Economic Load Dispatch

It deals with allocation of the loads amongst the various units in the service, in such a way that total cost of the generation is minimum. Economic scheduling is an optimization problem.

Objective function: $\text{Min}(\Sigma\ C_i\ (P_i))$ subjected to the satisfaction of equality/inequality constraints.

☐ KVA loading on Generator =
$$\sqrt{P_p^2 + Q_p^2}$$

where, $P_p =$ Generator active power $Q_p =$ Generator reactive power

Generator Constraints

 KVA loading on a generator should not exceed a prespecified value C_p because of the temperature rise condition.

$$P_p^2 + Q_p^2 \le C_p^2$$

 Maximum active power generator of a source is limited by thermal consideration and minimum power generation is limited by the flame instability of a boiler.

$$P_{pmin} \le P_p \le P_{pmax}$$
 $Q_{pmin} \le Q_p \le Q_{pmax}$

where, $P_{p,min}$, $P_{p,max}$ = Minimum and maximum active power generation of a source.

 $Q_{p,min}, Q_{p,max} = Minimum and maximum reactive power generation of a source.$

incemental Fuel Rate

The ratio of small change in input to the corresponding small change in output is called **incremental fuel rate**.

Incremental fuel rate =
$$\frac{d(input)}{d(output)} = \frac{dF}{dP}$$

where.

F = Fuel input (Btu/hr)

P = Power output (W)

Incremental efficiency = $\frac{dP}{dF}$

Economic Dispatch

1. Optimum Load Dispatch by Neglecting Losses

Economic dispatch problem is defined as

$$Min F_T = \sum_{k=1}^n F_k$$

Subject to

$$P_D = \sum_{k=1}^{n} P_k$$

where.

 F_T = Total fuel input to the system

 F_K = Fuel input to K^{th} unit P_D = Total load demand P_K = Generation of K^{th} unit

Auxiliary function

$$F = F_T + \lambda \left(P_D - \sum_{k=1}^{n} P_k \right)$$

Condition for optimum operation

$$\frac{dF_1}{dP_1} = \frac{dF_2}{dP_2} = \dots = \frac{dF_n}{dP_n} = \lambda$$

where.

 λ = Lagrangian multiplier

$$\frac{dF_n}{dP_n} = incremental production cost of plant n$$

$$\frac{dF_n}{dP_n} = F_{nn} P_n \pm f_n$$

where, F_{nn} = Slope of incremental production cost curve f_n = Intercept of incremental production cost curve.

2. Optimum Load Dispatch Including Transmission Losses.

Optimal load dispatch problem is defined as

$$Min F_T = \sum_{k=1}^n F_k$$

Subject to

$$P_0 + P_L - \sum_{k=1}^{n} P_k = 0$$

where.

$$F = F_T + \lambda (P_D + P_L - \Sigma P_D)$$

Co-ordination equations

Condition for optimal load dispatch

$$\frac{dF_n}{dP_n} + \lambda \frac{\partial P_L}{\partial P_n} = \lambda$$

where,
$$\frac{\partial P_{k}}{\partial P_{n}}$$
 = Incremental transmission loss at plant n

 λ = Incremental cost of received power

Loss Formulae

□ Total Losses

$$P_{L} = \sum_{m} \sum_{n} P_{m} B_{mn} P_{n}$$

 P_m , $P_n = Source loadings$

B_{mn} = Transmission loss coefficients

☐ Incremental Transmission Losses

$$\frac{\partial P_L}{\partial P_n} = 2\sum_m B_{mn} P_m$$

□ Incremental Production Cost

$$\frac{dF_n}{dP_n} = F_{mn} P_n + f_n$$

$$P_{n} = \frac{1 - \frac{f_{n}}{\lambda} - 2 \sum_{m \neq n} B_{mn} P_{m}^{*}}{\frac{F_{mn}}{\lambda} + 2B_{nn}}$$

□ Penalty Factor

$$L_{n} = \frac{1}{1 - \frac{\partial P_{L}}{\partial P_{n}}}$$

where, $L_n = Penalty factor of plant n$