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 There are several problems which can 
be solved by doing the same action repeatedly. 
Both iteration and recursion are algorithm 
design techniques to execute the same action 
repeatedly. What is the use of repeating the 
same action again and again? Even though the 
action is the same, the state in which the action 
is executed is not the same. Each time we 
execute the action, the state changes. Therefore, 
the same action is repeatedly executed, but 
in different states. The state changes in such a 
way that the process progresses to achieve the 
desired input-output relation.

Iteration: In iteration, the loop body is 
repeatedly executed as long as the loop condition 
is true. Each time the loop body is executed, 
the variables are updated. However, there is 
also a property of the variables which remains 
unchanged by the execution of the loop body. 
This unchanging property is called the loop 
invariant. Loop invariant is the key to construct 
and to reason about iterative algorithms.

Recursion: Recursion is another algorithm 
design technique, closely related to iteration, 
but more powerful.Using recursion, we solve 

a problem with a given input, by solving the 
same problem with a part of the input, and 
constructing a solution to the original problem 
from the solution to the partial input.

8.1 Invariants

Example 8.1. Suppose the following 
assignment is executed with (u, v) = 
(20,15). We can annotate before and after 
the assignment.

 -- before: u, v = 20, 15

 u, v :=u+5,v-5

 -- after: u, v = 25, 10

 After assignment (u, v) = (25, 10). 
But what do you observe about the value 
of the function u + v?

Iteration and recursion

CHAPTER 8Unit II Algorithmic Problem
Solving

Learning Objectives

 After learning the 
concepts in this chapter, the 
students will be able 
• To know the concepts of 

variants and invariants 
used in algorithmic techniques.

• Apply algorithmic techniques in 
iteration and recursion process.

E W Dijkstra was one of the most 
influential pioneers of Computing 
Science. He made fundamental 
contributions in diverse areas such 

as programming language design, operating 
systems, and program design. He coined the 
phrase "structured programming" which 
helped lay the foundations for the discipline 
of software engineering. In 1972, he was 
awarded ACM Turing Award, considered 
the highest distinction in 
computer science. Dijkstra 
is attributed to have said 
"Computer science is no 
more about computers 
than astronomy is about 
telescopes."
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  before: u + v = 20 + 15 = 35

  after:   u + v  = 25 + 10 = 35

 The assignment has not changed 
the value of u + v. We say that u + v is 
an invariant of the assignment. We can 
annotate before and after the assignment 
with the invariant expression.

 -- before: u + v = 35

 u, v : = u + 5, v - 5

 -- after : u + v = 35

 We can say, u + v is an invariant: it 
is 35 before and after. Or we can say u + 
v =35 is an invariant: it is true before and 
after.

Example 8.2. If we execute the following 
assignment with (p, c = 10, 9), after the 
assignment, (p, c) = (11, 10).

 -- before : p, c = 10 , 9

 p, c := p + 1, c+1

 -- after: p, c = 11 , 10

Can you discover an invariant? What is 
the value of p - c before and after?

  before: p — c = 10 — 9 = 1

  after:    p — c = 11 — 10 = 1

We find that p - c = 1 is an invariant.

 In general, if an expression of the 
variables has the same value before and 
after an assignment, it is an invariant of the 
assignment. Let P(u, v) be an expression 
involving variables u and v. P(u, v)[u, v:= el, 
e2] is obtained from P(u, v) by replacing u 
by el and v by e2 simultaneously. P(u, v) is 
an invariant of assignment u, v := el, e2 if

  P(u,v) [u,v := el, e2] = P(u,v)

Example 8.3. Show that p - c is an invariant 
of the assignment

 p, c := p + 1, c + 1

Let P(p, c) = p - c. Then

 P (p, c) [p, c := p + 1, c + l]

 = p — c [p, c := p + 1, c + l]

 = (p + 1) — (c + 1)

 = p — c

 = P(P , c)

Since (p - c)[p, c := p+l, c+l] = p - c, p - c 
is an invariant of the assignment  
 p, c := p + 1, c + 1.

Example 8.4. Consider two variables m 
and n under the assignment

 m, n := m + 3, n - 1

Is the expression m + 3n an invariant?

   Let P(m, n) = m + 3n. Then

 P(m, n) [m, n := m + 3, n — l]

 = m + 3n [m, n := m + 3, n — l]

 = (m + 3) + 3(n — l)

 = m + 3 + 3n — 3

 = m + 3n

 = P(m, n)

Since (m + 3n) [ m, n : = m + 3,         n - 
1] = m + 3n, m + 3n is an invariant of the 
assignment m, n := m + 3, n - l.

8.2 Loop invariant

 In a loop, if L is an invariant of the 
loop body B, then L is known as a loop 
invariant.

 while C

 -- L

 B

 -- L

Chapter 8 Page 102-114.indd   103 3/24/2020   9:15:11 AM



104

 The loop invariant is true before 
the loop body and after the loop body, 
each time. Since L is true at the start of 
the first iteration, L is true at the start of 
the loop also (just before the loop). Since 
L is true at the end of the last iteration, L 
is true when the loop ends also (just after 
the loop). Thus, if L is a loop variant, then 
it is true at four important points in the 
algorithm, as annotated in the algorithm 
and shown in Figure 3.1.

1. at the start of the loop (just before the 
loop)

2. at the start of each iteration (before 
loop body)

3. at the end of each iteration (after loop 
body)

4. at the end of the loop (just after the 
loop)

1. -- L, start of loop
 while
       C
2.   -- L, start of iteration
        B
3.        -- L, end of iteration
4. -- L, end of loop

inputs

3 end of iteration

C

2 start of iteration

1 start of loop

outputs

L

L

L 4 end of loop

B
L

Figure 8.1:  The points where the loop 
invariant is true

To construct a loop,

1. Establish the loop invariant at the start 
of the loop. 

2. The loop body should update the 
variables, so as to progress toward the 
end, and maintain the loop invariant, 
at the same time. 

3. When the loop ends, the termination 
condition and the loop invariant should 
establish the input-output relation.

8.3 Invariants — Examples

 The loop invariant is true in four 
crucial points in a loop. Using the loop 
invariant, we can construct the loop 
and reason about the properties of the 
variables at these points.

Example 8.5. Design an iterative algorithm 
to compute an. Let us name the algorithm 
power(a, n). For example,
 power(10, 4) = 10000
 power (5, 3) = 125
 power (2, 5) = 32

 Algorithm power(a, n) computes an 
by multiplying a cumulatively n times.

 

{an = ax ax ... x a

  
n times

 The specification and the loop 
invariant are shown as comments.
 power (a, n)
 -- inputs: n is a positive integer
 -- outputs: p = an

 p, i := 1, 0
 while i ≠ n
     -- loop invariant: p = ai

     p, i :=p X a, i+1
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 The step by step execution of power 
(2, 5) is shown in Table 8.1. Each row 
shows the values of the two variables p and 
i at the end of an iteration, and how they 
are calculated. We see that p = ai is true at 
the start of the loop, and remains true in 
each row. Therefore, it is a loop invariant.

iteration p p x a i i+1 ai

0 1 0 20

1 2 1x2 1 0 + 1 21

2 4 2x2 2 1 + 1 22

3 8 4x2 3 2 + 1 23

4 16 8x2 4 3 + 1 24

5 32 16x2 5 4+1 25

Table 8.1: Trace of power (2, 5)

 When the loop ends, p = a1 is 
still true, but i = 5. Therefore, p = a5. In 
general, when the loop ends, p = an. Thus, 
we have verified that power(a, n) satisfies 
its specification.

Example 8.6. Recall the Chocolate bar 
problem of Example 6.11. How many 
cuts are needed to break the bar into its 
individual squares?

 We decided to represent the 
number of pieces and the number of 
cuts by variables p and c respectively. 
Whenever a cut is made, the number of 
cuts increases by one and the number of 
pieces also increases by one. We decided 
to model it by an assignment.
 p, c := p + 1, c+1
 The process of cutting the bar can 
be modeled by a loop. We start with one 
piece and zero cuts, p = 1 and c = 0. Let n be 
the number of individual squares. When 
the number of pieces p equals the number 
of individual squares n, the process ends.

 p, c : = 1 , 0

 while p ≠ n

     p, c := p + 1, c+1

 We have observed (in Example 8.2) 
that p - c is an invariant of the assignment 
p, c := p + 1, c + 1. Let p - c = k, where k 
is a constant. The points in the algorithm 
where p - c = k is true are shown in the 
algorithm below, and in the flowchart of 
Figure 8.2.

 p, c : = 1 , 0

1. -- p - c = k

     while p ≠ n

2.     -- p - c = k

          p, c := p+1, c+1

3.     -- p - c = k

4. --p-c=k,p=n

 The loop invariant p- c = k is True 
at the start of the loop (line 1). Moreover, 
at the start of the loop, p- c = 1. Therefore, 
k = 1, and the loop invariant is p - c = 1

3 end of iteration

2 start of iteration

1 start of loop

p,c

4 end of loop

p,c : =1,0
p-c : = k

p-c = k

p-c = k
p-c = k

p ≠ n

p, c: =p + 1, c+ 1

Figure 8.2: The points where the loop 
invariant is true

 When the loop ends (line 4), the 
loop invariant is still true (p - c = 1). 
Moreover, the loop condition is false (p = 
n). From p - c = 1 and p = n,
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1. p — c = 1 loop invariant
2. p = n end of the loop
3. n — c = 1 from 1, 2
4. c = n — 1 from 3

 When the process ends, the number 
of cuts is one less than the number of 
squares.

Example 8.7. There are 6 equally spaced 
trees and 6 sparrows sitting on these 
trees,one sparrow on each tree. If a sparrow 
flies from one tree to another, then at the 
same time, another sparrow flies from its 
tree to some other tree the same distance 
away, but in the opposite direction. Is it 
possible for all the sparrows to gather on 
one tree?

 Let us index the trees from 1 to 
6. The index of a sparrow is the index of 
the tree it is currently sitting on. A pair 
of sparrows flying can be modeled as an 
iterative step of a loop. When a sparrow at 
tree i flies to tree i + d, another sparrow at 
tree j flies to tree j — d. Thus, after each 
iterative step, the sum S of the indices of 
the sparrows remains invariant. Moreover, 
a loop invariant is true at the start and at 
the end of the loop.

 At the start of the loop, the value of 
the invariant is

 S = 1 + 2 + 3 + 4 + 5 + 6 = 21

 When the loop ends, the loop 
invariant has the same value. However, 
when the loop ends, if all the sparrows 
were on the same tree, say k, then S = 6k.

S = 21, loop invariant at the start of 
the loop

S = 6k, loop invariant at end of the 
loop

6k= 21, loop invariant has the same 
value at the start and the end

21 is a multiple of 6

It is not possible — 21 is not a multiple 
of 6. The desired final values of the 
sparrow indices is not possible with the 
loop invariant. Therefore, all the sparrows 
cannot gather on one tree. 

Example 8.8. Consider the Chameleons 
of Chromeland of Example 6.3. There are 
13 red, 15 green, and 17 blue chameleons 
on Chromeland. When two chameleons 
of different colors meet they both change 
their color to the third one (for example, 
if a red and a green meet, both become 
blue). Is it possible to arrange meetings 
that result in all chameleons displaying 
blue color?
 Let r, g, and b be the numbers of 
red, green and blue chameleons. We can 
model the meetings of two types as an 
iterative process. A meeting changes (r, g,  
b) into (r-1, g-1, b+2) or (r-1, g+2, b-1) or 
(r+2, g-1, b-1). Consider, for example, the 
meeting of a red and a green chameleon.
 r, g, b := r-1, g-1, b+2
 The difference in the numbers of 
any two types either do not change or 
changes by 3. This is an invariant.
 r - 1 - (g - 1) = r - g
 r - 1 - (b + 2) = (r - b) - 3
 g - 1 - (b + 2) = (g - b) - 3
 This is true for all three cases. If any 
two types differ in number by a multiple 
of 3 at the start of the iterative process, 
the difference can be reduced in steps of 
3, to 0, when the iterative process ends. 
However, at the start,
 r - g = 13 - 15 = -2
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 g - b = 15 - 17 = -2
 b - r = 17 - 13 = 4

 No two colors differ in number 
by a multiple of 3. Therefore, all the 
chameleons cannot be changed to a single 
color.

Example 8.9. Jar of marbles: You are 
given a jar full of two kinds of marbles, 
white and black, and asked to play this 
game. Randomly select two marbles from 
the jar. If they are the same color, throw 
them out, but put another black marble 
in (you may assume that you have an 
endless supply of spare marbles). If they 
are different colors, place the white one 
back into the jar and throw the black one 
away. If you knew the original numbers of 
white and black marbles, what is the color 
of the last marble in the jar?

BB BW
WW

Figure 8.3: State changes in the jar marbles

The number of white and black marbles in 
the jar can be represented by two variables 
w and b. In each iterative step, b and w 
change depending on the colors of the 
two marbles taken out: Black Black, Black 
White or White White. It is illustrated in 
Figure 8.3 and annotated in the algorithm 
below.

1  while at least two marbles in jar
2   -- b , w
3   take out any two marbles

4   case both are black -- BB
5    throw away both the marbles
6    put a black marble back
7    -- b = b '-1, w = w',  b+w = b'+w' -1
8   case both are white  --WW
9    throw away both the marbles
10    put a black marble back
11    --b = b'+1, w = w'-2, --b+w = b'+w'-1
12  else                         --BW
13    throw away the black one
14    put the white one back
15    -- b = b'-1, w = w', b+w = b'+w'-1

 For each case, how b, w and b+w 
change is shown in the algorithm, where 
b' and w' are values of the variables before 
taking out two marbles. Notice the way 
w changes. Either it does not change, or 
decreases by 2. This means that the parity 
of w, whether it is odd or even, does not 
change. The parity of w is invariant.
 Suppose, at the start of the game, 
w is even. When the game ends, w is still 
even. Moreover, only one marble is left, 
w+b = 1.

1 w + b = 1 end of the loop
2 w = 0orw = 1 from 1
3 w is even loop invariant
4 w = 0 from 2,3
5 b = 1 from 1,4

 Last marble must be black. Similarly, 
if at the start of the game, there is an odd 
number of whites, the last marble must be 
white. 

 One last question: do we ever reach 
a state with only one marble? Yes, because 
the total number of marbles b+w always 
decreases by one at each step, it will 
eventually become 1.
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8.4 Recursion

 Recursion is an algorithm design 
technique, closely related to induction. It 
is similar to iteration, but more powerful. 
Using recursion, we can solve a problem 
with a given input, by solving the instances 
of the problem with a part of the input.

Example 8.10. Customers are waiting in a 
line at a counter. The man at the counter 
wants to know how many customers are 
waiting in the line.

Length? Length? Length? Length? Length?

1 + 4 1 + 3 1 + 2 1 + 1  1
A B C D E

Figure 8.4: Length of a line

 Instead of counting the length 
himself, he asks customer A for the length 
of the line with him at the head, customer 
A asks customer B for the length of the line 
with customer B at the head, and so on. 
When the query reaches the last customer 
in the line, E, since there is no one behind 
him, he replies 1 to D who asked him. D 
replies 1+1 = 2 to C, C replies 1+2 = 3 to B, 
B replies 1+3 = 4 to A, and A replies 1+4= 
5 to the man in the counter

8.4.1 Recursive process

Example 8.10 illustrates a recursive 
process. Let us represent the sequence of 
5 customers A, B, C, D and E as
 [A,B,C,D,E]
 The problem is to calculate the 
length of the sequence [A,B,C,D,E]. Let 
us name our solver length. If we pass a 
sequence as input, the solver length should 
output the length of the sequence.
 length [A,B,C,D,E] = 5
 Solver length breaks the sequence 

[A,B,C,D,E] into its first customer and the 
rest of the sequence.
 first [A ,B,C,D,E] = A
 rest [A ,B,C,D,E] = [B ,C,D,E]
 To solve a problem recursively, 
solver length passes the reduced sequence 
[B,C,D,E] as input to a sub-solver, which 
is another instance of length. The solver 
assumes that the sub-solver outputs the 
length of [B,C,D,E], adds 1, and outputs it 
as the length of [A,B,C,D,E].
   length [A,B,C,D,E] = 1 + length 
[B,C,D,E]
Each solver
1. receives an input,
2. passes an input of reduced size to a 

sub-solver,
3. receives the solution to the reduced 

input from the sub-solver, and produces 
the solution for the given input

as illustrated in Figure 8.5.
solution for the input

reduced input solution for the reduced 
input

solver
1

Inputs

2 3

4

Figure 8.5: One instance of a solver in a 
recursive process

Figure 8.6 shows the input received and 
the solution produced by each
solver for Example 8.10. Each solver 
reduces the size of the input by one and 
passes it on to a sub-solver, resulting in 
5 solvers. This continues until the input 
received by a solver is small enough to 
output the solution directly. The last 
solver received [E] as the input. Since [E] 
is small enough, the solver outputs the 
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 To solve a problem recursively, the 
solver reduces the problem to sub-problems, 
and calls another instance of the solver, 
known as sub-solver, to solve the sub-
problem. The input size to a sub-problem 
is smaller than the input size to the original 
problem. When the solver calls a sub-solver, 
it is known as recursive call. The magic of 
recursion allows the solver to assume that 
the sub-solver (recursive call) outputs the 
solution to the sub-problem. Then, from 
the solution to the sub-problem, the solver 
constructs the solution to the given problem.
 As the sub-solvers go on reducing 
the problem into sub-problems of smaller 

length of [E] as 1 immediately, and the 
recursion stops.

1+4

 1+3

1+2

1+1

1 

Length

Length

Length

Length

Length

[ A, B, C, D, E]

[ B, C, D, E]

[C, D, E]

[D, E]

[E]

Figure 8.6: Recursive process with solvers 
and sub-solvers

The recursive process for length  
[A,B,C,D,E] is shown in Figure 8.7.

1        length [A,B,C,D,E]
2 = 1 + length [B,C,D,E]
3 = 1 +1 + length [C,D,E]

4 = 1 + 1+ 1 + length [D,E]
5 = 1 + 1+ 1 + 1 + length [E]
6 = 1 + 1 + 1 + 1 +1
7 =  1 +1 +1 + 2
8 =  1 + 1 + 3
9 =  1 + 4
10 =  5

Figure 8.7: Recursive process for computing 
the length of a sequence

8.4.2 Recursive problem solving

 Each solver should test the size of 
the input. If the size is small enough, the 
solver should output the solution to the 
problem directly. If the size is not small 
enough, the solver should reduce the size 
of the input and call a sub-solver to solve 
the problem with the reduced input. For 
Example 8.10, solver's algorithm can be 
expressed as

1   if sequence has only one customer

1 + length of tail,  otherwise
length of sequence = {

sizes, eventually the sub-problem becomes 
small enough to be solved directly, without 
recursion. Therefore, a recursive solver 
has two cases:
1. Base case: The problem size is small 

enough to be solved directly. Output 
the solution. There must be at least one 
base case.

2. Recursion step: The problem size is 
not small enough. Deconstruct the 
problem into a sub-problem, strictly 
smaller in size than the given problem. 
Call a sub-solver to solve the sub-
problem. Assume that the sub-solver 
outputs the solution to the sub-
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problem. Construct the solution to the 
given problem.

This outline of recursive problem solving 
technique is shown below.
 solver (input)
    if input is small enough
    construct solution
 else
    find sub_problems of reduced  
    input
    solutions to sub_problems =   
    solver  for each sub_problem
    construct solution to the          
    problem from
 solutions to the sub_problems
Whenever we solve a problem using 
recursion, we have to ensure these two 
cases: In the recursion step, the size of 
the input to the recursive call is strictly 
smaller than the size of the given input, 
and there is at least one base case.

8.4.3 Recursion — Examples

Example 8.11. The recursive algorithm 
for length of a sequence can be written as
 length (s)
 -- inputs : s
 -- outputs : length of s
     if s has one customer -- base case
        1
  else
        1 + length(tail(s)) -- recursion step
Example 8.12. Design a recursive 
algorithm to compute an. We constructed 
an iterative algorithm to compute an in 
Example 8.5. an can be defined recursively 
as

{an = 1  if n = 0
a × a n - 1 otherwise

 The recursive definition can 
be expressed as a recursive solver for 
computing power(a, n).
 power (a, n)
 -- inputs: n is an integer , n ≥ 0
 -- outputs : an

 if n = 0 -- base case
    1
 else --recursion step
  a × power (a, n-1)
 The recursive process with solvers 
for calculating power(2, 5) is shown in 
Figure 8.8. 

n = 5

n = 4

n = 3

n = 2

n = 1

n = 0

2 × 16

2 × 8 

2 × 4

2 × 2

2 × 1

1
Power

Power

Power

Power

Power

Power

Figure 8.8: Recursive process with solvers 
for calculating power(2, 5)

 The recursive process resulting 
from power(2, 5) is shown in Figure 8.9.

power (2,5)
= 2  × power (2,4)
= 2  × 2  × power(2,3)
= 2  × 2  × 2  ×  power(2, 2)
= 2  × 2  × 2  ×  2 ×  power (2,1)
= 2  × 2  × 2  ×  2 × 2 × power (2,0)
= 2  × 2  × 2  ×  2 × 2 × 1
= 2  × 2  × 2  ×  2 × 2
= 2  × 2  × 2  ×  4
= 2  × 2  × 8
= 2  × 16
= 32

Figure 8.9: Recursive process for power(2, 5)

2, 5

2, 4

2, 3

2, 2

2, 1

2, 0
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Example 8.13. A corner-covered board is a 
board of 2n × 2n squares in which the square 
at one corner is covered with a single square 
tile. A triominoe is a L-shaped tile formed 
with three adjacent squares (see Figure 
8.10). Cover the corner-covered board with 
the L-shaped triominoes without overlap. 
Triominoes can be rotated as needed.

Figure 8.10: Corner-covered board and triominoe

 The size of the problem is n (board 
of size 2n × 2n). We can solve the problem 
by recursion. The base case is n = 1. It is a 
2 × 2 corner-covered board. We can cover it 
with one triominoe and solve the problem. 
In the recursion step, divide the corner-
covered board of size 2n × 2n into 4 sub-
boards, each of size 2n-1 × 2n-1, by drawing 
horizontal and vertical lines through the 
centre of the board. Place a triominoe at the 
center of the entire board so as to not cover 
the corner-covered sub-board, as shown in 

the left-most board of Figure 8.11. Now, we 
have four corner-covered boards, each of 
size 2n-1 × 2n-1.

Figure 8.11: Recursive process of covering a 
corner-covered board of size 2  x 23
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 We have 4 sub-problems whose size 
is strictly smaller than the size of the given 
problem. We can solve each of the sub-
problems recursively.

 tile corner_covered board of size n

   if n = 1 -- base case

• Iteration repeats the two steps of 
evaluating a condition and executing 
a statement, as long as the condition is 
true.

• An expression involving variables, 
which remains unchanged by an 
assignment to one of these variables, is 
called an invariant of the assignment.

• An invariant for the loop body is known 
as a loop invariant.

• A loop invariant is true.

• (a) at the start of the loop (just before 
the loop)

• (b) at the start of each iteration (before 
loop body)

• (c) at the end of each iteration (after 
loop body)

Points to Remember

• (d) at the end of the loop (just after the 
loop)

• When a loop ends, the loop invariant 
is true. In addition, the termination 
condition is also true.

• Recursion must have at least one base 
case.

• Recursion step breaks the problem into 
sub-problems of smaller size, assumes 
solutions for sub-problems are given by 
recursive calls, and constructs solution 
to the given problem.

• In recursion, the size of input to a sub-
problem must be strictly smaller than 
the  size of the given input.

 cover the 3 squares with one 
triominoe

else -- recursion step

 divide board into 4 sub_boards of 
size n-1

 place a triominoe at centre of board ,

 leaving out the corner_covered sub 
-board

 tile each sub_board of size n-1

 The resulting recursive process for 
covering a 23 x 23 corner-covered board is 
illustrated in Figure 8.11.
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Evaluation

SECTION – A
Choose the correct answer
1. A loop invariant need not be true

 (a)  at the start of the loop.    (b)  at the start of each iteration
 (c)  at the end of each iteration   (d)  at the start of the algorithm 

2. We wish to cover a chessboard with dominoes,  the number of black squares and  
 the number of white squares covered by dominoes, respectively, placing a domino can  
 be   modeled        by 
 (a)  b := b + 2  (b)  w := w + 2 (c)  b, w := b+1, w+1  (d)  b := w 

3. If m x a + n x b is an invariant for the assignment a, b : = a + 8, b + 7, the values of m 
and n are 

 (a)  m = 8, n = 7 (b)  m = 7, n = -8 (c)  m = 7, n = 8 (d)  m = 8, n = -7

4. Which of the following is not an invariant of the assignment?
 m, n := m+2, n+3
 (a)  m mod 2  (b)  n mod 3  (c)  3 X m - 2 X n (d)  2 X m - 3 X n

5. If Fibonacci number is defined recursively as

{F (n)=
0   n = 0
1   n = 1
F(n — 1) + F(n — 2) otherwise

 to evaluate F(4), how many times F() is applied?
 (a) 3  (b) 4  (c) 8  (d) 9

6. Using this recursive definition

{a n=
1   if n = 0
a x an -1   otherwise

 how many multiplications are needed to calculate a10?
 (a) 11  (b) 10  (c) 9  d) 8

SECTION-B 

Very Short Answers

1. What is an invariant?

2. Define a loop invariant.

3. Does testing the loop condition affect the loop invariant? Why?

4.  What is the relationship between loop invariant, loop condition and the input-  output 
recursively
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5. What is recursive problem solving?

6. Define factorial of a natural number recursively.

SECTION-C
Short Answers

1. There are 7 tumblers on a table, all standing upside down. You are allowed to turn any 
2 tumblers simultaneously in one move. Is it possible to reach a situation when all the 
tumblers are right side up? (Hint: The parity of the number of upside down tumblers is 
invariant.)

2. A knockout tournament is a series of games. Two players compete in each game; the 
loser is knocked out (i.e. does not play any more), the winner carries on. The winner of 
the tournament is the player that is left after all other players have been knocked out. 
Suppose there are 1234 players in a tournament. How many games are played before the 
tournament winner is decided?

3. King Vikramaditya has two magic swords. With one, he can cut off 19 heads of a dragon, 
but after that the dragon grows 13 heads. With the other sword, he can cut off 7 heads, but 
22 new heads grow. If all heads are cut off, the dragon dies. If the dragon has originally 
1000 heads, can it ever die? (Hint:The number of heads mod 3 is invariant.)

SECTION - D

Explain in detail

1. Assume an 8 × 8 chessboard with the usual coloring. "Recoloring" operation changes the 
color of all squares of a row or a column. You can recolor re-peatedly. The goal is to attain 
just one black square. Show that you cannot achieve the goal. (Hint: If a row or column 
has b black squares, it changes by (|8 - b) - b|).

2. Power can also be defined recursively as

{a n=
1   if n = 0
a × an -1  if n is odd
a n/2 × a n/2  if n is even

 Construct a recursive algorithm using this definition. How many multiplications are 
needed to calculate a10?

3.  A single-square-covered board is a board of 2n x 2n squares in which one square is covered 
with a single square tile. Show that it is possible to cover the this board with triominoes 
without overlap.
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