## HOTS (Higher Order Thinking Skills)

Que 1. In Fig. 8.53, ABCD is a parallelogram and E is the mid-point of AD. A line through D, drawn parallel to EB, meets AB produced at F and BC at L. Prove that



**Sol.** (i) As EB\\ DL and ED\\ BL. Therefore, EBLD is a parallelogram.

$$\therefore \qquad BL = ED = \frac{1}{2}AD = \frac{1}{2}BC = CL$$

Now in triangles DCL and FBL, we have

|        | CL = BL                      | (Prove        | d above)                |
|--------|------------------------------|---------------|-------------------------|
|        | ∠DLC = ∠FLB                  | (Vertic       | ally opposite angles)   |
|        | ∠CDL = ∠BFL                  | (Altern       | ate angles)             |
| ÷.     | $\Delta DCL\cong \Delta FBL$ | (By AA        | S congruence criterion) |
|        | DC = BF and DL = FL          |               |                         |
| Now,   | BE = DC = AB                 |               |                         |
| ⇒      | 2AB = 2DC                    | $\Rightarrow$ | AF = 2DC                |
| (ii) ∴ | DL = FL                      | ⇒             | DF = 2DL                |

Que 2. PQ and RS are two equal and parallel line-segments. Any point M not lying on PQ or RS is joined to Q and S and lines through P parallel to QM and through R parallel to SM meet at N. prove that line segments MN and PQ are equal and parallel to each other.

**Sol. Given:** PQ = RS, PQ || RS, PN || QM, RN || MS

To prove: MN = PQ, MN || PQ

**Proof:** Since PQ = RS and PQ || RS

∴ PQSR is a parallelogram



PR = QS, PR || QS  $\Rightarrow$ Since PN || QM and MN is the transversal (Corresponding angles) ...(i) :. ∠1 = ∠3 Similarly, RN || MS ∠2 = ∠4 :. ...(ii) Adding (i) and (ii), we get  $\angle 1 + \angle 2 = \angle 3 + \angle 4$  i.e.,  $\angle PNR = \angle QMS$  $\angle PRS = \angle QSX$  (Corresponding angles as PR || QS) Again, And  $\angle 6 = \angle 5$  (Corresponding angles as RN || SM)

Subtracting the two equations, we get

 $\angle$ PRS -  $\angle$ 6 =  $\angle$ QSX -  $\angle$ 5 I.e.,  $\angle$ PRN =  $\angle$ QSM

Now, in  $\Delta$ PNR and  $\Delta$ QMS,

|          | PR = QS                       | (Opp.  | Sides of    <sup>gm</sup> )   |
|----------|-------------------------------|--------|-------------------------------|
|          | ∠PNR = ∠QN                    | ٨S     | (Proved above)                |
|          | ∠PRN = ∠QS                    | M      |                               |
| <b>.</b> | $\Delta PNR \cong \Delta QMS$ |        | (By AAS congruence criterion) |
| ⇒        | PN = QM                       |        | (CPCT)                        |
| Also,    | PN = QM                       |        | (Given)                       |
| <b>.</b> | PNMQ is a parallelogram       |        |                               |
| ⇒        | PQ    MN and                  | PQ = I | MN                            |

Que 3. I, m and n are three parallel lines intersected by transversal p and q such that I, m and n cut-off equal intersepts AB and BC on p (Fig. 8.55). Show that I, m and n cut-off equal intercepts DE and EF on q also.



**Sol.** We are given that AB = BC and have to prove that DE = EF.

Let us join A to F intersecting m at G.

The trapezium ACFD is divided into two triangles; namely  $\Delta$ ACF and  $\Delta$ AFD.

In  $\triangle$ ACF, it is given that B is the mid-point of AC (AB = BC)

And BG || CF (Since m || n)

So, G is the mid-point of AF (By the converse of mid-point Theorem)

Now, in  $\Delta$ AFD, we can apply the same argument as G is the mid-point of AF, GE || AD so E is the mid-point of DF,

i.e., DE = EF

In other words l, m and n cut-off equal intercepts on q also.