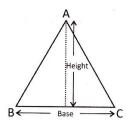


Surface Area and Volume


In this chapter, we will learn about some important formulas related to 2-D and 3-D geometrical shapes.

Area of a Triangle

$$ightharpoonup$$
 Area of a triangle $=\frac{1}{2}\times$ (Perpendicular) \times Base

Area of a triangle having lengths of the sides a, b and c is
$$=\sqrt{s(s-a)(s-b)(s-c)}$$
 sq. units,

Where
$$s = \frac{1}{2} (a + b + c)$$

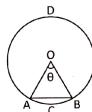
ightharpoonup Area of an equilateral triangle $=\frac{\sqrt{3}}{4}a^2$, where a is the side of the equilateral triangle.

Circle

$$\triangleright$$
 Circumference of the circle = $2\pi r$

$$ightharpoonup$$
 Area of the circle = πr^2

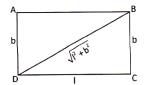
$$ightharpoonup$$
 Area of the semicircle = $\frac{1}{2}\pi r^2$


Perimeter of the semicircle =
$$\pi r + 2r$$

Length of Arc and Area of a Sector

Let an arc AB makes an angle θ < 180° at the center (O) of a circle of radius r, then we have:

$$\Rightarrow \text{ Area of the sector OACB} = \frac{\pi r^2 \theta}{360^{\circ}}$$



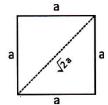
- ➤ Area of the minor segments ACBA = area of sector OACB area of the corresponding triangle AOB
- \triangleright Area of the major segment ADBA = area of the circle area of the minor segment

Perimeter and Area of a Rectangle

Let ABCD be a rectangle in which length AB = 1 units, breadth BC = b units then we have:

- \triangleright Area = $(1 \times b)$ square units
- ightharpoonup Length (l) = $\frac{area(A)}{breadth(B)}$ units

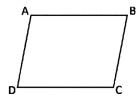
- ightharpoonup breadth (b) = $\frac{area(A)}{length(l)}$ units
- ightharpoonup Diagonal (d) = $\sqrt{l^2 + b^2}$ units
- \triangleright Perimeter (p) = 2(1 + b) units

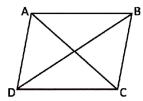

Area of Four Walls of a Room

Let l, b and h are respectively the length, breadth and height of a room, then area of four walls of the room = $\{2 (1 + b) \times h\}$ sq units.

Perimeter and Area of Square

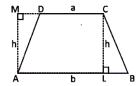
Let ABCD be a square with each side equal to 'a' units, then


- ightharpoonup Area = a^2 sq. units
- ightharpoonup Area = $\left(\frac{1}{2} \times (Diagonal)^2\right)$ sq. units


- ightharpoonup Diagonal = $a\sqrt{2}$ units
- ➤ Perimeter =4a units

Area of Some Special Types of Quadrilateral

 \triangleright Area of a parallelogram = (base \times height)



ightharpoonup Area of a rhombus = $\frac{1}{2}$ × (product of diagonals)

ightharpoonup Area of a Trapezium = $\frac{1}{2}$ (Sum of lengths of parallel sides) \times (distance between them)

$$= \frac{1}{2} (a + b) \times h$$

Solids

The objects having definite shape and size are called solids. A solid occupies a definite space.

Cuboid

For a cuboid of length = 1, breadth = b and height = h, we have:

- \triangleright Volume = $(1 \times b \times h)$ cubic units
- \triangleright Total surface area = 2 (lb + bh + lh) sq. units
- \triangleright Lateral surface area = $[2(l+b) \times h]$ sq. units
- ightharpoonup Diagonal of a cuboid = $\sqrt{l^2 + b^2 + h^2}$

Cube

For a cube having each edge = a units, we have:

- \triangleright Volume = a^3 cubic units
- ightharpoonup Total surface area = $6a^2$ sq. units
- \triangleright Lateral surface area = $4a^2$ sq. units
- ightharpoonup Diagonal of a cube = a $\sqrt{3}$

Cylinder

Solids like jar, circular pencils, circular pipes, road rollers, gas cylinders are of cylindrical shape. For a cylinder of base radius = r units and height = h units, we have:

- \triangleright Volume = $\pi r^2 h$ cubic units
- \triangleright Curved surface area = $2\pi rh$ square units
- Total surface area = $(2\pi rh + 2\pi r^2) = 2\pi r(h+r)$ sq. units

Cone

Consider a cone in which base radius = r, height = h and slant height (l) = $\sqrt{h^2 + r^2}$, then we have:

- Volume of the cone = $\frac{1}{3}\pi r^{2h}$
- \triangleright Curved surface area of the cone = πrl
- ightharpoonup Total surface area of the cone = (curved surface area) + (area of the base) = $\pi rl + \pi rl^2 = \pi rl$ (l + r)

Sphere

Objects like a football, a cricket ball, etc. are of spherical shapes. For a sphere of radius r, we have:

- Volume of the sphere = $\frac{4}{3}\pi r^3$
- ightharpoonup Surface area of the sphere = $4\pi r^2$

Hemisphere

A plane through the centre of a sphere cuts it into two equal parts, each part is called a hemisphere. For a hemisphere of radius r, we have:

- ightharpoonup Volume of the hemisphere = $\frac{2}{3}\pi r^3$
- ightharpoonup Curved surface area of the hemisphere = $2\pi r^2$
- ightharpoonup Total surface area of the hemisphere = $3\pi r^2$