Chapter 2 Measurements

Ex 2.1

Question 1. Fill in the blanks: (i) The ratio between the circumference and diameter of any circle is _____. Answer: π (ii) A line segment which joins any two points on a circle is a _____. Answer: Chord (iii) The longest chord of a circle is _____. Answer: Diameter (iv) The radius of a circle of diameter 24 cm is _____. Answer: 12 cm (v) A part of circumference of a circle is called as _____. Answer:

an arc

Question 2.

Match the following

(i)	Area of a circle	a.	$\frac{1}{4}\pi r^2$
(ii)	Circumference of a circle	b.	$(\pi + 2)r$
(iii)	Area of the sector of a circle	c.	πr^2
(iv)	Circumference of a semicircle	d.	2πr
(v)	Area of a quadrant of a circle	e.	$\frac{\theta^{\circ}}{360^{\circ}} \times \pi r^2$

Answer:

(i) – c

(ii) - d

(iii) - e (iv) - b (v) - a

Question 3.

Find the central angle of the shaded sectors (each circle is divided into equal sectors).

Sectors	θ	() ()	() () () () () () () () () ()
Central angle of each sector (θ°)			

Answer:

mowerr				
Sector		θ	θ	θ
Central angle of each sector (θ°)	Number of equal parts n = 2 $\theta^{\circ} = \frac{360^{\circ}}{n} = \frac{360^{\circ}}{2}$ $\theta^{\circ} = 180^{\circ}$	n = 5 $\theta^{\circ} = \frac{360^{\circ}}{n}$ $\theta^{\circ} = \frac{360^{\circ}}{5}$ $\theta^{\circ} = 72^{\circ}$	n = 8 $\theta^{\circ} = \frac{360^{\circ}}{n}$ $\theta^{\circ} = \frac{360^{\circ}}{8}$ $\theta^{\circ} = 45^{\circ}$	n = 10 $\theta^{\circ} = \frac{360^{\circ}}{n}$ $\theta^{\circ} = \frac{360^{\circ}}{10}$ $\theta^{\circ} = 36^{\circ}$

Question 4.

For the sectors with given measures, find the length of the arc, area and perimeter. ($\pi = 3.14$) (i) central angle 45° r = 16 cm Answer: (i) central angle 45° r = 16 cm

Length of the arc I = $\frac{\theta^{\circ}}{360^{\circ}} \times 2\pi r$ units I = $\frac{45^{\circ}}{360^{\circ}} \times 2 \times 3.14 \times 16$ cm I = $\frac{1}{8} \times 2 \times 3.14 \times 16$ cm I = 12.56 cm Area of the sector = $\frac{\theta^{\circ}}{360^{\circ}} \times \pi r^{2}$ sq. units A = $\frac{45^{\circ}}{360^{\circ}} \times 3.14 \times 16 \times 16$

 $A = 100.48 \text{ cm}^2$ Perimeter of the sector P = I + 2r units P = 12.56 + 2(16) cmp = 44.56 cm(ii) central angle 120° , d = 12.6 cm Answer: \therefore r = $\frac{12.6}{2}$ cm r = 6.3 cmLength of the arc I = $\frac{\theta^{\circ}}{360^{\circ}} \times 2\pi r$ units $I = \frac{120^{\circ}}{360^{\circ}} \times 2 \times 3.14 \times 63 \text{ cm}$ I = 13.188cm I = 13.19cm Area of the sector A = $\frac{\theta^{\circ}}{360^{\circ}} \times \pi r^2$ sq. units $A = \frac{120^{\circ}}{360^{\circ}} \times 3.14 \times 6.3 \times 6.3 \text{ cm}^2$ $A = 3.14 \times 6.3 \times 2.1 \text{ cm}^2$ $A = 41.54 \text{ cm}^2$ Perimeter of the sector P = I + 2r cmP = 13.19 + 2(6.3) cm= 13.19 + 1.2.6 cm P = 25.79 cm

Question 5.

From the measures given below, find the area of the sectors. (i) Length of the arc = 48 m, r = 10 m**Answer:**

Area of the sector A = $\frac{lr}{2}$ sq. units I = 48m r = 10m = $\frac{48 \times 10}{2}$ m² = 24 × 10m² = 240 m² Area of the sector = 240 m²

(ii) length of the arc = 50 cm, r = 13.5 cmAnswer: Length of the arc I = 12.5 cm Radius r = 6 cm Area of the sector A = $\frac{lr}{2}$ sq. units A = $\frac{12.5 \times 6}{2}$ A = 12.5 × 3cm² A = 37.5 cm² Area of the sector A = 37.5 cm²

Question 6.

Find the central angle of each of the sectors whose measures are given below. $(\pi = \frac{2}{27})$

(i) area = 462 cm², r = 21 cm Answer: area = 462 cm², r = 21 cm Radius of the Sector = 21 cm Area of the sector = 462 cm² $\frac{1\times21}{2}$ = 462 $I = \frac{462\times2}{21}$ $I = 22 \times 2$ Length of the arc I = 44 cm $\frac{\theta^{\circ}}{360^{\circ}} \times 2\pi r = 44$ cm $\frac{\theta^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 21 = 44$ cm $\theta^{\circ} = \frac{44\times360\times7}{2\times22\times21}$ $\theta^{\circ} = 120^{\circ}$ \therefore Central angle of the sector = 120°

(ii) length of the arc = 44 m, r = 35 m **Answer:** Radius of the sector = 8.4cm Area of the sector = 18.48 cm² $\frac{lr}{2}$ = 18.48 $\frac{1\times8.4}{2}$ = 18.48 $l = \frac{18.48\times2}{8.4}$

$$\frac{4.4}{9.24} \underbrace{18.48 \times \cancel{2}}_{\cancel{8.4} \cancel{8.2} \times \cancel{1}}$$
Length of the arc l = 4.4 cm

$$\frac{\cancel{\theta^{\circ}}}{360^{\circ}} \times 2\pi r = 4.4 \text{ cm}$$

$$\frac{\cancel{\theta^{\circ}}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 8.4 = 4.4 \text{ cm}$$

$$\cancel{\theta^{\circ}} = \frac{4.4 \times 360 \times 7}{2 \times 22 \times 8.4}$$
Hint:

$$\overset{1}{\cancel{9.1}} \underbrace{9.2}_{\cancel{9.2}} \cancel{4.4} \times 360 \times \cancel{7}$$

$$\frac{\cancel{2}}{\cancel{2}} \times \cancel{2} \times \cancel{2}$$

Question 7.

A circle of radius 120 m is divided into 8 equal sectors. Find the length of the arc of each of the sectors.

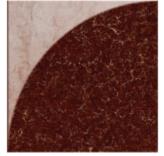
Answer:

Radius of the circle r = 120 mNumber of equal sectors = 8

 $\therefore \text{ Central angle of each sector} = \frac{360^{\circ}}{n}$ $\theta^{\circ} = \frac{360^{\circ}}{8}$ $\theta^{\circ} = 45^{\circ}$ Length of the arc I = $\frac{\theta^{\circ}}{360^{\circ}} \times 2\pi r$ units $= \frac{45^{\circ}}{360^{\circ}} \times 2\pi \times 120 \text{ m}$ Length of the arc = $30 \times \pi m$

Another method: $l = \frac{1}{n} \times 2\pi r = \frac{1}{8} \times 2 \times \pi \times 120 = 30 \pi m$ Length of the arc = 30 π m

Question 8.


A circle of radius 70 cm is divided into 5 equal sectors. Find the area of each of the sectors. **Answer:** Radius of the sector r = 70 cm

Number of equal sectors = 5

 $\therefore \text{ Central angle of each sector} = \frac{360^{\circ}}{n}$ $\theta^{\circ} = 360^{\circ}$ $\theta^{\circ} = 72^{\circ}$ Area of the sector = $\frac{\theta^{\circ}}{360^{\circ}} \times \pi r^{2}$ sq.units $= \frac{72^{\circ}}{360^{\circ}} \times \pi \times 70 \times 70 \text{ cm}^{2}$ Hint: $= 14 \times 70 \times \pi \text{ cm}^{2}$ $= 980 \,\pi \text{ cm}^{2}$ Note: We can solve this problem using A = $\frac{1}{n} \,\pi r^{2}$ sq. units also.

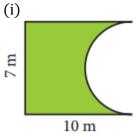
Question 9.

Dhamu fixes a square tile of 30cm on the floor. The tile has a sector design on it as shown in the figure. Find the area of the sector. ($\pi = 3.14$).

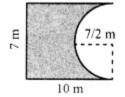
Answer: Side of the square = 30 cm \therefore Radius of the sector design = 30 cm Given the design of a circular quadrant. Area of the quadrant = $\frac{1}{4}\pi r^2$ sq.units = $\frac{1}{4} \times 3.14 \times 30 \times 30 cm^2$ = $3.14 \times 15 \times 15 cm^2$ \therefore Area of the sector design = 706.5 cm² (approximately)

Question 10.

A circle is formed with 8 equal granite stones as shown in the figure each of radius 56 cm and whose central angle is 45°. Find the area of each of the granite stones. $(\pi = \frac{22}{7})$



Number of equal sectors 'n' = 8 Radius of the sector 'r' = 56 cm Area of each sector = $\frac{1}{n} \pi r^2$ sq. units = $\frac{1}{8} \times \frac{22}{7} \times 56 \times 56$ cm² = 1232 cm² Area of each sector = 1232 cm² (approximately)


Ex 2.2

Question 1.

Find the perimeter and area of the figures given below. $(\pi = \frac{22}{7})$

Answer:

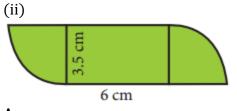
Length of the arc of the semicircle = $\frac{1}{2} \times 2\pi r$ units

$$=\frac{22}{7} \times \frac{7}{2}$$
 m = 11 m

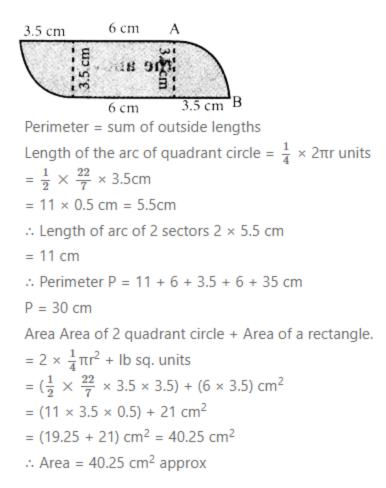
:- Perimeter = Sum of all lengths of sides that form the closed boundary

$$P = 11 + 10 + 7 + 10 m$$

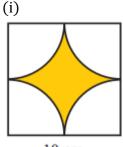
Perimeter = 38 m


Area = Area of the rectangle - Area of semicircle

$$= (1 \times b) - \frac{1}{2} \pi r^{2} \text{ sq. units}$$


$$= (10 \times 7) - \frac{1}{2} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}$$

$$= 70 - \frac{11 \times 7}{2 \times 2} = \frac{280 - 77}{4} = \frac{203}{4}$$

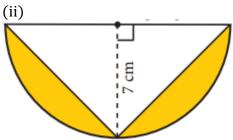

$$= 50.75 \text{ m}^{2} \text{ (approx)}$$
Area of the figure = 50.75 m² approx.

Answer:

Question 2. Find the area of the shaded part in the following figures. ($\pi = 3.14$)

10 cm

Answer:


Area of the shaded part = Area of 4 quadrant circles of radius $\frac{10}{2}$ cm

$$= 4 \times \frac{1}{4} \times \pi r^{2} = 3.14 \times \frac{10}{2} \times \frac{10}{2} \text{ cm}^{2}$$
$$= \frac{314}{4} \text{ cm}^{2} = 78.5 \text{ cm}^{2}$$
Area of the shaded part = 78.5 cm²

Area of the unshaded part = Area of the square - Area of shaded part

$$= a^2 - 78.5 \text{ cm}^2 = (10 \times 10) - 78.5 \text{ cm}^2$$

= 100 - 78.5 cm² = 21.5 cm²

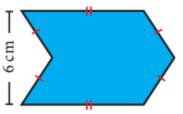
Area of the unshaded part = 21.5 cm^2 (approximately)

Answer:

Area of the shaded part = Area of semicircle – Area of the triangle

$$= \left(\frac{1}{2}\pi r^{2}\right) - \left(\frac{1}{2}bh\right) \operatorname{cm}^{2}$$

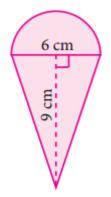
$$= \frac{1}{2} \times 3.14 \times 7 \times 7 - \frac{1}{2} \times 14 \times 7 \operatorname{cm}^{2}$$


$$= \frac{153.86}{2} - 49 \operatorname{cm}^{2} = 76.93 - 49 \operatorname{cm}^{2}$$

$$= 27.3 \operatorname{cm}^{2}$$

$$\therefore \operatorname{Area of the shaded part = 27.93 \operatorname{cm}^{2} \text{ (approximately)}$$

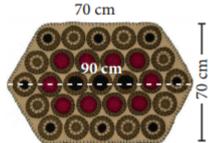
Question 3.


Find the area of the combined figure given which is got by joining of two parallelograms $\frac{8\ \mathrm{cm}}{2}$

Answer: Area of the figure = Area of 2 parallelograms with base 8 cm and height 3 cm = $2 \times (bh)$ sq. units = $2 \times 8 \times 3$ cm² = 48 cm² \therefore Area of the given figure = 48 cm²

Question 4.

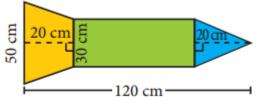
Find the area of the combined figure given, formed by joining a semicircle of diameter 6 cm with a triangle of base 6 cm and height 9 cm. ($\pi = 3.14$)



Area of the figure = Area of the semicircle of radius 3 cm + 2 (Area of triangle with b = 9 cm

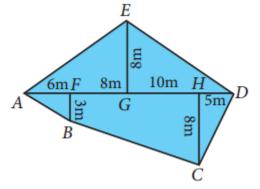
and h = 3 cm) = $(\frac{1}{2}\pi r^2) + (2 \times \frac{1}{2}bh)$ sq. units = $\frac{1}{2} \times 3.14 \times 3 \times 3 + (2 \times \frac{1}{2} \times 9 \times 3)$ cm² = $\frac{28.26}{2} + 27$ cm² = 14.13 + 27 cm² = 41.13 cm² \therefore Area of the figure = 41.13 cm² (approximately)

Question 5.


The door mat which is in a hexagonal shape has the following measures as given in the figure. Find its area.

Answer: Area of the doormat = Area of 2 trapezium Height of the trapezium $h = \frac{70}{2}$ cm: a = 90 cm; b = 70 cm \therefore Area of the trapezium $= \frac{1}{2}h(a + b)$ sq. units Area of the door mat $= 2 \times \frac{1}{2} \times 35 (90 + 70)$ cm² $= 35 \times 160$ cm² = 5600 cm² \therefore Area of the door mat = 5600 cm²

Question 6.


A rocket drawing has the measures as given in the figure. Find its area.

Area = Area of a rectangle + Area of a triangle + Area of a trapezium For rectangle length l = 120 - 20 - 20 cm = 80 cm Breadth b = 30 cm For the triangle base = 30 cm Height = 20 cm For the trapezium height h = 20 cm Parallel sided a = 50 cm b = 30 cm \therefore Area of the figure (l × b) + $(\frac{1}{2} \times base \times height) + \frac{1}{2} \times h \times (a + b)$ sq. units = $(80 \times 30) + (\frac{1}{2} \times 30 \times 20) + \frac{1}{2} \times 20 \times (50 + 30)$ cm² = 2400 + 300 + 800 cm² = 3500 cm² Area of the figure = 3500 cm²

Question 7.

Find the area of the irregular polygon shaped fields given below.

Area of the field = Area of trapezium FBCH + Area of Δ DHC + Area of Δ EGD + Area of Δ EGA + Area of Δ BFA Area of the triangle = $\frac{1}{2}$ bhsq.units Area of the trapezium = $\frac{1}{2} \times h \times (a + b)$ sq.units Area of the trapezium FBCH = $\frac{1}{2} \times (10 + 8) \times (8 + 3)m^2 = 9 \times 11 = 99 m^2(1)$ Area of the Δ DHC = $\frac{1}{2} \times 8 \times 5 m^2 = 20 m^2(2)$ Area of Δ EGD = $\frac{1}{2} \times 8 \times 15m^2 = 60 m^2(3)$ Area of Δ EGA = $\frac{1}{2} \times 8 \times (8 + 6)m^2 = 4 \times 14 m^2$ = 56m² Area of Δ BFA = $\frac{1}{2} \times 3 \times 6m^2 = 9 m^2$ \therefore Area of the field = 99 + 20 + 60 + 56 + 9 m² = 244 m² Area of the field = 244 m²

Ex 2.3

Question 1. Fill ini the blanks:

(i) The three dimensions of a cuboid are _____, ____ and _____.Answer:length, breadth, height

(ii) The meeting point of more than two edges in a polyhedron is called as _____.
 Answer:
 Vertex

(iii) A cube has _____ faces. Answer: six

(iv) The cross section of a solid cylinder is _____. Answer: circle

(v) If a net of a 3-D shape has six plane squares, then it is called ______. **Answer:** cube

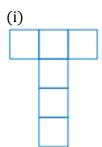
Question 2. Match the following

(i)		-	(a) Cylinder
(ii))	-	(b) Cuboid

(iii) - (c) Triangular Prism

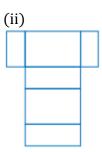
-

(iv)

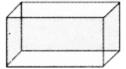

(d) Square Pyramid

Answer:

- (i) b (ii) – a
- (iii) d
- (iv) c

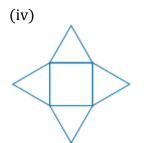

Question 3.

Which 3 – D shapes do the following nets represents? Draw them.

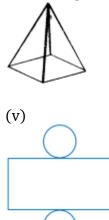


The net represents cube, because it has 6 squares.

Answer: The net represents cuboid

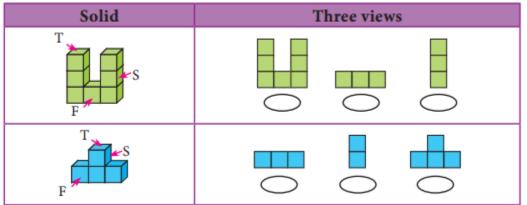


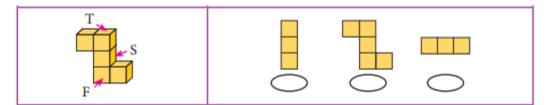
(iii)

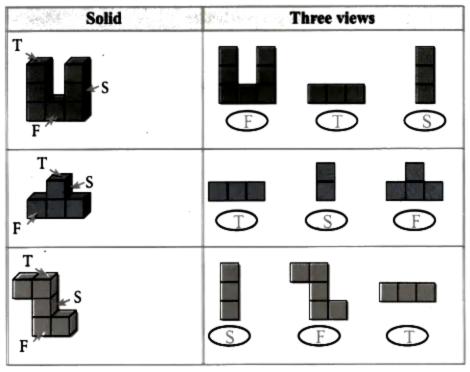


Answer: The net represents Triangular prism

The net represents square pyramid




Answer: Ine net represents cylinder



Question 4.

For each solid, three views are given. Identify for each solid, the corresponding Top, Front and Side (T, F and S) views.

Question 5.

Verify Euler's formula for the table given below.

S.No.	Faces	Vertices	Edges
(i)	4	4	6
(ii)	10	6	12
(iii)	12	20	30
(iv)	20	13	30
(v)	32	60	90

Answer:

Euler's formula is given by F + V - E = 2(i) F = 4; V = 4; E = 6F + V - E = 4 + 4 - 6 = 8 - 6F + V - E = 2

 \therefore Euler's formula is satisfied.

(ii) F = 10; V = 6; E = 12 $F + V - E = 10 + 6 - 12 = 16 - 12 = 4 \neq 2$ \therefore Euler's formula is not satisfied.

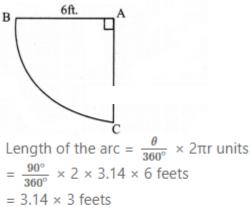
(iii) F = 12; V = 20; E = 30F + V - E = 12 + 20 - 30 = 32 - 30 = 2 \therefore Euler's formula is satisfied.

(iv) F = 20; V = 13; E = 30 $F + V - E = 20 + 13 - 30 = 33 - 30 = 3 \neq 2$: Euler's formula is not satisfied.

(v) F = 32; V = 60; E = 90F + V - E = 32 + 60 - 90 = 92 - 90 = 2 \therefore Euler's formula is satisfied.

Ex 2.4

Question 1.


Two gates are fitted at the entrance of a library. To open the gates easily, a wheel is fixed at 6 feet distance from the wall to which the gate is fixed. If one of the gates is opened to 90°, find the distance moved by the wheel ($\pi = 3.14$).

Amswer:

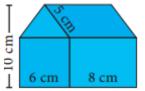
Let A be the position of the wall AC be the gate in initial position and AB be position when it is moved 90°.

Now the arc length BC gives the distance moved by the wheel.

- = 9.42 feets
- \therefore Distance moved by the wheel = 9.42 feets.

Question 2.

With his usual speed, if a person covers a circular track of radius 150 m in 9 minutes, find the distance that he covers in 3 minutes ($\pi = 3.14$).

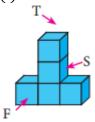

Answer:

Radius of the circular track = 150m Distance covers in 9 minutes = Perimeter of the circle = $2 \times \pi \times r$ units Distance covered in 9 min = $2 \times 3.14 \times 150$ m Distance covered in 1 min = $\frac{2 \times 3.14 \times 150}{9}$ m Distance covered in 3 min = $\frac{2 \times 3.14 \times 150^{50} \times \cancel{3}}{\cancel{3}_{31}} = 314$ m

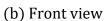
Distance he covers in 3min = 314m

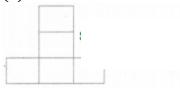
Question 3.

Find the area of the house drawing given in the figure.

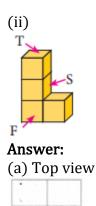

Answer:

Area of the house = Area of a square of side 6 cm + Area of a rectangle with l = 8cm, b = 6 cm + Area of a Δ with b = 6 cm and h = 4 cm + Area of a parallelogram with b = 8 cm, h = 4 cm


= (side × side) + (l × b) + $(\frac{1}{2} × b × h)$ + bh cm² = (6 × 6) + (8 × 6) + $(\frac{1}{2} × 6 × 4)$ + (8 × 4) cm² = 36 + 48 + 12 + 32 cm² = 128 cm² Required Area = 128 cm²


Question 4.

Draw the top, front and side view of the following solid shapes (i)


Answer: (a) Top view

(c) Side view

(b) Front view

(c) Side view

Challenging Problems

Expert Guide to Buying and Selling Feet on $\underline{Feet}\,Finder\cdot$

Question 5.

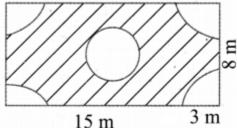
Guna has fixed a single door of width 3 feet in his room where as Nathan has fixed a double door, each of width $1\frac{1}{2}$ feet in his room. From the closed position, if each of the single and double doors can open up to 120°, whose door takes a minimum area? **Answer:**

Width of the door that Guna fixed = 3 feet. When the door is open the radius of the sector = 3 feet

Angle covered = 120° \therefore Area required to open the door $= \frac{120^{\circ}}{360^{\circ}} \times \pi r^2 = \frac{120^{\circ}}{360^{\circ}} \times \pi \times 3 \times 3$ $= 3\pi \text{ feet}^2$

(b) Width of the double doors that Nathan fixed = $1 \frac{1}{2}$ feet. Angle described to open = 120°

Area required to open $= 2 \times \text{Area of the sector}$

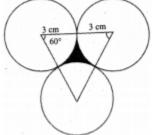

= $2 \times \frac{120^{\circ}}{360^{\circ}} \times \pi \times \frac{3}{2} \times \frac{3}{2}$ feets² = $\frac{3\pi}{2}$ feet²_z = $\frac{1}{2}(3\pi)$ feet² \therefore The double door requires the minimum area.

Question 6.

In a rectangular field which measures 15 m x 8m, cows are tied with a rope of length 3m at four corners of the field and also at the centre. Find the area of the field where none of the cow can graze. ($\pi = 3.14$).

Answer:

Area of the field where none of the cow can graze = Area of the rectangle – [Area of 4 quadrant circles] – Area of a circle


Area of the rectangle = $l \times b$ units² = $15 \times 8m^2 = 120m^2$ Area of 4 quadrant circles = $4 \times \frac{1}{4}\pi r^2$ units Radius of the circle = 3mArea of 4 quadrant circles = $4 \times \frac{1}{4} \times 3.14 \times 3 \times 3 = 28.26 m^2$ Area of the circle at the middle = πr^2 units = $3.14 \times 3 \times 3m^2 = 28.26m^2$ \therefore Area where none of the cows can graze = $[120 - 28.26 - 28.26]m^2 = 120 - 56.52 m^2 = 63.48 m^2$

Question 7.

Three identical coins, each of diameter 6 cm are placed as shown. Find the area of the shaded region between the coins. ($\pi = 3.14$) ($\sqrt{3} = 1.732$)

Given diameter of the coins = 6 cm \therefore Radius of the coins = $\frac{6}{2}$ = 3 cm Area of the shaded region = Area of equilateral triangle – Area of 3 sectors of angle 60°

Area of the equilateral triangle = $\frac{\sqrt{3}}{4}$ a² units² = $\frac{\sqrt{3}}{4} \times 6 \times 6$ cm² = $\frac{1.732}{4} \times 6 \times 6$ cm² = 15.588 cm² Area of 3 sectors = $3 \times \frac{\theta}{360^{\circ}} \times \pi r^2$ sq.units = $3 \times \frac{60^{\circ}}{360^{\circ}} \times 3.14 \times 3 \times 3$ cm² = 1.458 cm² \therefore Area of the shaded region = 15.588 – 14.13 cm² = 1.458 cm² Required area = 1.458 cm² (approximately)

Question 8.

Using Euler's formula, find the unknowns.

S.No.	Faces	Vertices	Edges
(i)	?	6	14
(ii)	8	?	10
(iii)	20	10	?

Answer:

Euler's formula is given by F + V - E = 2(i) V = 6, E = 14By Euler's formula = F + 6 - 14 = 2F = 2 + 14 - 6F = 10

(ii) F = 8, E = 10By Euler's formula = 8 + V - 10 = 2 V = 2 - 8 + 10 V = 4(iii) F = 20, V = 10By Euler's formula = 20 + 10 - E = 2 30 - E = 2 E = 30 - 2. E = 28Tabulating the required unknowns

S. No	Faces	Vertices	Edges
(i)	10	6	14
(ii)	8	4	10
(iii)	20	10	28