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Waves on Transmission Lines

In the wave motion discussed so far four major points have emerged. They are

1. Individual particles in the medium oscillate about their equilibrium positions with

simple harmonic motion but do not propagate through the medium.

2. Crests and troughs and all planes of equal phase are transmitted through the medium to

give the wave motion.

3. The wave or phase velocity is governed by the product of the inertia of the medium and

its capacity to store potential energy; that is, its elasticity.

4. The impedance of the medium to this wave motion is governed by the ratio of the

inertia to the elasticity (see table on p. 546).

In this chapter we wish to investigate the wave propagation of voltages and currents and

we shall see that the same physical features are predominant. Voltage and current waves are

usually sent along a geometrical configuration of wires and cables known as transmission

lines. The physical scale or order of magnitude of these lines can vary from that of an

oscilloscope cable on a laboratory bench to the electric power distribution lines supported

on pylons over hundreds of miles or the submarine telecommunication cables lying on an

ocean bed.

Any transmission line can be simply represented by a pair of parallel wires into one end

of which power is fed by an a.c. generator. Figure 7.1a shows such a line at the instant

when the generator terminal A is positive with respect to terminal B, with current flowing

out of the terminal A and into terminal B as the generator is doing work. A half cycle later

the position is reversed and B is the positive terminal, the net result being that along each of

the two wires there will be a distribution of charge as shown, reversing in sign at each half

cycle due to the oscillatory simple harmonic motion of the charge carriers (Figure 7.1b).

These carriers move a distance equal to a fraction of a wavelength on either side of their

equilibrium positions. As the charge moves current flows, having a maximum value where

the product of charge density and velocity is greatest.
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The existence along the cable of maximum and minimum current values varying simple

harmonically in space and time describes a current wave along the cable. Associated with

these currents there are voltage waves (Figure 7.1a), and if the voltage and current at the

generator are always in phase then power is continuously fed into the transmission line and

the waves will always be carrying energy away from the generator. In a laboratory the

voltage and current waves may be shown on a Lecher Wire sysem (Figure 7.1c).

In deriving the wave equation for both voltage and current to obtain the velocity of wave

propagation we shall concentrate our attention on a short element of the line having a

length very much less than that of the waves. Over this element we may consider the

variables to change linearly to the first order and we can use differentials.

The currents which flow will generate magnetic flux lines which thread the region

between the cables, giving rise to a self inductance L0 per unit length measured in henries

per metre. Between the lines, which form a condenser, there is an electrical capacitance C0
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Figure 7.1 Power fed continuously by a generator into an infinitely long transmission line. Charge
distribution and voltage waves for (a) generator terminal positive at A and (b) a half period later,
generator terminal positive at B. Laboratory demonstration (c) of voltage maxima along a Lecher wire
system. The neon lamp glows when held near a position of Vmax
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per unit length measured in farads per metre. In the absence of any resistance in the line

these two parameters completely describe the line, which is known as ideal or lossless.

Ideal or Lossless Transmission Line

Figure 7.2 represents a short element of zero resistance of an ideal transmission line length

dx � � (the voltage or current wavelength). The self inductance of the element is L0 dx

and its capacitance if C0 dx F.

If the rate of change of voltage per unit length at constant time is @V=@x, then the

voltage difference between the ends of the element dx is @V=@x dx, which equals the

voltage drop from the self inductance �ðL0 dxÞ@I=@t.
Thus

@V

@x
dx ¼ �ðL0 dxÞ @I

@t

or

@V

@x
¼ �L0

@I

@t
ð7:1Þ

If the rate of change of current per unit length at constant time is @I=@x there is a loss of

current along the length dx of �@I=@x dx because some current has charged the capacitance

C0 dx of the line to a voltage V.

If the amount of charge is q ¼ ðC0 dxÞV ,

dI ¼ dq

dt
¼ @

@t
ðC0 dxÞV

so that

�@I
@x

dx ¼ @

@t
ðC0 dxÞV

V V +       dx

I

dx

L0dx

C0dx ∂V

∂x

I +       dx∂I

∂x

Figure 7.2 Representation of element of an ideal transmission line of inductance L 0 H per unit
length and capacitance C0 F per unit length. The element length � �, the voltage and current
wavelength
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or �@I
@x

¼ C0

@V

@t
ð7:2Þ

Since @ 2=@x@t ¼ @ 2=@t @x it follows, by taking @=@x of equation (7.1) and @=@t of

equation (7.2) that

@ 2V

@x2
¼ L0C0

@ 2V

@t 2
ð7:3Þ

a pure wave equation for the voltage with a velocity of propagation given by v 2 ¼ 1=L0C0.

Similarly @=@t of (7.1) and @=@x of (7.2) gives

@ 2I

@x2
¼ L0C0

@ 2I

@t 2
ð7:4Þ

showing that the current waves propagate with the same velocity v 2 ¼ 1=L0C0. We must

remember here, in checking dimensions, that L0 and C0 are defined per unit length.

So far then, the oscillatory motion of the charge carriers (our particles in a medium) has

led to the propagation of voltage and current waves with a velocity governed by the product

of the magnetic inertia or inductance of the medium and its capactiy to store potential

energy.

Coaxial Cables

Many transmission lines are made in the form of coaxial cables, e.g. a cylinder of dielectric

material such as polythene having one conductor along its axis and the other surrounding

its outer surface. This configuration has an inductance per unit length of

L0 ¼ �

2�
loge

r2

r1
H

where r1 and r2 are the radii of the inner and outer conductors respectively and � is the

magnetic permeability of the dielectric (henries per metre). Its capacitance per unit length

C0 ¼ 2�"

loge r2=r1
F

where " is the permittivity of the dielectric (farads per metre) so that v 2 ¼ 1=L0C0 ¼ 1=�".
The velocity of the voltage and current waves along such a cable is wholly determined

by the properties of the dielectric medium. We shall see in the next chapter on

electromagnetic waves that � and " represent the inertial and elastic properties of any

medium in which such waves are propagating; the velocity of these waves will be given by

v 2 ¼ 1=�". In free space these parameters have the values

�0 ¼ 4�� 10�7 Hm�1

"0 ¼ ð36�� 109Þ�1
Fm�1

and v 2 becomes c2 ¼ ð�0"0Þ�1
where c is the velocity of light, equal to 3� 108 m s�1.
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As we shall see in the next section the ratio of the voltage to the current in the waves

travelling along the cable is

V

I
¼ Z0 ¼

ffiffiffiffiffiffi
L0

C0

r

where Z0 defines the impedance seen by the waves moving down an infinitely long cable. It

is called the Characteristic Impedance.

We write " ¼ "r "0 where "r is the relative permittivity (dielectric constant) of a material

and � ¼ �r�0, where �r is the relative permeability. Polythene, which commonly fills the

space between r1 and r2, has "r � 10 and �r � 1.

Hence

Z0 ¼
ffiffiffiffiffiffi
L0

C0

r
¼ 1

2�

ffiffiffi
�

"

r
loge

r2

r1
¼ 1

2�

1ffiffiffi
"

p
r

loge
r2

r1

ffiffiffiffiffi
�0
"0

r

where

ffiffiffiffiffi
�0
"0

r
¼ 376:6 �

Typically, the ratio r2=r1 varies between 2 and 102 and for a laboratory cable using

polythene Z0 � 50�75 � with a signal speed � c=3 where c is the speed of light.

Coaxial cables can be made to a very high degree of precision and the time for an

electrical signal to travel a given length can be accurately calculated because the velocity is

known.

Such a cable can be used as a ‘delay line’ in order to separate the arrival of signals at a

given point by very small intervals of time.

Characteristic Impedance of a Transmission Line

The solutions to equations (7.3) and (7.4) are, of course,

Vþ ¼ V0þ sin
2�

�
ðvt � xÞ

and

Iþ ¼ I0þ sin
2�

�
ðvt � xÞ

where V0 and I0 are the maximum values and where the subscript + refers to a wave

moving in the positive x-direction. Equation (7.1), @V=@x ¼ �L0 @I=@t, therefore gives

�V 0
þ ¼ �vL0I

0
þ, where the superscript refers to differentiation with respect to the bracket

ðvt � xÞ.
Integration of this equation gives

Vþ ¼ vL0Iþ
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where the constant of integration has no significance because we are considering only

oscillatory values of voltage and current whilst the constant will change merely the d.c.

level.

The ratio

Vþ
Iþ

¼ vL0 ¼
ffiffiffiffiffiffi
L0

C0

r
�

and the value of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L0=C0

p
, written as Z0, is a constant for a transmission line of given

properties and is called the characteristic impedance. Note that it is a pure resistance

(no dimensions of length are involved) and it is the impedance seen by the wave

system propagating along an infinitely long line, just as an acoustic wave experiences a

specific acoustic impedance �c. The physical correspondence between �c and

L0v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
L0=C0

p ¼ Z0 is immediately evident.

The value of Z0 for the coaxial cable considered earlier can be shown to be

Z0 ¼ 1

2�

ffiffiffi
�

"

r
loge

r2

r1

Electromagnetic waves in free space experience an impedance Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�0="0

p ¼ 376:6 �.
So far we have considered waves travelling only in the x-direction. Waves which travel

in the negative x-direction will be represented (from solving the wave equation) by

V� ¼ V0� sin
2�

�
ðvt þ xÞ

and

I� ¼ I0� sin
2�

�
ðvt þ xÞ

where the negative subscript denotes the negative x-direction of propagation.

Equation (7.1) then yields the results that

V�
I�

¼ �vL0 ¼ �Z0

so that, in common with the specific acoustic impedance, a negative sign is introduced into

the ratio when the waves are travelling in the negative x-direction.

When waves are travelling in both directions along the transmission line the total voltage

and current at any point will be given by

V ¼ Vþ þ V�

and

I ¼ Iþ þ I�

When a transmission line has waves only in the positive direction the voltage and current

waves are always in phase, energy is propagated and power is being fed into the line by the

generator at all times. This situation is destroyed when waves travel in both directions;
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waves in the negative x-direction are produced by reflection at a boundary when a line is

terminated or mismatched; we shall now consider such reflections.

(Problems 7.1, 7.2)

Reflections from the End of a Transmission Line

Suppose that a transmission line of characteristic impedance Z0 has a finite length and that

the end opposite that of the generator is terminated by a load of impedance ZL as shown in

Figure 7.3.

A wave travelling to the right ðVþ; IþÞ may be reflected to produce a wave ðV�; I�Þ
The boundary conditions at ZL must be VþþV�¼VL, where VL is the voltage across the

load and IþþI�¼ IL. In addition Vþ=Iþ¼Z0, V�=I� ¼ �Z0 and VL=IL ¼ ZL. It is easily

shown that these equations yield

V�
Vþ

¼ ZL � Z0

ZL þ Z0

(the voltage amplitude reflection coefficient),

I�
Iþ

¼ Z0 � ZL

ZL þ Z0

(the current amplitude reflection coefficient),

VL

Vþ
¼ 2ZL

ZL þ Z0

and

IL

Iþ
¼ 2Z0

ZL þ Z0

in complete correspondence with the reflection and transmission coefficients we have met

so far. (See Summary on p. 546.)

VL

Z0

Z0

V++V− = VL

I++I− = IL
ZL V+

I+

−V−

I−
= =

(V+ , I+ 
)

(V− , I− 
)

Figure 7.3 Transmission line terminated by impedance Z L to produce reflected waves unless
Z L ¼ Z0, the characteristic impedance
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We see that if the line is terminated by a load ZL ¼ Z0, its characteristic impedance, the

line is matched, all the energy propagating down the line is absorbed and there is no

reflected wave. When ZL ¼ Z0, therefore, the wave in the positive direction continues to

behave as though the transmission line were infinitely long.

Short Circuited Transmission Line ðZL ¼ 0Þ
If the ends of the transmission line are short circuited (Figure 7.4), ZL ¼ 0, and we have

VL ¼ Vþ þ V� ¼ 0

so that Vþ ¼ �V�, and there is total reflection with a phase change of �, But this is the
condition, as we saw in an earlier chapter, for the existence of standing waves; we shall see

that such waves exist on the transmission line.

At any position x on the line we may express the two voltage waves by

Vþ ¼ Z0Iþ ¼ V0þ eið!t�kxÞ

and

V� ¼ �Z0I� ¼ V0� eið!tþkxÞ

where, with total reflection and � phase change, V0þ ¼ �V0�. The total voltage at x is

Vx ¼ ðVþ þ V�Þ ¼ V0þðe�ikx � eikxÞ e i!t ¼ ð�iÞ2V0þ sin kx ei!t

and the total current at x is

Ix ¼ ðIþ þ I�Þ ¼ V0þ
Z0

ðe�ikx þ eikxÞ ei!t ¼ 2V0þ
Z0

cos kx ei!t

We see then that at any point x along the line the voltage Vx varies as sin kx and the

current Ix varies as cos kx, so that voltage and current are 90� out of phase in space. In

addition the � i factor in the voltage expression shows that the voltage lags the current 90�

in time, so that if we take the voltage to vary with cos !t from the ei!t term, then the current

Current

Voltage

ZL= 0

Figure 7.4 Short circuited transmission line of length (2nþ 1Þ�=4 produces a standing wave with
a current maximum and zero voltage at end of line
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will vary with � sin !t. If we take the time variation of voltage to be as sin !t the current
will change with cos !t.
Voltage and current at all points are 90� out of phase in space and time, and the power

factor cos� ¼ cos 90� ¼ 0, so that no power is consumed. A standing wave system exists

with equal energy propagated in each direction and the total energy propagation equal to

zero. Nodes of voltage and current are spaced along the transmission line as shown in

Figure 7.4, with I always a maximum where V ¼ 0 and vice versa.

If the current I varies with cos !t it will be at a maximum when V ¼ 0; when V is a

maximum the current is zero. The energy of the system is therefore completely exchanged

each quarter cycle between the magnetic inertial energy 1
2
L0I

2 and the electric potential

energy 1
2
C0V

2.

(Problems 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 7.10, 7.11)

The Transmission Line as a Filter

The transmission line is a continuous network of impedances in series and parallel

combination. The unit section is shown in Figure 7.5(a) and the continuous network in

Figure 7.5(b).

Z1

Z2

(a)

Z1 Z1 Z1

Z2 Z2 Z2

(b)

Figure 7.5 (a) The elementary unit of a transmission line. (b) A transmission line formed by a
series of such units
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If we add an infinite series of such sections a wave travelling down the line will meet its

characteristic impedance Z0. Figure 7.6 shows that, adding an extra section to the beginning

of the line does not change Z0. The impedance in Figure 7.6 is

Z ¼ Z1 þ 1

Z2
þ 1

Z0

� ��1

or

Z ¼ Z1 þ Z2Z0

Z2 þ Z0
¼ Z0

so the characteristic impedance is

Z0 ¼ Z1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
1

4
þ Z1Z2

r

Note that Z1=2 is half the value of the first impedance in the line so if we measure the

impedance from a point half way along this impedance we have

Z0 ¼ Z2
1

4
þ Z1Z2

� �1=2

We shall, however, use the larger value of Z0 in what follows.

In Figure 7.7 we now consider the currents and voltages at the far end of the transmission

line. Any Vn since it is across Z0 is given by Vn ¼ InZ0
Moreover

Vn � Vnþ1 ¼ In Z1 ¼ Vn

Z1

Z0

Z0Z0Z2

Z1a

b

Figure 7.6 A infinite series of elemenetary units presents a characteristic impedance Z0 to a
wave travelling down the transmission line. Adding an extra unit at the input terminal leaves Z0
unchanged
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So

Vnþ1

Vn

¼ 1� Z1

Z0
¼ Z0 � Z1

Z0

a result which is the same for all sections of the line.

We define a propagation factor

� ¼ Vnþ1

Vn

¼ Z0 � Z1

Z0

which, with

Z0 ¼ Z1

2
þ Z2

1

4
þ Z1Z2

� �1=2

gives

� ¼
ffiffiffi
Z

p
0 � Z1

2

� �
ffiffiffi
Z

p
0 þ Z1

2

� �

¼1þ Z1

2Z2
� 1þ Z1

2Z2

� �2

�1

" #1=2

In all practical cases Z1=Z2 is real since

1. there is either negligible resistance so that Z1 and Z2 are imaginary

or

2. the impedances are purely resistive.

Vn + 1Vn Z0Z2

Z1
In In + 1

Figure 7.7 The propagation constant � ¼ Vnþ1=Vn ¼ Z0 � 1=Z0 for all sections of the transmission
line
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So, given (1) or (2) we see that if

(a) 1þ Z1

2Z2

� �2

¼ 1þ Z1

Z2
1þ Z1

4Z2

� �� �
� 1 then � is real; and

(b) 1þ Z1

2Z2

� �2

< 1 then � is complex:

For � real we have Z1=4Z2 � 0 or � �1.

If Z1=4Z2 � 0, then 0 < � < 1, the currents in successive sections decrease

progressively and since a is real and positive there is no phase change from one section

to another.

If Z1=4Z2 � �1, then � � 0, and there is again a progressive decrease in current

amplitudes along the network but here a is negative and there is a � phase change for each

successive section.

When a is complex we have

�1 <
Z1

4Z2
< 0

and

� ¼ 1þ Z1

2Z2
� i 1� 1þ Z1

2Z2

� �2
" #1=2

Note that j�j ¼ 1 so we can write

� ¼ cos� � i sin � ¼ e�i�

where

cos � ¼ 1þ Z1

2Z2

The current amplitude remains constant along the transmission line but the phase is

retarded by � with each section. If Z1 and Z2 are purely resistive � is fixed and the

attenuation is constant for all voltage inputs.

If Z1 is an inductance with Z2 a capacitance (or vice versa) the division between � real

and � complex occurs at certain frequencies governed by their relative magnitudes.

If Z1 ¼ i!L and Z2 ¼ 1=i!C for an input voltage V ¼ V0e
i!t then j�j ¼ 1 when

0 � !2LC � 4.

So the line behaves as a low pass filter with a cut-off frequency !c ¼ 2=
ffiffiffi
L

p
C Above this

frequency there is a progressive decrease in amplitude with a phase change of � in each

section, Figure 7.8a.

If the positions of Z1 and Z2 are now interchanged so that Z1 ¼ 1=i!C is now a

capacitance and Z2 is now an inductance with Z2 ¼ i!L the transmisson line becomes a
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high pass filter with zero attenuation for 0 � 1=!2LC � 4 that is for all frequencies above

!C ¼ ð1=2 ffiffiffi
L

p
CÞ Figure 7.8b.

(Problem 7.12)

Effect of Resistance in a Transmission Line

The discussion so far has concentrated on a transmission line having only inductance and

capacitance, i.e. wattless components which consume no power. In practice, of course, no

IαI

I

w c =
LC

2

(a)

IαI

I

w c =
LC

1
2

(b)

Figure 7.8 (a) When Z1 ¼ i!L and Z2 ¼ ði!LÞ�1 the transmission line acts as a low-pass filter. (b)
Reversing the positions of Z1 and Z2 changes the transmission line into a high-pass filter
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such line exists: there is always some resistance in the wires which will be responsible for

energy losses. We shall take this resistance into account by supposing that the transmission

line has a series resistance R0� per unit length and a short circuiting or shunting resistance

between the wires, which we express as a shunt conductance (inverse of resistance) written

as G0, where G0 has the dimensions of siemens per metre. Our model of the short element

of length dx of the transmission line now appears in Figure 7.9, with a resistance R0 dx in

series with L0 dx and the conductance G0 dx shunting the capacitance C0 dx. Current will

now leak across the transmission line because the dielectric is not perfect. We have seen

that the time-dependence of the voltage and current variations along a transmission line

may be written

V ¼ V0 e
i!t and I ¼ I0 e

i!t

so that

L0

@I

@t
¼ i!L0I and C0

@V

@t
¼ i!C0V

The voltage and current changes across the line element length dx are now given by

@V

@x
¼ �L0

@I

@t
� R0I ¼ �ðR0 þ i!L0ÞI ð7:1aÞ

@I

@x
¼ �C0

@V

@t
� G0V ¼ �ðG0 þ i!C0ÞV ð7:2aÞ

since (G0 dx)V is the current shunted across the condenser. Inserting @=@x of equation

(7.1a) into equation (7.2a) gives

@ 2V

@x2
¼ �ðR0 þ i!L0Þ @I

@x
¼ ðR0 þ i!L0ÞðG0 þ i!C0ÞV ¼ � 2V

where � 2 ¼ ðR0 þ i!L0ÞðG0 þ i!C0Þ, so that � is a complex quantity which may be

written

� ¼ �þ ik

V

I L0dx R0dx

C0dx G0dx ∂V

∂x
dxV +

∂I

∂x
dxI +

Figure 7.9 Real transmission line element includes a series resistance R0 � per unit length and a
shunt conductance G0 S per unit length

184 Waves on Transmission Lines



Inserting @=@x of equation (7.2a) into equation (7.1a) gives

@ 2I

@x2
¼ �ðG0 þ i!C0Þ @V

@x
¼ ðR0 þ i!L0ÞðG0 þ i!C0ÞI ¼ � 2I

an equation similar to that for V.

The equation

@ 2V

@x2
� � 2V ¼ 0 ð7:5Þ

has solutions for the x-dependence of V of the form

V ¼ A e��x or V ¼ B eþ�x

where A and B are constants.

We know already that the time-dependence of V is of the form ei!t, so that the complete

solution for V may be written

V ¼ ðA e��x þ B e�xÞ ei!t

or, since � ¼ �þ ik,

V ¼ ðA e��x e�ikx þ B e�x eþikxÞ ei!t
¼ A e��x eið!t�kxÞ þ B e�x e ið!tþkxÞ

The behaviour of V is shown in Figure 7.10—a wave travelling to the right with an

amplitude decaying exponentially with distance because of the term e��x and a wave

travelling to the left with an amplitude decaying exponentially with distance because of the

term e�x.

In the expression � ¼ �þ ik, � is called the propagation constant, � is called the

attenuation or absorption coefficient and k is the wave number.

Ae
i(ωt − kx)

Be
i(ωt + kx)

reflected
wave

incident
wave

x

eαxe−αx

Figure 7.10 Voltage and current waves in both directions along a transmission line with resistance.
The effect of the dissipation term is shown by the exponentially decaying wave in each direction
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The behaviour of the current wave I is exactly similar and since power is the product VI,

the power loss with distance varies as ðe��xÞ2; that is, as e�2�x.

We would expect this behaviour from our discussion of damped simple harmonic

oscillations. When the transmission line properties are purely inductive (inertial) and

capacitative (elastic), a pure wave equation with a sine or cosine solution will follow. The

introduction of a resistive or loss element produces an exponential decay with distance

along the transmission line in exactly the same way as an oscillator is damped with time.

Such a loss mechanism, resistive, viscous, frictional or diffusive, will always result in

energy loss from the propagating wave. These are all examples of random collision

processes which operate in only one direction in the sense that they are thermodynamically

irreversible. At the end of this chapter we shall discuss their effects in more detail.

Characteristic Impedance of a Transmission Line with
Resistance

In a lossless line we saw that the ratio Vþ=Iþ ¼ Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L0=C0

p ¼ Z0 �, a purely resistive

term. In what way does the introduction of the resistance into the line affect the

characteristic impedance?

The solution to the equation @ 2I=@x2 ¼ � 2I may be written (for the x-dependence of I) as

I ¼ ðA 0 e��x þ B 0 e�xÞ
so that equation (7.2a)

@I

@x
¼ �ðG0 þ i!C0ÞV

gives

��ðA 0 e��x � B 0 e�xÞ ¼ �ðG0 þ i!C0ÞV
or ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðR0 þ i!L0ÞðG0 þ i!C0Þ

p
G0 þ i!C0

ðA 0 e��x � B 0 e�xÞ ¼ V ¼ Vþ þ V�

But, except for the ei!t term,

A 0 e��x ¼ Iþ

the current wave in the positive x-direction, so that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ i!L0

G0 þ i!C0

r
Iþ ¼ Vþ

or

Vþ
Iþ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ i!L0

G0 þ i!C0

r
¼ Z 0

0
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for a transmission line with resistance. Similarly B 0 e�x ¼ I� and

V�
I�

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ i!L0

G0 þ i!C0

r
¼ �Z 0

0

The presence of the resistance term in the complex characteristic impedance means that

power will be lost through Joule dissipation and that energy will be absorbed from the wave

system.

We shall discuss this aspect in some detail in the next chapter on electromagnetic waves,

but for the moment we shall examine absorption from a different (although equivalent)

viewpoint.

(Problems 7.13, 7.14)

The Diffusion Equation and Energy Absorption in Waves

On p. 23 of Chapter 1 we discussed quite briefly the effect of random processes. We shall

now look at this in more detail. The wave equation

@ 2�

@x2
¼ 1

c2
@ 2�

@t 2

is only one of a family of equations which have a double differential with respect to space

on the left hand side.

In three dimensions the left hand side would be of the form

@ 2�

@x2
þ @ 2�

@y2
þ @ 2�

@z2

which, in vector language, is called the divergence of the gradient or div grad and is written

r2�.
Five members of this family of equations may be written (in one dimension) as

1. Laplace’s Equation

@ 2�

@x2
¼ 0 ðfor �ðxÞ onlyÞ

2. Poisson’s Equation

@ 2�

@x2
¼ constant ðfor �ðxÞ onlyÞ

3. Helmholtz Equation

@ 2�

@x2
¼ constant� �
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4. Diffusion Equation

@ 2�

@x2
¼ þve constant� @�

@t

5. Wave Equation

@ 2�

@x2
¼ þve constant� @ 2�

@t 2

Laplace’s and Poisson’s equations occur very often in electrostatic field theory and are

used to find the values of the electric field and potential at any point. We have already met

the Helmholtz equation in this chapter as equation (7.5), where the constant was positive

(written � 2) and we have seen its behaviour when the constant is negative, for it is then

equivalent to the equation for standing waves (p. 124). The constant in the wave equation is

of course 1/c2 where c is the wave velocity. Where the wave equation has an ‘acceleration’

or @ 2�=@t 2 term on the right hand side, the diffusion equation has a ‘velocity’ or @�=@t term.

All equations, however, have the same term @ 2�=@x2 on the left hand side, and we must

ask: ‘What is its physical significance?’

We know that the values of the scalar � will depend upon the point in space at which it is

measured. Suppose we choose some point at which � has the value �0 and surround this

point by a small cube of side l, over the volume of which � may take other values. If the

average value of � over the small cube is written ���, then the difference between the average
��� and the value at the centre of the cube �0 is given by

���� �0 ¼ constant� @ 2�

@x2
þ @ 2�

@y2
þ @ 2�

@z2

� �
0

This statement is proved in the appendix at the end of this chapter and is readily understood

by those familiar with triple integration. The left hand side of any of these equations

therefore measures the value

�� �0

In Laplace’s equation the difference is zero, so that � has a constant value over the

volume considered. Poisson’s equation tells us that the difference is constant and

Helmholtz equation states that the value of � at any point in the volume is proportional to

this difference. The first two equations are ‘steady state’, i.e. they do not vary with time.

The Helmholtz equation states that if the constant is positive the behaviour of � with

space grows or decays exponentially, e.g. � 2 is positive in equation (7.5), but if the constant

is negative, � will vary sinusoidally or cosinusoidally with space as the displacement varies

with time in simple harmonic motion and the equation becomes the time independent wave

equation for standing waves. This equation says nothing about the time behaviour of �,
which will depend only upon the function � itself.

Both the diffusion and wave equations are time-derivative dependent. The diffusion

equation states that the ‘velocity’ or change of � with time at a point in the volume is

proportional to the difference ���� �0, whereas the wave equation states that the

‘acceleration’ @ 2�=@t 2 depends on this difference.
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The wave equation recalls the simple harmonic oscillator, where the difference from the

centre ðx ¼ 0Þ was a measure of the force or acceleration term; both the oscillator and the

wave equation have time varying sine and cosine solutions with maximum velocity @�=@t
at the zero displacement from equilibrium; that is, where the difference ���� �0 ¼ 0.

The diffusion equation, however, describes a different kind of behaviour. It describes a

non-equilibrium situation which is moving towards equilibrium at a rate governed by its

distance from equilibrium, so that it reaches equilibrium in a time which is theoretically

infinite. Readers will have already met this situation in Newton’s Law of Cooling, where a

hot body at temperatue T0 stands in a room of lower temperature �TT . The rate at which the

body cools, i.e. the value of @T=@t, depends on �TT � T0; a cooling graph of this experiment

is given in Figure 7.11. The greatest rate of cooling occurs when the temperature difference

is greatest and the process slows down as the system approaches equilibrium. Here, of

course, �TT � T0 and @T=@t are both negative.

All non-equilibrium processes of this kind are unidirectional in the sense that they are

thermodynamically irreversible. They involve the transport of mass in diffusion, the

transport of momentum in friction or viscosity and the transport of energy in conductivity.

All such processes involve the loss of useful energy and the generation of entropy.

They are all processes which are governed by random collisions, and we found in the

first chapter, where we added vectors of constant length and random phase, that the average

distance travelled by particles involved in these processes was proportional, not to the time,

but to the square root of the time.

Rewriting the diffusion equation as

@ 2�

@x2
¼ 1

d

@�

@t

Newton′s Cooling Curve

(T0 − T)1

(T0 − T)2

time t
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∂T
∂t

1

∂T
∂t

2

Figure 7.11 Newton’s cooling curve shows that the rate of cooling of a hot body @T=@t depends on
the temperature difference between the body and its surrounding, this difference being directly
measured by @ 2T=@x 2
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we see that the dimensions of the constant d, called the diffusivity, are given by

�

length2
¼ 1

d

�

time

so that d has the dimensions of length2=time. The interpretation of this as the square of

a characteristic length varying with the square root of time has already been made in

Chapter 1.

In a viscous process d is given by 	=�, where 	 is the coefficient of viscosity and � is the
density. In thermal conductivity d ¼ K=�Cp, where K is the coefficient of thermal

conductivity, � is the density and Cp is the specific heat at constant pressure.

A magnetic field which is non-uniformly distributed in a conductor has a diffusivity

d ¼ ð�
Þ�1
, where � is the permeability and 
 is the conductivity.

Brownian motion is one of the best known examples of random collision processes. The

distance x travelled in time t by a particle suffering multiple random collisions is given by

Einstein’s diffusivity relation

d ¼ x2

t
¼ 2RT

6�	N

The gas law, pV ¼ RT , gives RT as the energy of a mole of such particles at temperature

T; a mole contains N particles, where N is Avogadro’s number and RT=N ¼ kT , the average

energy of the individual particles, where k is Boltzmann’s constant.

The process is governed, therefore, by the ratio of the energy of the particles to the

coefficient of viscosity, which measures the frictional force. The higher the temperature,

the greater is the energy, the less the effect of the frictional force and the greater the

average distance travelled.

Wave Equation with Diffusion Effects

In natural systems we can rarely find pure waves which propagate free from the energy-loss

mechanisms we have been discussing, but if these losses are not too serious we can

describe the total propagation in space and time by a combination of the wave and diffusion

equations.

If we try to solve the combined equation

@ 2�

@x2
¼ 1

c2
@ 2�

@t 2
þ 1

d

@�

@t

we shall not obtain a pure sine or cosine solution.

Let us try the solution

� ¼ �m eið!t��xÞ

where �m is the maximum amplitude. This gives

i2� 2 ¼ i 2
!2

c2
þ i

!

d
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or

� 2 ¼ !2

c2
� i

!

d

giving a complex value for �. But !2=c2 ¼ k 2, where k is the wave number, and if we put

� ¼ k � i� we obtain

� 2 ¼ k 2 � 2ik�� �2 � k 2 � i 2 k� if �� k

The solution for � then becomes

� ¼ �m eið!t��xÞ ¼ �m e��x eið!t�kxÞ

i.e. a sine or cosine oscillation of maximum amplitude �m which decays exponentially with

distance. The physical significance of the condition �� k ¼ 2�=� is that many

wavelengths � are contained in the distance 1=� before the amplitude decays to �m e�1

at x ¼ 1=�. Diffusion mechanisms will cause attenuation or energy loss from the wave; the

energy in a wave is proportional to the square of its amplitude and therefore decays as

e�2�x.

(Problems 7.15, 7.16, 7.17)

Appendix

Physical interpretation of

@ 2�

@x2
þ @ 2�

@y2
þ @ 2�

@ 2
2

� r2�

At a certain point O of the scalar field, � ¼ �0. Constructing a cube around the point O

having sides of length l gives for the average value over the cube volume

���l3 ¼
ðððþl=2

�l=2

� dx dy dz

Expanding � about the point O by a Taylor series gives

� ¼ �0 þ @�

@x

� �
0

xþ @�

@y

� �
0

yþ @�

@z

� �
0

z

þ 1

2

@ 2�

@x2

� �
0

x2 þ @ 2�

@y2

� �
0

y2 þ @ 2�

@z2

� �
0

z2
� �

þ @ 2�

@x@y

� �
0

xyþ @ 2�

@y@z

� �
0

yzþ @ 2�

@z@x

� �
0

zxþ 	 	 	

Integrating from �l=2 to þl=2 removes all the functions of the form

@�

@x

� �
0

x and
@ 2�

@x@y

� �
0

xy
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whose integrals are zero, leaving, since

ðððþl=2

�l=2

x2 dx dy dz ¼ l5

12

���l3 ¼ �0l
3 þ l5

24

@ 2�

@x2
þ @ 2�

@y2
þ @ 2�

@z2

� �
0

i.e.

���� �0 ¼ l2

24
ðr2�Þ0

where l is a constant.

Problem 7.1
The figure shows the mesh representation of a transmission line of inductance L 0 per unit length and

capacitance C0 per unit length. Use equations of the form

Vr − 1

qr−1 qr+1

Vr + 1

Ir−1

Vr

qr
Ir

C0dxC0dx

L0dx L0dx

C0dx

I r�1 � I r ¼ d

dt
q r ¼ C 0 dx

d

dt
V r

and

L0 dx
d

dt
Ir ¼ Vr � Vrþ1

together with the method of the final section of Chapter 4 to show that the voltage and current wave

equations are

@ 2V

@x2
¼ L 0C 0

@ 2V

@t 2

and

@ 2I

@x2
¼ L0C 0

@ 2I

@t 2
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Problem 7.2
Show that the characteristic impedance for a pair of Lecher wires of radius r and separation d in a

medium of permeability � and permittivity " is given by

Z0 ¼ 1

�

ffiffiffi
�

"

r
loge

d

r

Problem 7.3
In a short-circuited lossless transmission line integrate the magnetic (inductive) energy 1

2
L 0I

2 and

the electric (potential) energy 1
2
C 0V

2 over the last quarter wavelength (0 to ��=4) to show that they

are equal.

Problem 7.4
Show, in Problem 7.3, that the sum of the instantaneous values of the two energies over the last

quarter wavelength is equal to the maximum value of either.

Problem 7.5
Show that the impedance of a real transmission line seen from a position x on the line is given by

Zx ¼ Z 0

A e��x � B eþ�x

A e��x þ B eþ�x

where � is the propagation constant and A and B are the current amplitudes at x ¼ 0 of the waves

travelling in the positive and negative x-directions respectively. If the line has a length l and is

terminated by a load ZL, show that

ZL ¼ Z0

A e��l � B e �l

A e��l þ B e �l

Problem 7.6
Show that the input impedance of the line of Problem 7.5; that is, the impedance of the line at x ¼ 0,

is given by

Zi ¼ Z 0

Z 0 sinh �lþ ZL cosh �l

Z 0 cosh �lþ ZL sinh �l

� �

ðNote : 2 cosh �l ¼ e�l þ e��l

2 sinh �l ¼ e�l � e��lÞ

Problem 7.7
If the transmission line of Problem 7.6 is short-circuited, show that its input impedance is given by

Zsc ¼ Z0 tanh �l

and when it is open-circuited the input impedance is

Z0c ¼ Z 0 coth �l

By taking the product of these quantities, suggest a method for measuring the characteristic
impedance of the line.
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Problem 7.8
Show that the input impedance of a short-circuited loss-free line of lenght l is given by

Zi ¼ i

ffiffiffiffiffiffi
L 0

C 0

r
tan

2�l

�

and by sketching the variation of the ratio Zi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L 0=C0

p
with l, show that for l just greater than

ð2nþ 1Þ�=4, Zi is capacitative, and for l just greater than n�=2 it is inductive. (This provides a

positive or negative reactance to match another line.)

Problem 7.9
Show that a line of characteristic impedance Z 0 may be matched to a load ZL by a loss-free quarter

wavelength line of characteristic impedance Zm if Z 2
m ¼ Z 0ZL.

(Hint—calculate the input impedance at the Z 0Zm junction.)

Problem 7.10
Show that a short-circuited quarter wavelength loss-free line has an infinite impedance and that if it

is bridged across another transmission line it will not affect the fundamental wavelength but will

short-circuit any undesirable second harmonic.

Problem 7.11
Show that a loss-free line of characteristic impedance Z 0 and length n�=2 may be used to couple two

high frequency circuits without affecting other impedances.

Problem 7.12
A transmission line has Z1 ¼ i!L and Z2 ¼ ði!CÞ�1

. If, for a range of frequencies !, the phase shift
per section � is very small show that � ¼ k the wave number and that the phase velocity is

independent of the frequency.

Problem 7.13
In a transmission line with losses where R0=!L 0 and G 0=!C 0 are both small quantities expand the

expression for the propagation constant

� ¼ ½ðR0 þ i!L 0ÞðG0 þ i!C 0Þ
 1=2

to show that the attenuation constant

� ¼ R0

2

ffiffiffiffiffiffi
C0

L 0

r
þ G 0

2

ffiffiffiffiffiffi
L 0

C0

r

and the wave number

k ¼ !
ffiffiffiffiffiffiffiffiffiffiffi
L 0C 0

p
¼ !

v

Show that for G 0 ¼ 0 the Q value of such a line is given by k=2�.
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Problem 7.14
Expand the expression for the characteristic impedance of the transmission line of Problem 7.13 in

terms of the characteristic impedance of a lossless line to show that if

R0

L0

¼ G0

C 0

the impedance remains real because the phase effects introduced by the series and shunt losses are

equal but opposite.

Problem 7.15
The wave description of an electron of total energy E in a potential well of depth V over the region

0 < x < l is given by Schrödinger’s time independent wave equation

@ 2 

@x2
þ 8�2m

h2
ðE � VÞ ¼ 0

where m is the electron mass and h is Planck’s constant. (Note that V ¼ 0 within the well.)

l

V E

e
xγ

e x−γ

Show that for E > V (inside the potential well) the solution for  is a standing wave solution but for

E < V (outside the region 0 < x < l) the x dependence of  is e��x, where

� ¼ 2�

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðV � EÞ

p
Problem 7.16
A localized magnetic field H in an electrically conducting medium of permeability � and

conductivity 
 will diffuse through the medium in the x-direction at a rate given by

@H

@t
¼ 1

�


@ 2H

@x2

Show that the time of decay of the field is given approximately by L 2�
, where L is the extent of
the medium, and show that for a copper sphere of radius 1 m this time is less than 100s.

� ðcopperÞ ¼ 1 	 26� 10�6 Hm�1


 ðcopperÞ ¼ 5 	 8� 107 Sm�1

(If the earth’s core were molten iron its field would freely decay in approximately 15�103 years. In

the sun the local field would take 1010 years to decay. When 
 is very high the local field will change

only by being carried away by the movement of the medium—such a field is said to be ‘frozen’ into

the medium—the field lines are stretched and exert a restoring force against the motion.)
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Problem 7.17
A point x0 at the centre of a large slab of material of thermal coductivity k, specific heat C and

density � has an infinitely high temperature T at a time t 0. If the heat diffuses through the medium at

a rate given by

@T

@t
¼ k

�C

@ 2T

@x2
¼ d

@ 2T

@x2

show that the heat flow along the x-aixs is given by

f ð�; tÞ ¼ rffiffiffi
�

p e�ðr�Þ 2 ;

where

� ¼ ðx� x 0Þ and r ¼ 1

2
ffiffiffiffi
dt

p

by inserting this solution in the differential equation. The solution is a Guassian function; its

behaviour with x and t in this problem is shown in Fig. 10.12. At ðx0, t 0) the function is the Dirac

delta function. The Guassian curves decay in height and widen with time as the heat spreads through

the medium, the total heat, i.e. the area under the Gaussian curve, remaining constant.

Summary of Important Results
Lossless Transmission Line
Inductance per unit length¼ L0 or �
Capacitance per unit length¼C0 or "
Wave Equation

@ 2V

@x2
¼ 1

v 2

@ 2V

@t 2
ðvoltageÞ

@ 2I

@x2
¼ 1

v 2

@ 2I

@t 2
ðcurrentÞ

Phase Velocity

v 2 ¼ 1

L0C0

or
1

�"

Characteristic Impedance

Z0 ¼ V

I
¼

ffiffiffiffiffiffi
L0

C0

r
or

ffiffiffi
�

"

r
ðfor right-going waveÞ

ð�Z0 for left-going waveÞ
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Transmission Line with Losses

Resistane R0 per unit length

Shunt conductance G0 per unit length

Wave equation takes form

ei!t
@ 2V

@x2
� � 2V

� �
¼ 0 ðsame for IÞ

where � ¼ �þ ik is the propagation constant

� ¼ attenuation coefficient

k ¼ wave number

giving

V ¼ A e��x eið!t�kxÞ þ B e�x eið!tþkxÞ

Characteristic Impedance

Z 0
0 ¼

V

I
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ i!L0

G0 þ i!C0

r
ðright-going waveÞ

ð�Z 0
0 for left-going waveÞ

Wave Attenuation

Energy absorption in a medium described by diffusion equation

@ 2�

@x2
¼ 1

d

@�

@t

Add to wave equation to account for attenuation giving

@ 2�

@x2
¼ 1

c2
@ 2�

@t 2
þ 1

d

@�

@t

with exponentially decaying solution

� ¼ �m e��x eið!t�kxÞ
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