric acid forms two types of salts with NaOH,
- (b) Red brown vapours are produced when concentrated sulphuric acid is added to hydrogen bromide.
- (c) A piece of wood becomes black when concentrated sulphuric acid is poured on it,
- (d) Brisk effervescence is seen when oil of vitriol is added to sodium carbonate.

Solution 11:

(a) Two types of salts are formed when sulphuric acid reacts with NaOH because sulphuric acid is dibasic.

 $NaOH + H_2SO_4 \rightarrow NaHSO_4 + H_2O$

 $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$

(b) When hydrogen bromide reacts with sulphuric acid the bromine gas is obtained which produce red brown vapours.

 $2KBr + 3H_2SO_4 \rightarrow 2KHSO_4 + SO_2 + Br_2 \uparrow + 2H_2O$

- (c) A piece of wood becomes black when concentrated sulphuric acid is poured on it because it gives a mass of carbon.
- (d) When sulphuric acid is added to sodium carbonate it liberates carbon dioxide which produces brisk effervescence.

 $Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O + CO_2 \uparrow$

Question 12:

Copy and complete the following table:

Column 1 Substance with acid	reacted	Column 2 Dilute or acid	concentrated	Column 3 Gas
				Hydrogen
				Carbon dioxide
				only chlorine

Solution 12:

Column 1Substancereactedwith acid	Column 2 Dilute or concentrated acid	Column 3 Gas
Substance reacted with acid	Dilute or concentrated sulphuric acid	Gas
Zinc Dilute sulphuric acid		Hydrogen
Calcium carbonate	Concentrated sulphuric acid	Carbon dioxide
Bleaching power CaOCl ₂	Dilute sulphuric acid	only chlorine

Question 1(2004):

Name a gas that can be oxidized to sulphur.

Solution 1(2004):

Hydrogen sulphide (H₂S) can be oxidized to sulphur.

Question 2(2004):

Give the odour of the gas evolved and name the gas produced when sodium sulphide is added to solution of HCI in water.

Solution 2(2004):

When sodium sulphide is added to solution of HCl, Hydrogen sulphide gas is produced. It has rotten egg like smell.

- (a) Name the catalyst which helps in the conversion of sulphur dioxide to sulphur trioxide in step C.
- (b) In the contact process for the manufacture of sulphuric acid, sulphur trioxide is not converted to sulphuric acid by reacting it with water. Instead a two-steps procedure is used. Write the equations for the two steps involved in D.
- (c) What type of substance will liberate sulphur dioxide from sodium sulphite in step E?
- (d) Write the equation for the reaction by which sulphure dioxide is converted to sodium sulphite in step F.

Solution 3(2004):

- (a) The catalyst which helps in the conversion of sulphur dioxide to sulphur trioxide in step C is Vanadium pentoxide.
- (b) The two steps for the conversion of sulphur trioxide to sulphuric acid is:
 (i) SO₃ + H₂SO₄ → H₂S₂O₇
 (ii) H₂S₂O₇ + H₂O → 2H₂SO₄
- (c) The substance that will liberate sulphur dioxide in step E is dilute H_2SO_4 .

(d) The equation for the reaction by which sulphur dioxide is converted to sodium sulphite in step F is:
 SO₂ + 2NaOH → Na₂SO₃ + H₂O
 Or
 Na₂O + SO₂ → Na₂SO₃

Question 1(2006):

(a) Name the process used for the large-scale manufacture of sulphuric acid.

- (b) Which property of sulphuric acid accounts for its use as a dehydrating agent?
- (c) Concentrated sulphuric acid is both an oxidizing agent and a non-volatile acid. Write one equation each to illustrate the above mentioned properties of sulphuric acid.

Solution 1(2006):

- (a) The process used for the large-scale manufacture of sulphuric acid is Contact process.
- (b) Sulphuric acid has great affinity for water. It readily removes element of water from other compound. Thus it acts as a dehydrating agent.
- (c) Concentrated acid is non-volatile thus it is used for the preparation of volatile acids:

 $NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$

Concentrated acid act as an oxidizing agent:

 $C+2H_2SO_4 \rightarrow CO_2+2H_2O+2SO_2$

Question 1(2007):

Some properties of sulphuric acid are listed below. Choose the property A, B, C or D which is responsible for the reactions (i) to (v) some properties may be repeated.

A. Acid B. Dehydrating agent C. Non-volatile acid D. Oxidizing agent (i) $C_{12}H_{22}O_{11} + NH_2SO_4 \rightarrow 12C + 11H_2O + nH_2SO_4$ (ii) $S + 2H_2SO_4 \rightarrow 3SO_2 + 2H_2O$ (iii) $NaCI + H_2SO_4 \rightarrow NaHSO_4 + HCI$ (iv) $CuO + H_2SO_4 \rightarrow CuSO_4 + H_2O$ (v) $Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O + CO_2$ Solution 1(2007): (i) B (ii) D (iii) C (iv) A (v) A

Question 2(2007):

- (a) Name the acid formed when sulphur dioxide dissolves in water
- (b) Name the gas released when sodium carbonate is added to a solution of sulphur dioxide.

Solution 2(2007):

- (a) The acid formed when sulphur dioxide dissolves in water is sulphurous acid.
- (b) Carbondioxide gas is released when sodium carbonate is added to solution of sulphur dioxide.

Question 1(2008):

- (a) What is the property of concentrated sulphuric acid which allows it to be used in the preparation of hydrogen chloride and nitric acid?
- (b) What property of concentrated sulphuric acid is in action when sugar turns black in its presence?

Solution 1(2008):

- (a) Concentrated sulphuric acid is non-volatile; hence it is used for the preparation of higher volatile acids.
- (b) Due to its dehydrating nature sugar turns black in the presence of concentrated sulphuric acid.