HOTS (Higher Order Thinking Skills)

Q. 1. A colorless liquid i	s thought to be a pure compound.	Analysis of three			
samples of the material yield the following results.					

	Mass of Sample	Mass of carbon	Mass of Hydrogen
Sample 1	1.0 g	0.862 g	0.138 g
Sample 2	1.549 g	1.335 g	0.214 g
Sample 3	0.988 g	0.852 g	0.136 g

Could the material be a pure compound?

Ans. Analysis

	Mass of Carbon	+	Mass of Hydrogen	=	Mass of Sample
Sample 1	0.862 g	+	0.138 g	=	1.0 g
Sample 2	1.335 g	+	2.214 g	=	1.549 g
Sample 3	0.852 g	+	0.136 g	=	0.988 g

Yes, the material is a pure compound as all the three samples have the same composition.

Q. 2. A big drop has volume 1.0 mL. How many molecules of water are there is this drop, If the density of water is 1g/mL?

Ans. Volume of drop of water = 1.0 mL

Density of water = 1.0 g/mL

 \therefore Mass of drop of water = Volume \times Diabesity = 1.0 g

Molecular mass of $H_2O = 2 \times 1 u + 1 \times 16 u = 18 u$

Gram molecular mass of water = 18 g/mol

18 g of water contains = 6.022×10^{23} molecular

 \therefore 1 g of water contains = $\frac{6.022 \times 10^{23}}{18}$ = molecular

= 3.34×10^{22} molecules

Q. 3. What is the fraction of the mass of water due to neutrons?

Ans. Mass of one mole (Avogadro Number) of neutrons \sim 1 g

Mass of the one neutrons $= \frac{1}{Avogadro Number (N_A)} g$ Mass of 8 molecule of water $= \frac{Molar mass}{N_A} = \frac{18}{N_A} g$ There are 8 neurons of water $= \frac{18}{N_A}$ Mass of one molecule of water $= \frac{Molar mass}{N_A} = \frac{18}{N_A} g$ Fraction off mass of the water due to neutrons $\sim \frac{8}{18}$.

Q. 4. You are provided with a fine white coloured powder which is either sugar or salt. How would you identify it without tasting?

Ans. On heating the power, it will char if it is a sugar.

Alternatively, the powder may be dissolved in water and checked for its conduction of electricity. If it conducts, it is a salt.

Q. 5. Calculate the number of electrons present in 15.4 of carbon tetrachloride (CCI_4) .

Ans. Number of moles of $CCI_4 = \frac{Mass \ of \ CCI_4}{Molecular \ mass \ of \ CCI_4} = \frac{15.4 \ g}{154 \ g}$

÷

= 0.1 mole

1 mole of $CCI_4 = 6.022 \times 10^{23}$ molecules of CCI_4

 \therefore 0.1 mole of $CCI_4 = 0.1 \times 6.022 \times 10^{23}$ moles of CCI_4

= 6.022×10^{22} molecules of CCI₄

We know that one atom of carbon has 6 electrons and one atom of chlorine has 17 electrons.

Therefore, one molecule of CCI_4 will contain $6 + (4 \times 17) = 74$ electrons.

: Number of electrons in 6.022 \times 10²² molecules of CCI₄

= $74 \times 6.022 \times 10^{22}$ electrons = 445.6×10^{22} electrons = 4.456×10^{24} electrons