CBSE Test Paper 05 Chapter 1 Relations and Functions

 If A is a non empty set, an element e ∈ A is called the identity for the binary operation *, if

a. $a \ast e = e = e \ast a, \forall a \in A$

b. $a * e = a^2 = e * a$, $\exists a \in A$

- c. $a \ast e = a \neq e \ast a, \forall a \in A$
- d. $a \ast e = a = e \ast a, \forall a \in A$
- 2. A relation R in a set A is called universal relation, if
 - a. no element of A is related to any element of A
 - b. each element of A is related to every element of A
 - c. one element of A is related to all elements of A
 - d. every element of A is related to one element of A

3. The period of the function
$$f(x) = sin^2 x + tan x$$
 is

- a. π
- b. 3π
- c. $\frac{\pi}{2}$
- d. 2π

4. +:
$$R \ imes \ R \ o \ R$$
 and $\mathrm{x}: R imes R \ o \ R$ are

- a. commutative operations
- b. non-associative operations
- c. not commutative operations
- d. non transitive operations
- 5. Let f: X o Y and g: Y o Z be two invertible functions. Then gof is a. Non invertible
 - b. invertible with (gof)-1= f-10g-1
 - c. I_y
 - d. I_N
- 6. The set of first elements of all ordered pairs in R, i.e., {x : (x, y) ∈ R} is called the ______ of relation R.
- 7. A function $f: X \rightarrow Y$ is said to be a _____ function, if it is both one-one and onto.

- 8. A binary operation * on set X is said to be _____, if a * (b * c) = (a * b) * c, where a, b, $c \in X$.
- 9. Let the function $f : R \to R$ be defined by f(x) = 4x 1, $\forall x \in R$. Then, show that f is one-one.
- 10. What is a bijective function?
- 11. Find gof where $f(x) = 8x^3$, $g(x) = x^{1/3}$
- 12. Show that the relation R in the set A of all the books in a library of a college, given by R = {(x, y) : x and y have same number of pages} is an equivalence relation.
- 13. If $f : R \to R$ is defined by $f(x) = x^2 3x + 2$, find f(f(x)).
- 14. Let C be the set of complex numbers. Prove that the mapping $f : C \to R$ given by $f(z) = |z|, \forall z \in C$, is neither one-one nor onto.
- 15. Let A = N×N and * be the binary operation on A define by (a, b) * (c, d) = (a + c, b + d)Show that * is commutative and associative.
- 16. If the function $f: \mathbb{R} \to \mathbb{R}$ is given by $f(x) = \frac{x+3}{3}$ and $g: \mathbb{R} \to \mathbb{R}$ is given by g(x) = 2x-3, then find (i) fog (ii) gof. Is $f^{-1} = g$?
- 17. Let f : R ightarrow R be the function defined by $f(x) = rac{1}{2-\cos x}, \ orall x \in R.$ Then, find the range of f.
- 18. Consider $f: \mathbb{R}_+ \to [-5, \infty]$ given by $f(x) = 9x^2 + 6x 5$. Show that f is invertible with $f^{-1}(y) = \left(\frac{(\sqrt{y+6})-1}{3}\right).$

CBSE Test Paper 05 Chapter 1 Relations and Functions

Solution

1. d. a * e = e = e * a, $\forall a \in A$

Explanation: Let * be a binary operation on a set A. If there exist an element $e \in A$ such that a * e = a = e * a, $\forall a \in A$. Then e is called an identity element for the binary operation * on A.

- b. each element of A is related to every element of A
 Explanation: The relation R = A x A is called Universal relation.
- 3. a. *π*

Explanation: We have the function $f(x) = sin^2 x + tan x$, therefore, $f(\pi + x) = {sin^2 (\pi + x) + tan(\pi + x)} = {sin^2 x + tan x} = f(x)$. This implies that period of the function f(x) is π .

- a. commutative operations
 Explanation: Since Addition and Multiplication are both commutative over the set of real numbers.
- 5. b. invertible with $(gof)^{-1} = f^{-1}og^{-1}$ **Explanation:** If $f : X \to Y$ and $g : Y \to Z$ be two bijective functions which are invertible then $(gof)^{-1} = f^{-1}og^{-1}$
- 6. domain
- 7. bijective
- 8. associative
- 9. For any two elements $x_1, x_2 \in R$ such that $f(x_1) = f(x_2)$, we have

 $4x_1 - 1 = 4x_2 - 1$

 \Rightarrow 4x₁ = 4x₂, i.e., x₁ = x₂

Hence f is one-one.

10. A function f: $X \rightarrow Y$ is said to be bijective, if f is both one – one and onto.

11. gof(x) = g[f(x)]

- = g (8x³) = $(8x^3)^{1/3}$ = 2x
- 12. Books x and x have same number of pages \Rightarrow (x, x) \in R \therefore R is reflexive.

If $(x, y) \in R$, then x and y have same no. of pages

 \Rightarrow y and x have same no. of pages

 \Rightarrow (y, x) \in R \therefore R is symmetric.

Now if $(x, y) \in R$, $(y, z) \in R$. Then

x and y have same no. of pages and y and z have same no. of pages. This implies x and z have same no. of pages.

 \Rightarrow (x, z) \in R \therefore R is transitive.

Since R is reflexive, symmetric and transistive, therefore, R is an equivalence relation.

13. Given:
$$f(x) = x^2 - 3x + 2$$

 $= f[(x)] = f(x^2 - 3x + 2)$
 $= (x^2 - 3x + 2)^2 - 3(x^2 - 3x + 2) + 2$
 $= x^4 + 9x^2 + 4 - 6x^3 - 12x + 4x^2 - 3x^2 + 9x - 6 + 2$
 $= x^4 - 6x^3 + 10x^2 - 3x$

14. The mapping $f: C \rightarrow R$ Given, $f(z) = |z|, \forall z \in C$ f(1) = |1| = 1 f(-1) = |-1| = 1 f(1) = f(-1)But $1 \neq -1$

So, f(z) is not one-one. Also, f(z) is not onto as there is no pre-image for any negative element of R under the mapping f(z).

15. i. (a, b) * (c, d) = (a + c, b + d)
= (c + a, d + b)
= (c, d) * (a, b)
Hence commutative
ii. {(a, b) * (c, d)} * (e, f)

- = (a + c, b + d) * (e, f)= (a + c + e, b + d + f) = (a, b) * (c + e, d + f) = (a, b) * {(c, d) * (e, f)} {(a, b) * (c, d)} * (e, f) = (a, b) * {(c, d) * (e, f)} Hence * associative.
- 16. Given f : R ightarrow R such that f(x) = $rac{x+3}{3}$ and g : R ightarrow R such that g(x)=2x-3

i. Clearly, fog : R
$$\rightarrow$$
 R and (fog)(x) = f[g(x)]
= $f(2x - 3) = \frac{(2x-3)+3}{3}$
= $\frac{2x}{3}$

ii. Clearly, gof:
$$\mathbb{R} \to \mathbb{R}$$
 and $(gof)(x) = g[f(x)]$
 $= g\left(\frac{x+3}{3}\right) = \left[2\left(\frac{x+3}{3}\right)\right] - 3$
 $= \frac{2x+6}{3} - 3 = \frac{2x+6-9}{3}$
 $\Rightarrow (gof)(x) = \frac{2x-3}{3}$
Note that, here $fog \neq I_R$ and $gof \neq I_R$
Hence, $f^{-1} \neq g$ [\therefore f¹ = g iff gof = I and fog = I]

17. Given function, $f(x) = rac{1}{2-\cos x}, \ orall x \in R$

Let
$$y = \frac{1}{2 - \cos x}$$

 $\Rightarrow 2y \cdot y \cos x = 1$
 $\Rightarrow y \cos x = 2y \cdot 1$
 $\Rightarrow \cos x = \frac{2y - 1}{y} = 2 - \frac{1}{y} \Rightarrow \cos x = 2 - \frac{1}{y}$
 $\Rightarrow -1 \le \cos x \le 1 \Rightarrow -1 \le 2 - \frac{1}{y} \le 1$
 $\Rightarrow -3 \le -\frac{1}{y} \le -1$
 $\Rightarrow 3 \ge \frac{1}{y} \ge 1$
 $\Rightarrow \frac{1}{3} \le y \le 1$
So, Range of y, that is f(x) is $\left[\frac{1}{3}, 1\right]$

18. Consider f: $R_+ \rightarrow [-5, \infty]$ and $f(x) = 9x^2 + 6x - 5$. Let $x_1, x_2 \in R$, then $f(x_1) = 9x_1^2 + 6x_1 - 5$ and $f(x_2) = 9x_2^2 + 6x_2 - 5$

Now,
$$f(x_1) = f(x_2)$$
 then $9x_1^2 + 6x_1 - 5 = 9x_2^2 + 6x_2 - 5$
 $\Rightarrow 9x_1^2 + 6x_1 = 9x_2^2 + 6x_2$
 $\Rightarrow 9(x_1^2 - x_2^2) + 6(x_1 - x_2) = 0$
 $\Rightarrow (x_1 - x_2)[9(x_1 + x_2) + 6] = 0$
 $\Rightarrow x_1 - x_2 = 0$
 $\Rightarrow x_1 - x_2 = 0$
 $\Rightarrow x_1 = x_2 \therefore f \text{ is one-one.}$
Now, again $y = 9x^2 + 6x - 5$
 $\Rightarrow 9x^2 + 6x - (5 + y) = 0$
 $\Rightarrow x = \frac{-6 \pm \sqrt{(6)^2 + 4 \times 9(5 + y)}}{18} = \frac{-6 \pm 6\sqrt{1 + 5 + y}}{18} = \frac{-6 \pm 6\sqrt{y + 6}}{18} = \frac{\sqrt{y + 6 - 1}}{3}$
 $\therefore f(x) = f\left(\frac{\sqrt{y + 6 - 1}}{3}\right) = 9\left(\frac{\sqrt{y + 6 - 1}}{3}\right)^2 + 6\left(\frac{\sqrt{y + 6 - 1}}{3}\right) - 5$
 $= 9\left(\frac{y + 6 + 1 - 2\sqrt{y + 6}}{9}\right) + 2\left(\sqrt{y + 6} - 1\right) - 5$
 $= y + 7 - 2\sqrt{y + 6} + 2\sqrt{y + 6} - 2 - 5 = y \therefore f \text{ is onto.}$
Therefore, f(x) is invertible and $f^{-1}(x) = \frac{\sqrt{y + 6 - 1}}{3}$.