
102

 There are several problems which can
be solved by doing the same action repeatedly.
Both iteration and recursion are algorithm
design techniques to execute the same action
repeatedly. What is the use of repeating the
same action again and again? Even though the
action is the same, the state in which the action
is executed is not the same. Each time we
execute the action, the state changes. Therefore,
the same action is repeatedly executed, but
in different states. The state changes in such a
way that the process progresses to achieve the
desired input-output relation.

Iteration: In iteration, the loop body is
repeatedly executed as long as the loop condition
is true. Each time the loop body is executed,
the variables are updated. However, there is
also a property of the variables which remains
unchanged by the execution of the loop body.
This unchanging property is called the loop
invariant. Loop invariant is the key to construct
and to reason about iterative algorithms.

Recursion: Recursion is another algorithm
design technique, closely related to iteration,
but more powerful.Using recursion, we solve

a problem with a given input, by solving the
same problem with a part of the input, and
constructing a solution to the original problem
from the solution to the partial input.

8.1 Invariants

Example 8.1. Suppose the following
assignment is executed with (u, v) =
(20,15). We can annotate before and after
the assignment.

 -- before: u, v = 20, 15

 u, v :=u+5,v-5

 -- after: u, v = 25, 10

 After assignment (u, v) = (25, 10).
But what do you observe about the value
of the function u + v?

Iteration and recursion

CHAPTER 8Unit II Algorithmic Problem
Solving

Learning Objectives

 After learning the
concepts in this chapter, the
students will be able
• To know the concepts of

variants and invariants
used in algorithmic techniques.

• Apply algorithmic techniques in
iteration and recursion process.

E W Dijkstra was one of the most
influential pioneers of Computing
Science. He made fundamental
contributions in diverse areas such

as programming language design, operating
systems, and program design. He coined the
phrase "structured programming" which
helped lay the foundations for the discipline
of software engineering. In 1972, he was
awarded ACM Turing Award, considered
the highest distinction in
computer science. Dijkstra
is attributed to have said
"Computer science is no
more about computers
than astronomy is about
telescopes."

Chapter 8 Page 102-114.indd 102 3/24/2020 9:15:11 AM

103

 before: u + v = 20 + 15 = 35

 after: u + v = 25 + 10 = 35

 The assignment has not changed
the value of u + v. We say that u + v is
an invariant of the assignment. We can
annotate before and after the assignment
with the invariant expression.

 -- before: u + v = 35

 u, v : = u + 5, v - 5

 -- after : u + v = 35

 We can say, u + v is an invariant: it
is 35 before and after. Or we can say u +
v =35 is an invariant: it is true before and
after.

Example 8.2. If we execute the following
assignment with (p, c = 10, 9), after the
assignment, (p, c) = (11, 10).

 -- before : p, c = 10 , 9

 p, c := p + 1, c+1

 -- after: p, c = 11 , 10

Can you discover an invariant? What is
the value of p - c before and after?

 before: p — c = 10 — 9 = 1

 after: p — c = 11 — 10 = 1

We find that p - c = 1 is an invariant.

 In general, if an expression of the
variables has the same value before and
after an assignment, it is an invariant of the
assignment. Let P(u, v) be an expression
involving variables u and v. P(u, v)[u, v:= el,
e2] is obtained from P(u, v) by replacing u
by el and v by e2 simultaneously. P(u, v) is
an invariant of assignment u, v := el, e2 if

 P(u,v) [u,v := el, e2] = P(u,v)

Example 8.3. Show that p - c is an invariant
of the assignment

 p, c := p + 1, c + 1

Let P(p, c) = p - c. Then

 P (p, c) [p, c := p + 1, c + l]

 = p — c [p, c := p + 1, c + l]

 = (p + 1) — (c + 1)

 = p — c

 = P(P , c)

Since (p - c)[p, c := p+l, c+l] = p - c, p - c
is an invariant of the assignment
 p, c := p + 1, c + 1.

Example 8.4. Consider two variables m
and n under the assignment

 m, n := m + 3, n - 1

Is the expression m + 3n an invariant?

 Let P(m, n) = m + 3n. Then

 P(m, n) [m, n := m + 3, n — l]

 = m + 3n [m, n := m + 3, n — l]

 = (m + 3) + 3(n — l)

 = m + 3 + 3n — 3

 = m + 3n

 = P(m, n)

Since (m + 3n) [m, n : = m + 3, n -
1] = m + 3n, m + 3n is an invariant of the
assignment m, n := m + 3, n - l.

8.2 Loop invariant

 In a loop, if L is an invariant of the
loop body B, then L is known as a loop
invariant.

 while C

 -- L

 B

 -- L

Chapter 8 Page 102-114.indd 103 3/24/2020 9:15:11 AM

104

 The loop invariant is true before
the loop body and after the loop body,
each time. Since L is true at the start of
the first iteration, L is true at the start of
the loop also (just before the loop). Since
L is true at the end of the last iteration, L
is true when the loop ends also (just after
the loop). Thus, if L is a loop variant, then
it is true at four important points in the
algorithm, as annotated in the algorithm
and shown in Figure 3.1.

1. at the start of the loop (just before the
loop)

2. at the start of each iteration (before
loop body)

3. at the end of each iteration (after loop
body)

4. at the end of the loop (just after the
loop)

1. -- L, start of loop
 while
 C
2. -- L, start of iteration
 B
3. -- L, end of iteration
4. -- L, end of loop

inputs

3 end of iteration

C

2 start of iteration

1 start of loop

outputs

L

L

L 4 end of loop

B
L

Figure 8.1: The points where the loop
invariant is true

To construct a loop,

1. Establish the loop invariant at the start
of the loop.

2. The loop body should update the
variables, so as to progress toward the
end, and maintain the loop invariant,
at the same time.

3. When the loop ends, the termination
condition and the loop invariant should
establish the input-output relation.

8.3 Invariants — Examples

 The loop invariant is true in four
crucial points in a loop. Using the loop
invariant, we can construct the loop
and reason about the properties of the
variables at these points.

Example 8.5. Design an iterative algorithm
to compute an. Let us name the algorithm
power(a, n). For example,
 power(10, 4) = 10000
 power (5, 3) = 125
 power (2, 5) = 32

 Algorithm power(a, n) computes an
by multiplying a cumulatively n times.

{an = ax ax ... x a

n times

 The specification and the loop
invariant are shown as comments.
 power (a, n)
 -- inputs: n is a positive integer
 -- outputs: p = an

 p, i := 1, 0
 while i ≠ n
 -- loop invariant: p = ai

 p, i :=p X a, i+1

Chapter 8 Page 102-114.indd 104 3/24/2020 9:15:11 AM

105

 The step by step execution of power
(2, 5) is shown in Table 8.1. Each row
shows the values of the two variables p and
i at the end of an iteration, and how they
are calculated. We see that p = ai is true at
the start of the loop, and remains true in
each row. Therefore, it is a loop invariant.

iteration p p x a i i+1 ai

0 1 0 20

1 2 1x2 1 0 + 1 21

2 4 2x2 2 1 + 1 22

3 8 4x2 3 2 + 1 23

4 16 8x2 4 3 + 1 24

5 32 16x2 5 4+1 25

Table 8.1: Trace of power (2, 5)

 When the loop ends, p = a1 is
still true, but i = 5. Therefore, p = a5. In
general, when the loop ends, p = an. Thus,
we have verified that power(a, n) satisfies
its specification.

Example 8.6. Recall the Chocolate bar
problem of Example 6.11. How many
cuts are needed to break the bar into its
individual squares?

 We decided to represent the
number of pieces and the number of
cuts by variables p and c respectively.
Whenever a cut is made, the number of
cuts increases by one and the number of
pieces also increases by one. We decided
to model it by an assignment.
 p, c := p + 1, c+1
 The process of cutting the bar can
be modeled by a loop. We start with one
piece and zero cuts, p = 1 and c = 0. Let n be
the number of individual squares. When
the number of pieces p equals the number
of individual squares n, the process ends.

 p, c : = 1 , 0

 while p ≠ n

 p, c := p + 1, c+1

 We have observed (in Example 8.2)
that p - c is an invariant of the assignment
p, c := p + 1, c + 1. Let p - c = k, where k
is a constant. The points in the algorithm
where p - c = k is true are shown in the
algorithm below, and in the flowchart of
Figure 8.2.

 p, c : = 1 , 0

1. -- p - c = k

 while p ≠ n

2. -- p - c = k

 p, c := p+1, c+1

3. -- p - c = k

4. --p-c=k,p=n

 The loop invariant p- c = k is True
at the start of the loop (line 1). Moreover,
at the start of the loop, p- c = 1. Therefore,
k = 1, and the loop invariant is p - c = 1

3 end of iteration

2 start of iteration

1 start of loop

p,c

4 end of loop

p,c : =1,0
p-c : = k

p-c = k

p-c = k
p-c = k

p ≠ n

p, c: =p + 1, c+ 1

Figure 8.2: The points where the loop
invariant is true

 When the loop ends (line 4), the
loop invariant is still true (p - c = 1).
Moreover, the loop condition is false (p =
n). From p - c = 1 and p = n,

Chapter 8 Page 102-114.indd 105 3/24/2020 9:15:11 AM

106

1. p — c = 1 loop invariant
2. p = n end of the loop
3. n — c = 1 from 1, 2
4. c = n — 1 from 3

 When the process ends, the number
of cuts is one less than the number of
squares.

Example 8.7. There are 6 equally spaced
trees and 6 sparrows sitting on these
trees,one sparrow on each tree. If a sparrow
flies from one tree to another, then at the
same time, another sparrow flies from its
tree to some other tree the same distance
away, but in the opposite direction. Is it
possible for all the sparrows to gather on
one tree?

 Let us index the trees from 1 to
6. The index of a sparrow is the index of
the tree it is currently sitting on. A pair
of sparrows flying can be modeled as an
iterative step of a loop. When a sparrow at
tree i flies to tree i + d, another sparrow at
tree j flies to tree j — d. Thus, after each
iterative step, the sum S of the indices of
the sparrows remains invariant. Moreover,
a loop invariant is true at the start and at
the end of the loop.

 At the start of the loop, the value of
the invariant is

 S = 1 + 2 + 3 + 4 + 5 + 6 = 21

 When the loop ends, the loop
invariant has the same value. However,
when the loop ends, if all the sparrows
were on the same tree, say k, then S = 6k.

S = 21, loop invariant at the start of
the loop

S = 6k, loop invariant at end of the
loop

6k= 21, loop invariant has the same
value at the start and the end

21 is a multiple of 6

It is not possible — 21 is not a multiple
of 6. The desired final values of the
sparrow indices is not possible with the
loop invariant. Therefore, all the sparrows
cannot gather on one tree.

Example 8.8. Consider the Chameleons
of Chromeland of Example 6.3. There are
13 red, 15 green, and 17 blue chameleons
on Chromeland. When two chameleons
of different colors meet they both change
their color to the third one (for example,
if a red and a green meet, both become
blue). Is it possible to arrange meetings
that result in all chameleons displaying
blue color?
 Let r, g, and b be the numbers of
red, green and blue chameleons. We can
model the meetings of two types as an
iterative process. A meeting changes (r, g,
b) into (r-1, g-1, b+2) or (r-1, g+2, b-1) or
(r+2, g-1, b-1). Consider, for example, the
meeting of a red and a green chameleon.
 r, g, b := r-1, g-1, b+2
 The difference in the numbers of
any two types either do not change or
changes by 3. This is an invariant.
 r - 1 - (g - 1) = r - g
 r - 1 - (b + 2) = (r - b) - 3
 g - 1 - (b + 2) = (g - b) - 3
 This is true for all three cases. If any
two types differ in number by a multiple
of 3 at the start of the iterative process,
the difference can be reduced in steps of
3, to 0, when the iterative process ends.
However, at the start,
 r - g = 13 - 15 = -2

Chapter 8 Page 102-114.indd 106 3/24/2020 9:15:11 AM

107

 g - b = 15 - 17 = -2
 b - r = 17 - 13 = 4

 No two colors differ in number
by a multiple of 3. Therefore, all the
chameleons cannot be changed to a single
color.

Example 8.9. Jar of marbles: You are
given a jar full of two kinds of marbles,
white and black, and asked to play this
game. Randomly select two marbles from
the jar. If they are the same color, throw
them out, but put another black marble
in (you may assume that you have an
endless supply of spare marbles). If they
are different colors, place the white one
back into the jar and throw the black one
away. If you knew the original numbers of
white and black marbles, what is the color
of the last marble in the jar?

BB BW
WW

Figure 8.3: State changes in the jar marbles

The number of white and black marbles in
the jar can be represented by two variables
w and b. In each iterative step, b and w
change depending on the colors of the
two marbles taken out: Black Black, Black
White or White White. It is illustrated in
Figure 8.3 and annotated in the algorithm
below.

1 while at least two marbles in jar
2 -- b , w
3 take out any two marbles

4 case both are black -- BB
5 throw away both the marbles
6 put a black marble back
7 -- b = b '-1, w = w', b+w = b'+w' -1
8 case both are white --WW
9 throw away both the marbles
10 put a black marble back
11 --b = b'+1, w = w'-2, --b+w = b'+w'-1
12 else --BW
13 throw away the black one
14 put the white one back
15 -- b = b'-1, w = w', b+w = b'+w'-1

 For each case, how b, w and b+w
change is shown in the algorithm, where
b' and w' are values of the variables before
taking out two marbles. Notice the way
w changes. Either it does not change, or
decreases by 2. This means that the parity
of w, whether it is odd or even, does not
change. The parity of w is invariant.
 Suppose, at the start of the game,
w is even. When the game ends, w is still
even. Moreover, only one marble is left,
w+b = 1.

1 w + b = 1 end of the loop
2 w = 0orw = 1 from 1
3 w is even loop invariant
4 w = 0 from 2,3
5 b = 1 from 1,4

 Last marble must be black. Similarly,
if at the start of the game, there is an odd
number of whites, the last marble must be
white.

 One last question: do we ever reach
a state with only one marble? Yes, because
the total number of marbles b+w always
decreases by one at each step, it will
eventually become 1.

Chapter 8 Page 102-114.indd 107 3/24/2020 9:15:11 AM

108

8.4 Recursion

 Recursion is an algorithm design
technique, closely related to induction. It
is similar to iteration, but more powerful.
Using recursion, we can solve a problem
with a given input, by solving the instances
of the problem with a part of the input.

Example 8.10. Customers are waiting in a
line at a counter. The man at the counter
wants to know how many customers are
waiting in the line.

Length? Length? Length? Length? Length?

1 + 4 1 + 3 1 + 2 1 + 1 1
A B C D E

Figure 8.4: Length of a line

 Instead of counting the length
himself, he asks customer A for the length
of the line with him at the head, customer
A asks customer B for the length of the line
with customer B at the head, and so on.
When the query reaches the last customer
in the line, E, since there is no one behind
him, he replies 1 to D who asked him. D
replies 1+1 = 2 to C, C replies 1+2 = 3 to B,
B replies 1+3 = 4 to A, and A replies 1+4=
5 to the man in the counter

8.4.1 Recursive process

Example 8.10 illustrates a recursive
process. Let us represent the sequence of
5 customers A, B, C, D and E as
 [A,B,C,D,E]
 The problem is to calculate the
length of the sequence [A,B,C,D,E]. Let
us name our solver length. If we pass a
sequence as input, the solver length should
output the length of the sequence.
 length [A,B,C,D,E] = 5
 Solver length breaks the sequence

[A,B,C,D,E] into its first customer and the
rest of the sequence.
 first [A ,B,C,D,E] = A
 rest [A ,B,C,D,E] = [B ,C,D,E]
 To solve a problem recursively,
solver length passes the reduced sequence
[B,C,D,E] as input to a sub-solver, which
is another instance of length. The solver
assumes that the sub-solver outputs the
length of [B,C,D,E], adds 1, and outputs it
as the length of [A,B,C,D,E].
 length [A,B,C,D,E] = 1 + length
[B,C,D,E]
Each solver
1. receives an input,
2. passes an input of reduced size to a

sub-solver,
3. receives the solution to the reduced

input from the sub-solver, and produces
the solution for the given input

as illustrated in Figure 8.5.
solution for the input

reduced input solution for the reduced
input

solver
1

Inputs

2 3

4

Figure 8.5: One instance of a solver in a
recursive process

Figure 8.6 shows the input received and
the solution produced by each
solver for Example 8.10. Each solver
reduces the size of the input by one and
passes it on to a sub-solver, resulting in
5 solvers. This continues until the input
received by a solver is small enough to
output the solution directly. The last
solver received [E] as the input. Since [E]
is small enough, the solver outputs the

Chapter 8 Page 102-114.indd 108 3/24/2020 9:15:11 AM

109

 To solve a problem recursively, the
solver reduces the problem to sub-problems,
and calls another instance of the solver,
known as sub-solver, to solve the sub-
problem. The input size to a sub-problem
is smaller than the input size to the original
problem. When the solver calls a sub-solver,
it is known as recursive call. The magic of
recursion allows the solver to assume that
the sub-solver (recursive call) outputs the
solution to the sub-problem. Then, from
the solution to the sub-problem, the solver
constructs the solution to the given problem.
 As the sub-solvers go on reducing
the problem into sub-problems of smaller

length of [E] as 1 immediately, and the
recursion stops.

1+4

 1+3

1+2

1+1

1

Length

Length

Length

Length

Length

[A, B, C, D, E]

[B, C, D, E]

[C, D, E]

[D, E]

[E]

Figure 8.6: Recursive process with solvers
and sub-solvers

The recursive process for length
[A,B,C,D,E] is shown in Figure 8.7.

1 length [A,B,C,D,E]
2 = 1 + length [B,C,D,E]
3 = 1 +1 + length [C,D,E]

4 = 1 + 1+ 1 + length [D,E]
5 = 1 + 1+ 1 + 1 + length [E]
6 = 1 + 1 + 1 + 1 +1
7 = 1 +1 +1 + 2
8 = 1 + 1 + 3
9 = 1 + 4
10 = 5

Figure 8.7: Recursive process for computing
the length of a sequence

8.4.2 Recursive problem solving

 Each solver should test the size of
the input. If the size is small enough, the
solver should output the solution to the
problem directly. If the size is not small
enough, the solver should reduce the size
of the input and call a sub-solver to solve
the problem with the reduced input. For
Example 8.10, solver's algorithm can be
expressed as

1 if sequence has only one customer

1 + length of tail, otherwise
length of sequence = {

sizes, eventually the sub-problem becomes
small enough to be solved directly, without
recursion. Therefore, a recursive solver
has two cases:
1. Base case: The problem size is small

enough to be solved directly. Output
the solution. There must be at least one
base case.

2. Recursion step: The problem size is
not small enough. Deconstruct the
problem into a sub-problem, strictly
smaller in size than the given problem.
Call a sub-solver to solve the sub-
problem. Assume that the sub-solver
outputs the solution to the sub-

Chapter 8 Page 102-114.indd 109 3/24/2020 9:15:11 AM

110

problem. Construct the solution to the
given problem.

This outline of recursive problem solving
technique is shown below.
 solver (input)
 if input is small enough
 construct solution
 else
 find sub_problems of reduced
 input
 solutions to sub_problems =
 solver for each sub_problem
 construct solution to the
 problem from
 solutions to the sub_problems
Whenever we solve a problem using
recursion, we have to ensure these two
cases: In the recursion step, the size of
the input to the recursive call is strictly
smaller than the size of the given input,
and there is at least one base case.

8.4.3 Recursion — Examples

Example 8.11. The recursive algorithm
for length of a sequence can be written as
 length (s)
 -- inputs : s
 -- outputs : length of s
 if s has one customer -- base case
 1
 else
 1 + length(tail(s)) -- recursion step
Example 8.12. Design a recursive
algorithm to compute an. We constructed
an iterative algorithm to compute an in
Example 8.5. an can be defined recursively
as

{an = 1 if n = 0
a × a n - 1 otherwise

 The recursive definition can
be expressed as a recursive solver for
computing power(a, n).
 power (a, n)
 -- inputs: n is an integer , n ≥ 0
 -- outputs : an

 if n = 0 -- base case
 1
 else --recursion step
 a × power (a, n-1)
 The recursive process with solvers
for calculating power(2, 5) is shown in
Figure 8.8.

n = 5

n = 4

n = 3

n = 2

n = 1

n = 0

2 × 16

2 × 8

2 × 4

2 × 2

2 × 1

1
Power

Power

Power

Power

Power

Power

Figure 8.8: Recursive process with solvers
for calculating power(2, 5)

 The recursive process resulting
from power(2, 5) is shown in Figure 8.9.

power (2,5)
= 2 × power (2,4)
= 2 × 2 × power(2,3)
= 2 × 2 × 2 × power(2, 2)
= 2 × 2 × 2 × 2 × power (2,1)
= 2 × 2 × 2 × 2 × 2 × power (2,0)
= 2 × 2 × 2 × 2 × 2 × 1
= 2 × 2 × 2 × 2 × 2
= 2 × 2 × 2 × 4
= 2 × 2 × 8
= 2 × 16
= 32

Figure 8.9: Recursive process for power(2, 5)

2, 5

2, 4

2, 3

2, 2

2, 1

2, 0

Chapter 8 Page 102-114.indd 110 3/24/2020 9:15:11 AM

111

Example 8.13. A corner-covered board is a
board of 2n × 2n squares in which the square
at one corner is covered with a single square
tile. A triominoe is a L-shaped tile formed
with three adjacent squares (see Figure
8.10). Cover the corner-covered board with
the L-shaped triominoes without overlap.
Triominoes can be rotated as needed.

Figure 8.10: Corner-covered board and triominoe

 The size of the problem is n (board
of size 2n × 2n). We can solve the problem
by recursion. The base case is n = 1. It is a
2 × 2 corner-covered board. We can cover it
with one triominoe and solve the problem.
In the recursion step, divide the corner-
covered board of size 2n × 2n into 4 sub-
boards, each of size 2n-1 × 2n-1, by drawing
horizontal and vertical lines through the
centre of the board. Place a triominoe at the
center of the entire board so as to not cover
the corner-covered sub-board, as shown in

the left-most board of Figure 8.11. Now, we
have four corner-covered boards, each of
size 2n-1 × 2n-1.

Figure 8.11: Recursive process of covering a
corner-covered board of size 2 x 23

Chapter 8 Page 102-114.indd 111 3/24/2020 9:15:11 AM

112

 We have 4 sub-problems whose size
is strictly smaller than the size of the given
problem. We can solve each of the sub-
problems recursively.

 tile corner_covered board of size n

 if n = 1 -- base case

• Iteration repeats the two steps of
evaluating a condition and executing
a statement, as long as the condition is
true.

• An expression involving variables,
which remains unchanged by an
assignment to one of these variables, is
called an invariant of the assignment.

• An invariant for the loop body is known
as a loop invariant.

• A loop invariant is true.

• (a) at the start of the loop (just before
the loop)

• (b) at the start of each iteration (before
loop body)

• (c) at the end of each iteration (after
loop body)

Points to Remember

• (d) at the end of the loop (just after the
loop)

• When a loop ends, the loop invariant
is true. In addition, the termination
condition is also true.

• Recursion must have at least one base
case.

• Recursion step breaks the problem into
sub-problems of smaller size, assumes
solutions for sub-problems are given by
recursive calls, and constructs solution
to the given problem.

• In recursion, the size of input to a sub-
problem must be strictly smaller than
the size of the given input.

 cover the 3 squares with one
triominoe

else -- recursion step

 divide board into 4 sub_boards of
size n-1

 place a triominoe at centre of board ,

 leaving out the corner_covered sub
-board

 tile each sub_board of size n-1

 The resulting recursive process for
covering a 23 x 23 corner-covered board is
illustrated in Figure 8.11.

Chapter 8 Page 102-114.indd 112 3/24/2020 9:15:11 AM

113

Evaluation

SECTION – A
Choose the correct answer
1. A loop invariant need not be true

 (a) at the start of the loop. (b) at the start of each iteration
 (c) at the end of each iteration (d) at the start of the algorithm

2. We wish to cover a chessboard with dominoes, the number of black squares and
 the number of white squares covered by dominoes, respectively, placing a domino can
 be modeled by
 (a) b := b + 2 (b) w := w + 2 (c) b, w := b+1, w+1 (d) b := w

3. If m x a + n x b is an invariant for the assignment a, b : = a + 8, b + 7, the values of m
and n are

 (a) m = 8, n = 7 (b) m = 7, n = -8 (c) m = 7, n = 8 (d) m = 8, n = -7

4. Which of the following is not an invariant of the assignment?
 m, n := m+2, n+3
 (a) m mod 2 (b) n mod 3 (c) 3 X m - 2 X n (d) 2 X m - 3 X n

5. If Fibonacci number is defined recursively as

{F (n)=
0 n = 0
1 n = 1
F(n — 1) + F(n — 2) otherwise

 to evaluate F(4), how many times F() is applied?
 (a) 3 (b) 4 (c) 8 (d) 9

6. Using this recursive definition

{a n=
1 if n = 0
a x an -1 otherwise

 how many multiplications are needed to calculate a10?
 (a) 11 (b) 10 (c) 9 d) 8

SECTION-B

Very Short Answers

1. What is an invariant?

2. Define a loop invariant.

3. Does testing the loop condition affect the loop invariant? Why?

4. What is the relationship between loop invariant, loop condition and the input- output
recursively

Chapter 8 Page 102-114.indd 113 3/24/2020 9:15:11 AM

114

5. What is recursive problem solving?

6. Define factorial of a natural number recursively.

SECTION-C
Short Answers

1. There are 7 tumblers on a table, all standing upside down. You are allowed to turn any
2 tumblers simultaneously in one move. Is it possible to reach a situation when all the
tumblers are right side up? (Hint: The parity of the number of upside down tumblers is
invariant.)

2. A knockout tournament is a series of games. Two players compete in each game; the
loser is knocked out (i.e. does not play any more), the winner carries on. The winner of
the tournament is the player that is left after all other players have been knocked out.
Suppose there are 1234 players in a tournament. How many games are played before the
tournament winner is decided?

3. King Vikramaditya has two magic swords. With one, he can cut off 19 heads of a dragon,
but after that the dragon grows 13 heads. With the other sword, he can cut off 7 heads, but
22 new heads grow. If all heads are cut off, the dragon dies. If the dragon has originally
1000 heads, can it ever die? (Hint:The number of heads mod 3 is invariant.)

SECTION - D

Explain in detail

1. Assume an 8 × 8 chessboard with the usual coloring. "Recoloring" operation changes the
color of all squares of a row or a column. You can recolor re-peatedly. The goal is to attain
just one black square. Show that you cannot achieve the goal. (Hint: If a row or column
has b black squares, it changes by (|8 - b) - b|).

2. Power can also be defined recursively as

{a n=
1 if n = 0
a × an -1 if n is odd
a n/2 × a n/2 if n is even

 Construct a recursive algorithm using this definition. How many multiplications are
needed to calculate a10?

3. A single-square-covered board is a board of 2n x 2n squares in which one square is covered
with a single square tile. Show that it is possible to cover the this board with triominoes
without overlap.

Chapter 8 Page 102-114.indd 114 3/24/2020 9:15:11 AM

	Introduction Folder
	Chapter 1 Page 001-013
	Chapter 2 Page 014-040
	Chapter 3 Page 041-049
	Chapter 4 Page 050-056
	Chapter 5 Page 057-075
	Chapter 6 Page 076-087
	Chapter 7 Page 088-101
	Chapter 8 Page 102-114

