JEE(Advanced) – 2018 TEST PAPER - 2 WITH SOLUTION (Exam Date: 20-05-2018)

PART-1: MATHEMATICS

SECTION 1

1. For any positive integer n, define $f_n : (0, \infty) \to \mathbb{R}$ as

$$f_{n}(x) = \sum_{j=1}^{n} \tan^{-1} \left(\frac{1}{1 + (x+j)(x+j-1)} \right) \text{ for all } x \in (0, \infty).$$

(Here, the inverse trigonometric function $\tan^{-1}x$ assume values in $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.)

Then, which of the following statement(s) is (are) TRUE ?

- (A) $\sum_{j=1}^{5} \tan^2(f_j(0)) = 55$
- (B) $\sum_{j=1}^{10} (1 + f'_{j}(0)) \sec^{2} (f_{j}(0)) = 10$

(C) For any fixed positive integer n, $\lim_{x \to \infty} \tan(f_n(x)) = \frac{1}{n}$

(D) For any fixed positive integer n, $\limsup_{x \to \infty} \sec^2(f_n(x)) = 1$

Ans. (D)

Sol.
$$f_n(x) = \sum_{j=1}^n \tan^{-1} \left(\frac{(x+j) - (x+j-1)}{1 + (x+j)(x+j-1)} \right)$$

$$f_n(x) = \sum_{j=1}^n [tan^{-1}(x+j) - tan^{-1}(x+j-1)]$$

$$f_n(x) = tan^{-1}(x + n) - tan^{-1}x$$

∴ $tan(f_n(x)) = tan[tan^{-1}(x + n) - tan^{-1}x]$
 $(x + n) - x$

$$\tan(f_n(x)) = \frac{(x+n) - x}{1 + x(x+n)}$$

$$\tan(f_n(x)) = \frac{n}{1 + x^2 + nx}$$

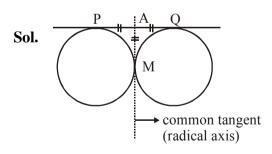
$$\therefore \sec^2(f_n(x)) = 1 + \tan^2(f_n(x))$$

$$\sec^{2}(f_{n}(x)) = 1 + \left(\frac{n}{1 + x^{2} + nx}\right)^{2}$$

$$\lim_{x \to \infty} \sec^2(f_n(x)) = \lim_{x \to \infty} 1 + \left(\frac{n}{1 + x^2 + nx}\right)^2 = 1$$

- 2. Let T be the line passing through the points P(-2, 7) and Q(2, -5). Let F_1 be the set of all pairs of circles (S_1, S_2) such that T is tangents to S_1 at P and tangent to S_2 at Q, and also such that S_1 and S_2 touch each other at a point, say, M. Let E_1 be the set representing the locus of M as the pair (S_1, S_2) varies in F_1 . Let the set of all straight line segments joining a pair of distinct points of E_1 and passing through the point R(1, 1) be F_2 . Let E_2 be the set of the mid-points of the line segments in the set F_2 . Then, which of the following statement(s) is (are) TRUE ?
 - (A) The point (-2, 7) lies in E_1

(B) The point
$$\left(\frac{4}{5}, \frac{7}{5}\right)$$
 does **NOT** lie in E_2
(C) The point $\left(\frac{1}{2}, 1\right)$ lies in E_2
(D) The point $\left(0, \frac{3}{2}\right)$ does **NOT** lie in E_1



AP = AQ = AM

Locus of M is a circle having PQ as its diameter

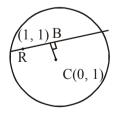
Hence, E_1 : (x - 2) (x + 2) + (y - 7)(y + 5) = 0 and $x \neq \pm 2$

Locus of B (midpoint)

is a circle having RC as its diameter

$$E_2: x(x - 1) + (y - 1)^2 = 0$$

Now, after checking the options, we get (D)



3. Let S be the of all column matrices $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ such that $b_1, b_2, b_3 \in \mathbb{R}$ and the system of equations (in

real variables)

$$-x + 2y + 5z = b_1$$

 $2x - 4y + 3z = b_2$
 $x - 2y + 2z = b_3$

has at least one solution. Then, which of the following system(s) (in real variables) has (have) at least one

solution of each $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \in S$? (A) $x + 2y + 3z = b_1$, $4y + 5z = b_2$ and $x + 2y + 6z = b_3$ (B) $x + y + 3z = b_1$, $5x + 2y + 6z = b_2$ and $-2x - y - 3z = b_3$ (C) $-x + 2y - 5z = b_1$, $2x - 4y + 10z = b_2$ and $x - 2y + 5z = b_3$

(D) $x + 2y + 5z = b_1$, $2x + 3z = b_2$ and $x + 4y - 5z = b_3$

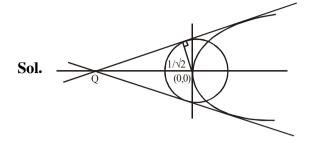
Ans. (A,D)

Sol. We find D = 0 & since no pair of planes are parallel, so there are infinite number of solutions.

- Let $\alpha P_1 + \lambda P_2 = P_3$
- $\Rightarrow P_1 + 7P_2 = 13P_3$
- $\Rightarrow b_1 + 7b_2 = 13b_3$
- (A) $D \neq 0 \Rightarrow$ unique solution for any b_1, b_2, b_3
- (B) D = 0 but $P_1 + 7P_2 \neq 13P_3$
- (C) As planes are parallel and there exist infinite ordered triplet for which they will be non coincident although satisfying $b_1 + 7b_2 = 13b_3$.
 - : rejected.
- (D) $D \neq 0$
- 4. Consider two straight lines, each of which is tangent to both the circle $x^2 + y^2 = \frac{1}{2}$ and the parabola $y^2 = 4x$. Let these lines intersect at the point Q. Consider the ellipse whose center is at the origin O(0, 0) and whose semi-major axis is OQ. If the length of the minor axis of this ellipse is $\sqrt{2}$, then the which of the following statement(s) is (are) TRUE ?
 - (A) For the ellipse, the eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is 1
 - (B) For the ellipse, the eccentricity is $\frac{1}{2}$ and the length of the latus rectum is $\frac{1}{2}$
 - (C) The area of the region bounded by the ellipse between the lines $x = \frac{1}{\sqrt{2}}$ and x = 1 is $\frac{1}{4\sqrt{2}}(\pi 2)$

(D) The area of the region bounded by the ellipse between the lines $x = \frac{1}{\sqrt{2}}$ and x = 1 is $\frac{1}{16}(\pi - 2)$

Ans. (A,C)



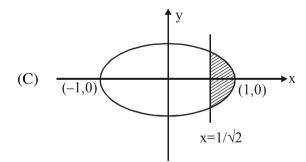
Let equation of common tangent is $y = mx + \frac{1}{m}$

$$\therefore \qquad \frac{0+0+\frac{1}{m}}{\sqrt{1+m^2}} = \frac{1}{\sqrt{2}} \implies m^4 + m^2 - 2 = 0 \implies m = \pm 1$$

Equation of common tangents are y = x + 1 and y = -x - 1point Q is (-1, 0)

$$\therefore$$
 Equation of ellipse is $\frac{x^2}{1} + \frac{y^2}{1/2} = 1$

(A)
$$e = \sqrt{1 - \frac{1}{2}} = \frac{1}{\sqrt{2}}$$
 and $LR = \frac{2b^2}{a} = 1$



Area 2.
$$\int_{1/\sqrt{2}}^{1} \frac{1}{\sqrt{2}} \sqrt{1-x^2} dx = \sqrt{2} \left[\frac{x}{2} \sqrt{1-x^2} + \frac{1}{2} \sin^{-1} x \right]_{1/\sqrt{2}}^{1}$$

= $\sqrt{2} \left[\frac{\pi}{4} - \left(\frac{1}{4} + \frac{\pi}{8} \right) \right] = \sqrt{2} \left(\frac{\pi}{8} - \frac{1}{4} \right) = \frac{\pi - 2}{4\sqrt{2}}$

correct answer are (A) and (D)

- Let s, t, r be the non-zero complex numbers and L be the set of solutions z = x + iy $(x, y \in \mathbb{R}, i = \sqrt{-1})$ 5. of the equation $s_{z} + t_{\overline{z}} + r = 0$, where $\overline{z} = x - iy$. Then, which of the following statement(s) is (are) TRUE ?
 - (A) If L has exactly one element, then $|s| \neq |t|$
 - (B) If |s| = |t|, then L has infinitely many elements
 - (C) The number of elements in $L \cap \{z : |z-1+i|=5\}$ is at most 2
 - (D) If L has more than one element, then L has infinitely many elements

Ans. (A,C,D)

Sol. Given

 $sz + t\overline{z} + r = 0$ (1)

 $\overline{z} = x - iy$ (Conjugate of z)

Taking conjugate throughout $\overline{sz} + \overline{tz} + \overline{r} = 0$ (2)

Adding (1) and (2)

$$(s+\overline{t})z+(\overline{s}+t)\overline{z}+(r+\overline{r})=0$$

And Subtracting (1) and (2)

$$\left(s-\bar{t}\right)z+\left(t-\bar{s}\right)\bar{z}+\left(r-\bar{r}\right)=0$$

For unique solution

$$\frac{t+s}{t-s} \neq \frac{s+t}{s-t}$$

On further simplification $\Rightarrow |t| \neq |s|$

Hence option A proved.

If the lines coincide, then $\frac{t+\bar{s}}{t-\bar{s}} = \frac{\bar{t}+s}{s-t} = \frac{r+\bar{r}}{r-\bar{r}}$

On comparing

 $\frac{t+\bar{s}}{t-\bar{s}} = \frac{r+\bar{r}}{-\bar{s}}$

and simplification, we get $\Rightarrow |s| = |t|$

The lines can be parallel or coincidental.

Since, no concrete outcome.

Hence, option B is not correct.

Clearly L is either a single or represents a line and |z-1+i| = 5 represents a circle.

: Intersection of L and $\{|z-1+i|=5\}$ is ATMOST 2.

Hence, option C is correct.

Let $s = \alpha_1 + i\beta_1$; $t = \alpha_2 + i\beta_2$ and $r = \alpha_3 + i\beta_3$ Then $sz + t\overline{z} + r = 0$ $\Rightarrow (\alpha_1 + \alpha_2)x + (\beta_2 - \beta_1)y + \alpha_3 = 0$ and $(\beta_1 + \beta_2)x + (\alpha_1 - \alpha_2)y + \beta_3 = 0$

If L has more than 1 element then it implies L will have ∞ elements.

As L represents linear equation in x and y.

Hence, option D is correct.

6. Let $f: (0, \pi) \to \mathbb{R}$ be a twice differentiable function such that

$$\lim_{t \to x} \frac{f(x)\sin t - f(t)\sin x}{t - x} = \sin^2 x \text{ for all } x \in (0, \pi).$$

If $f\left(\frac{\pi}{6}\right) = -\frac{\pi}{12}$, then which of the following statement(s) is (are) TRUE ?

(A) $f\left(\frac{\pi}{4}\right) = \frac{\pi}{4\sqrt{2}}$ (B) $f(x) < \frac{x^4}{6} - x^2$ for all $x \in (0, \pi)$

6

(C) There exists $\alpha \in (0, \pi)$ such that $f'(\alpha) = 0$

(D)
$$f''\left(\frac{\pi}{2}\right) + f\left(\frac{\pi}{2}\right) = 0$$

Sol.
$$\lim_{t \to x} \frac{f(x) \sin t - f(t) \sin x}{t - x} = \sin^2 x$$

by using L'Hopital
$$\lim_{t \to x} \frac{f(x) \cos t - f'(t) \sin x}{1} = \sin^2 x$$

$$\Rightarrow f(x) \cos x - f'(x) \sin x = \sin^2 x$$

$$\Rightarrow -\left(\frac{f'(x) \sin x - f(x) \cos x}{\sin^2 x}\right) = 1$$

$$\Rightarrow -d\left(\frac{f(x)}{\sin x}\right) = 1$$

$$\Rightarrow -d\left(\frac{f(x)}{\sin x}\right) = 1$$

$$\Rightarrow \frac{f(x)}{\sin x} = -x + c$$

Put $x = \frac{\pi}{6} \& f\left(\frac{\pi}{6}\right) = -\frac{\pi}{12}$
 $\therefore c = 0 \Rightarrow f(x) = -x \sin x$
(A) $f\left(\frac{\pi}{4}\right) = -\frac{\pi}{4} \frac{1}{\sqrt{2}}$

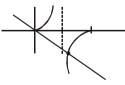
(B)
$$f(x) = -x \sin x$$

as
$$\sin x > x - \frac{x^3}{6}$$
, $-x \sin x < -x^2 + \frac{x^4}{6}$

:.
$$f(x) < -x^2 + \frac{x^4}{6} \forall x \in (0, \pi)$$

(C) $f'(x) = -\sin x - x \cos x$

 $f'(x) = 0 \implies \tan x = -x \implies \text{there exist } \alpha \in (0, \pi) \text{ for which } f'(\alpha) = 0$



(D) $f''(x) = -2\cos x + x\sin x$

$$f''\left(\frac{\pi}{2}\right) = \frac{\pi}{2}, \ f\left(\frac{\pi}{2}\right) = -\frac{\pi}{2}$$
$$f''\left(\frac{\pi}{2}\right) + f\left(\frac{\pi}{2}\right) = 0$$

7. The value of the integral

$$\int_{0}^{\frac{1}{2}} \frac{1+\sqrt{3}}{\left(\left(x+1\right)^{2}\left(1-x\right)^{6}\right)^{\frac{1}{4}}} dx$$

Sol.
$$\int_{0}^{\frac{1}{2}} \frac{(1+\sqrt{3})dx}{\left[(1+x)^{2}(1-x)^{6}\right]^{1/4}}$$
$$\int_{0}^{\frac{1}{2}} \frac{(1+\sqrt{3})dx}{(1+x)^{2}\left[\frac{(1-x)^{6}}{(1+x)^{6}}\right]^{1/4}}$$
Put $\frac{1-x}{1+x} = t \Rightarrow \frac{-2dx}{(1+x)^{2}} = dt$

$$\mathbf{I} = \int_{1}^{1/3} \frac{(1+\sqrt{3})dt}{-2t^{6/4}} = \frac{-(1+\sqrt{3})}{2} \times \left|\frac{-2}{\sqrt{t}}\right|_{1}^{1/3} = (1+\sqrt{3})(\sqrt{3}-1) = 2$$

8. Let P be a matrix of order 3×3 such that all the entries in P are from the set $\{-1, 0, 1\}$. Then, the maximum possible value of the determinant of P is _____.

Sol.
$$\Delta = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \underbrace{(a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2)}_{x} - \underbrace{(a_3b_2c_1 + a_2b_1c_3 + a_1b_3c_2)}_{y}$$

Now if $x \le 3$ and $y \ge -3$
the Δ can be maximum 6
But it is not possible

as $x = 3 \implies$ each term of x = 1

and $y = 3 \implies$ each term of y = -1

$$\Rightarrow \prod_{i=1}^{3} a_i b_i c_i = 1 \text{ and } \prod_{i=1}^{3} a_i b_i c_i = -1$$

which is contradiction

so now next possibility is 4

which is obtained as $\begin{vmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} = 1(1+1) - 1(-1-1) + 1(1-1) = 4$

9. Let X be a set with exactly 5 elements and Y be a set with exactly 7 elements. If α is the number of one-

one functions from X to Y and β is the number of onto functions from Y to X, then the value of $\frac{1}{5!}(\beta - \alpha)$

is _____ .

Ans. (119)

Sol. n(X) = 5

n(Y) = 7

 $\alpha \rightarrow$ Number of one-one function = ${}^{7}C_{5} \times 5!$

 $\beta \rightarrow$ Number of onto function Y to X

$$\begin{pmatrix}
a_{1} \\
a_{2} \\
\vdots \\
\vdots \\
a_{7}
\end{pmatrix}
\begin{pmatrix}
b_{1} \\
b_{2} \\
\vdots \\
\vdots \\
b_{5}
\end{pmatrix}$$
1, 1, 1, 1, 1, 3
1, 1, 1, 2, 2
$$\frac{7!}{3!4!} \times 5! + \frac{7!}{(2!)^{3}3!} \times 5! = (^{7}C_{3} + 3.^{7}C_{3})5! = 4 \times ^{7}C_{3} \times 5!$$

$$\frac{\beta - \alpha}{5!} = 4 \times ^{7}C_{3} - ^{7}C_{5} = 4 \times 35 - 21 = 119$$

10. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function with f(0) = 0. If y = f(x) satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = (2+5y)(5y-2),$$

then the value of $\lim_{x\to\infty} f(x)$ is _____.

Ans. (0.4)

Sol.
$$\frac{dy}{dx} = 25y^2 - 4$$

So,
$$\frac{dy}{25y^2 - 4} = dx$$

Integrating,
$$\frac{1}{25} \times \frac{1}{2 \times \frac{2}{5}} \ln \left| \frac{y - \frac{2}{5}}{y + \frac{2}{5}} \right| = x + c$$

$$\Rightarrow \ln \left| \frac{5y-2}{5y+2} \right| = 20(x+c)$$

Now, c = 0 as f(0) = 0 Hence $\left| \frac{5y-2}{5y+2} \right| = e^{(20x)}$

$$\lim_{x \to -\infty} \left| \frac{5f(x) - 2}{5f(x) + 2} \right| = \lim_{x \to -\infty} e^{(20x)}$$

Now, RHS = 0 $\Rightarrow \lim_{x \to \infty} (5f(x) - 2) = 0$

$$\Rightarrow \lim_{x \to -\infty} f(x) = \frac{2}{5}$$

11. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function with f(0) = 1 and satisfying the equation f(x + y) = f(x)f'(y) + f'(x)f(y) for all $x, y \in \mathbb{R}$.

Then, then value of $\log_e(f(4))$ is _____.

Ans. (2)

```
Sol. P(x, y) : f(x + y) = f(x)f'(y) + f'(x) f(y) \forall x, y \in R

P(0, 0) : f(0) = f(0)f'(0) + f'(0) f(0)

\Rightarrow 1 = 2f'(0)

\Rightarrow f'(0) = \frac{1}{2}

P(x, 0) : f(x) = f(x). f'(0) + f'(x).f(0)

\Rightarrow f(x) = \frac{1}{2}f(x) + f'(x)

\Rightarrow f'(x) = \frac{1}{2}f(x)

\Rightarrow f(x) = \frac{1}{2}f(x)
```

$$\Rightarrow \ln(f(4)) = 2$$

12. Let P be a point in the first octant, whose image Q in the plane x + y = 3 (that is, the line segment PQ is perpendicular to the plane x + y = 3 and the mid-point of PQ lies in the plane x + y = 3) lies on the z-axis. Let the distance of P from the x-axis be 5. If R is the image of P in the xy-plane, then the length of PR is _____ .

Ans. (8)

Sol. Let $P(\alpha, \beta, \gamma)$ $Q(0, 0, \gamma) \&$ $R(\alpha, \beta, -\gamma)$ Now, $\overline{PQ} \parallel \hat{i} + \hat{j} \Rightarrow (\alpha \hat{i} + \beta \hat{j}) \parallel (\hat{i} + \hat{j})$ $\Rightarrow \alpha = \beta$

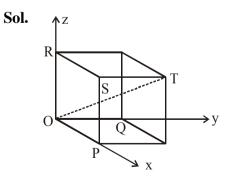
Also, mid point of PQ lies on the plane $\Rightarrow \frac{\alpha}{2} + \frac{\beta}{2} = 3 \Rightarrow \alpha + \beta = 6 \Rightarrow \alpha = 3$

Now, distance of point P from X-axis is $\sqrt{\beta^2 + \gamma^2} = 5$

$$\Rightarrow \beta^{2} + \gamma^{2} = 25 \Rightarrow \gamma^{2} = 16$$

as $\beta = \alpha = 3$
as $\gamma = 4$
Hence, PR = $2\gamma = 8$

13. Consider the cube in the first octant with sides OP, OQ and OR of length 1, along the x-axis, y-axis and z-axis, respectively, where O(0, 0, 0) is the origin. Let $S\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ be the centre of the cube and T be the vertex of the cube opposite to the origin O such that S lies on the diagonal OT. If $\vec{p} = \vec{SP}$, $\vec{q} = \vec{SQ}$, $\vec{r} = \vec{SR}$ and $\vec{t} = \vec{ST}$, then the value of $|(\vec{p} \times \vec{q}) \times (\vec{r} \times \vec{t})|$ is _____.



$$\vec{p} = \vec{SP} = \left(\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}\right) = \frac{1}{2}(\hat{i} - \hat{j} - \hat{k})$$

Ans. (646)

Sol. $X = \sum_{r=0}^{n} r \cdot ({}^{n}C_{r})^{2}; n = 10$ $X = n \cdot \sum_{r=0}^{n} {}^{n}C_{r} \cdot {}^{n-1}C_{r-1}$ $X = n \cdot \sum_{r=1}^{n} {}^{n}C_{n-r} \cdot {}^{n-1}C_{r-1}$ $X = n \cdot {}^{2n-1}C_{n-1}; n = 10$ $X = 10 \cdot {}^{19}C_{9}$ $\frac{X}{1430} = \frac{1}{143} \cdot {}^{19}C_{9}$ = 646

SECTION 3

15. Let
$$E_1 = \left\{ x \in \mathbb{R} : x \neq 1 \text{ and } \frac{x}{x-1} > 0 \right\}$$

and $E_2 = \left\{ x \in E_1 : \sin^{-1} \left(\log_e \left(\frac{x}{x-1} \right) \right) \text{ is a real number} \right\}.$
(Here, the inverse trigonometric function $\sin^{-1}x$ assumes values in $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right].$)
Let $f: E_1 \to \mathbb{R}$ be the function defined by $f(x) = \log_e \left(\frac{x}{x-1} \right)$

and $g: E_2 \to \mathbb{R}$ be the function defined by $g(x) = \sin^{-1}\left(\log_e\left(\frac{x}{x-1}\right)\right)$.

LIST-I

LIST-II

P.	The range of f is	1.	$\left(-\infty,\frac{1}{1-e}\right]\cup\left[\frac{e}{e-1},\infty\right)$		
Q.	The range of g contains	2.	(0, 1)		
R.	The domain of f contains	3.	$\left[-\frac{1}{2},\frac{1}{2}\right]$		
S.	The domain of g is	4.	$(-\infty,0)\cup(0,\infty)$		
		5.	$\left(-\infty, \frac{e}{e-1}\right]$		
		6.	$(-\infty,0)\cup\left(\frac{1}{2},\frac{e}{e-1}\right]$		
The	correct option is :				
(A) $\mathbf{P} \rightarrow 4; \ \mathbf{Q} \rightarrow 2; \ \mathbf{R} \rightarrow 1; \ \mathbf{S} \rightarrow 1$					

(B) $P \rightarrow 3$; $Q \rightarrow 3$; $R \rightarrow 6$; $S \rightarrow 5$ (C) $P \rightarrow 4$; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 6$ (D) $P \rightarrow 4$; $Q \rightarrow 3$; $R \rightarrow 6$; $S \rightarrow 5$

Ans. (A)

Sol.
$$E_1: \frac{x}{x-1} > 0$$

$$\frac{+}{0} - \frac{+}{1}$$

$$\Rightarrow E_1: x \in (-\infty, 0) \square \cup (1, \infty)$$

$$E_2: -1 \le l \ln\left(\frac{x}{x+1}\right) \le 1$$

$$\frac{1}{e} \le \frac{x}{x-1} \le e$$
Now $\frac{x}{x-1} - \frac{1}{e} \ge 0$

$$\Rightarrow \frac{(e-1)x+1}{e(x-1)} \ge 0$$

$$\frac{+}{-1/(e-1)} - \frac{+}{1}$$

$$\Rightarrow x \in \left(-\infty, \frac{1}{1-e}\right] \cup (1, \infty)$$
also $\frac{x}{x-1} - e \le 0$

$$\frac{(e-1)x-e}{x-1} \ge 0$$

$$\frac{+}{1} - \frac{-}{e/(e-1)} + \frac{+}{1}$$

$$\Rightarrow x \in (-\infty, 1) \cup \left[\frac{e}{e-1}, \infty\right]$$
So $E_2: \left(-\infty, \frac{1}{1-e}\right) \cup \left[\frac{e}{e-1}, \infty\right]$
as Range of $\frac{x}{x-1}$ is $\mathbb{R}^+ - \{1\}$

Range of g is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \setminus \{0\}$ or $\left[-\frac{\pi}{2}, 0\right] \cup \left(0, \frac{\pi}{2}\right]$ Now $P \rightarrow 4$, $Q \rightarrow 2$, $R \rightarrow 1$, $S \rightarrow 1$ Hence A is correct

- 16. In a high school, a committee has to be formed from a group of 6 boys M₁, M₂, M₃, M₄, M₅, M₆ and 5 girls G₁, G₂, G₃, G₄, G₅.
 - (i) Let α_1 be the total number of ways in which the committee can be formed such that the committee has 5 members, having exactly 3 body and 2 girls.
 - (ii) Let α_2 be the total number of ways in which the committee can be formed such that the committee has at least 2 members, and having an equal number of boys and girls.
 - (iii) Let α_3 be the total number of ways in which the committee can be formed such that the committee has 5 members, at least 2 of them being girls.
 - (iv) Let α_4 be the total number of ways in which the committee can be formed such that the committee has 4 members, having at least 2 girls and such that both M₁ and G₁ are **NOT** in the committee together.

	LIST-I			LIST-II
Р.	The value of α_1 is 1.	136		
Q.	The value of α_2 is 2.	189		
R.	The value of α_3 is 3.	192		
S.	The value of α_4 is		4.	200
			5.	381
			6.	461
The	e correct option is :-			

(A) $\mathbf{P} \rightarrow \mathbf{4}; \mathbf{Q} \rightarrow \mathbf{6}, \mathbf{R} \rightarrow \mathbf{2}; \mathbf{S} \rightarrow \mathbf{1}$ (B) $\mathbf{P} \rightarrow \mathbf{1}; \mathbf{Q} \rightarrow \mathbf{4}; \mathbf{R} \rightarrow \mathbf{2}; \mathbf{S} \rightarrow \mathbf{3}$ (C) $P \rightarrow 4$; $Q \rightarrow 6$, $R \rightarrow 5$; $S \rightarrow 2$ (D) $\mathbf{P} \rightarrow 4$; $\mathbf{Q} \rightarrow 2$; $\mathbf{R} \rightarrow 3$; $\mathbf{S} \rightarrow 1$

Ans. (C)

Sol. (1)
$$\alpha_1 = \begin{pmatrix} 6 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} = 200$$

So P $\rightarrow 4$

(2)
$$\alpha_2 = \binom{6}{1}\binom{5}{1} + \binom{6}{2}\binom{5}{2} + \binom{6}{3}\binom{5}{3} + \binom{6}{4}\binom{5}{4} + \binom{6}{5}\binom{5}{5}$$

 $= \binom{11}{5} - 1$
 $= 46!$
So $Q \to 6$
(3) $\alpha_3 = \binom{5}{2}\binom{6}{3} + \binom{5}{3}\binom{6}{2} + \binom{5}{4}\binom{6}{1} + \binom{5}{5}\binom{6}{0}$
 $= \binom{11}{5} - \binom{5}{0}\binom{6}{5} - \binom{5}{1}\binom{6}{4}$
 $= 381$
So $R \to 5$
(4) $\alpha_2 = \binom{5}{2}\binom{6}{2} - \binom{4}{1}\binom{5}{1} + \binom{5}{3}\binom{6}{1} - \binom{4}{2}\binom{1}{1} + \binom{5}{4} = 189$
So $S \to 2$

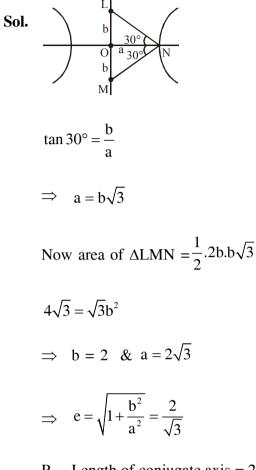
17. Let H: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, where a > b > 0, be a hyperbola in the xy-plane whose conjugate axis LM subtends

an angle of 60° at one of its vertices N. Let the area of the triangle LMN be $4\sqrt{3}$.

LIST-I	LIST-II						
P. The length of the conjugate axis of H is		1.	8				
Q. The eccentricity of H is		2.	$\frac{4}{\sqrt{3}}$				
R. The distance between the foci of H is			$\frac{2}{\sqrt{3}}$				
S. The length of the latus rectum of H is		4.	4				
The correct option is :							
(A) $\mathbf{P} \rightarrow 4; \mathbf{Q} \rightarrow 2, \mathbf{R} \rightarrow 1; \mathbf{S} \rightarrow 3$							
(B) $\mathbf{P} \rightarrow 4; \ \mathbf{Q} \rightarrow 3; \ \mathbf{R} \rightarrow 1; \ \mathbf{S} \rightarrow 2$							
(C) $\mathbf{P} \rightarrow 4; \mathbf{Q} \rightarrow 1, \mathbf{R} \rightarrow 3; \mathbf{S} \rightarrow 2$							

(D)
$$\mathbf{P} \rightarrow \mathbf{3}; \mathbf{Q} \rightarrow \mathbf{4}; \mathbf{R} \rightarrow \mathbf{2}; \mathbf{S} \rightarrow \mathbf{1}$$

Ans. (B)



- P. Length of conjugate axis = 2b = 4So P $\rightarrow 4$
- Q. Eccentricity $e = \frac{2}{\sqrt{3}}$

So $Q \rightarrow 3$

R. Distance between foci = 2ae

$$= 2\left(2\sqrt{3}\right)\left(\frac{2}{\sqrt{3}}\right) = 8$$

So $R \rightarrow 1$

S. Length of latus rectum = $\frac{2b^2}{a} = \frac{2(2)^2}{2\sqrt{3}} = \frac{4}{\sqrt{3}}$

So
$$S \rightarrow 2$$

18. Let
$$f_1: \mathbb{R} \to \mathbb{R}$$
, $f_2: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$, $f_3: \left(-1, e^{\frac{\pi}{2}} - 2\right) \to \mathbb{R}$ and $f_4: \mathbb{R} \to \mathbb{R}$ be functions defined

by

(i)
$$f_1(x) = \sin\left(\sqrt{1 - e^{-x^2}}\right)$$

(ii) $f_2(x) = \begin{cases} \frac{|\sin x|}{\tan^{-1} x} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$, where the inverse trigonometric function $\tan^{-1}x$ assumes values

in
$$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$
,

(iii) $f_3(x) = [sin(log_e(x + 2)]]$, where for $t \in \mathbb{R}$, [t] denotes the greatest integer less than or equal to t,

(iv)
$$f_4(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

List-I

List-II

P. the function f_1 is **1. NOT** continuous at x = 0**Q.** The function f_2 is 2. continuous at x = 0 and **NOT** differentiable at x = 0**R.** The function f_3 is 3. differentiable at x = 0 and its derivative is **NOT** continuous at x = 0**S.** The function f_4 is 4. differentiable at x = 0 and its derivative is continuous at x = 0

The correct option is :

(A) $\mathbf{P} \rightarrow \mathbf{2}; \mathbf{Q} \rightarrow \mathbf{3}, \mathbf{R} \rightarrow \mathbf{1}; \mathbf{S} \rightarrow \mathbf{4}$ (B) $\mathbf{P} \rightarrow \mathbf{4}; \mathbf{Q} \rightarrow \mathbf{1}; \mathbf{R} \rightarrow \mathbf{2}; \mathbf{S} \rightarrow \mathbf{3}$ (C) $\mathbf{P} \rightarrow \mathbf{4}; \mathbf{Q} \rightarrow \mathbf{2}, \mathbf{R} \rightarrow \mathbf{1}; \mathbf{S} \rightarrow \mathbf{3}$ (D) $P \rightarrow 2$; $Q \rightarrow 1$; $R \rightarrow 4$; $S \rightarrow 3$

Ans. (D)

Sol. (i) $f(x) = \sin \sqrt{1 - e^{-x^2}}$

$$f'_{1}(x) = \cos\sqrt{1 - e^{-x^{2}}} \cdot \frac{1}{2\sqrt{1 - e^{-x^{2}}}} \left(0 - e^{-x^{2}} \cdot (-2x)\right)$$

at x = 0 $f'_1(x)$ does not exist

So. $P \rightarrow 2$

(ii)
$$f_2(x) = \begin{cases} \frac{|\sin x|}{\tan^{-1} x}, & x \neq 0\\ 0 & x = 0 \end{cases}$$

$$\lim_{x \to 0^+} \frac{\sin x}{x} \frac{x}{\tan^{-1} x} = 1$$

$$\Rightarrow f_2(x) \text{ does not continuous at } x = 0$$

So $Q \to 1$

(iii)
$$f_3(x) = [\sin \ell n(x+2)] = 0$$

$$1 < x + 2 < e^{\pi/2}$$
$$\Rightarrow 0 < \ln(x + 2) < \frac{\pi}{2}$$

$$\Rightarrow 0 < \sin(x+2) < 2$$
$$\Rightarrow 0 < \sin(\ell n(x+2) < 1)$$

$$\Rightarrow f_3(x) = 0$$

So $R \rightarrow 4$

(iv)
$$f_4(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

So S \rightarrow 3