Sphere

Q.1. If A (-1, 4, -3) is one end of the diameter AB of the sphere $x^2 + y^2 + z^2 - 2y + 2z - 15 = 0$ then find the coordinates of the other end point B.

Solution: 1

The given sphere is , $x^2 + y^2 + z^2 - 2y + 2z - 15 = 0$ The centre is (0, 1, -1). Point A is (-1, 4, -3). Let point B is (a, β, γ) . Then $(a - 1) / 2 = 0 \Rightarrow a = 1$. $(\beta + 4) / 2 = 1 \Rightarrow \beta = -2$ $(\gamma - 3) / 2 = -1 \Rightarrow \gamma = 1$. Therefore required point is (1, -2, 1).

Q.2. Prove that the plane x + 2y - z = 4 cuts the sphere $x^2 + y^2 + z^2 - x + z - 2 = 0$ in a circle whose radius is unity.

Solution: 2

We have equation of sphere as $:x^2 + y^2 + z^2 - x + z - 2 = 0$ Then centre of sphere is (1/2, 0, -1/2) = (-u, -v, -w) And radius = R = $\sqrt{(u^2 + v^2 + w^2 - d)} = \sqrt{(1/4 + 1/4 + 2)} = \sqrt{(5/2)}$

Distance of centre from plane x + 2y - z = 4 is

 $d = [(1/2 + 1/2 - 4)/\sqrt{(1 + 4 + 1)}] = 3/\sqrt{6}.$

Let radius of the circle be r then $r = \sqrt{(R2 - d2)} = \sqrt{(5/2 - 9/6)} = \sqrt{(2/2)} = 1$. [**Proved.**]

Q.3. Show that the equation to a sphere passing through three points (2, 0, 0), (0, 2, 0) and (0, 0, 2) and having its centre on the plane 2x + 3y + 4z = 27 is

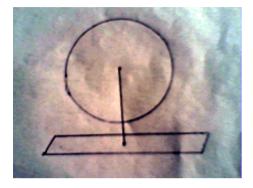
 $x^2 + y^2 + z^2 - 6x - 6y - 6z + 8 = 0$.

Solution: 3

The general equation of sphere is : $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + c = 0$ (2, 0, 0), (0, 2, 0) and (0, 0, 2) lie on it Therefore, 22 + 0 + 0 + 4u + 0 + 0 + c = 0Or, 4 + 4u + c = 0 ------ (1) 4 + 4v + c = 0 ------ (2) and 4 + 4w + c = 0 ------ (3) Centre (-u, -v, -w) lie on plane 2x + 3y + 4z = 27Hence, -3u - 3v - 4w = 27 ------ (4) Putting value of u, v, w from (1), (2) and (3) in (4), we get -2(-c-4)/4 - 3(-c-4)/4 - 4(-c-4)/4 = 27Or, (2c + 8 = 3c + 12 + 4c + 16)/4 = 27Or, 9c + 36 = 108 Or, 9c = 72 => c = 8. Therefore, 4 + 4u + 8 = 0 = u = -3 [from (1)] Similarly using (2) and (3) v = -3 and w = -3, Putting u, v and w in general equation, we get $x^2 + y^2 + z^2 - 6x - 6y - 6z + 8 = 0$. Proved.]

Q.4. Find the least distance of the plane 12x + 4y + 3z = 327 from the sphere $x^2 + y^2 + z^2 + 4x - 2y - 6z = 155$.

Solution: 4



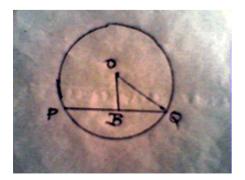
The given equation of sphere is , $x^2 + y^2 + z^2 + 4x - 2y - 6z = 155$ Therefore, u = 2, v = -1, w = -3, d = -155, The centre of the sphere is (-u, -v, -w) = (-2, 3, 3). Distance of centre from the plane = $[12(-2) + 4 \times 1 + 3 \times 3 - 327]/\sqrt{(144 + 16 + 9)} = |(-24 + 4 + 9 - 327)/13| = 26$

Radius of the sphere = $\sqrt{(4 + 1 + 9 + 155)} = 13$,

Hence the least distance of plane from sphere = 26 - 13 = 13.

Q.5. Find the radius of the circular section of the sphere $x^2 + y^2 + z^2 = 49$ cut by a plane $2x + 3y - z - 5\sqrt{(14)} = 0$.

Solution : 5



Equation of sphere is $x^2 + y^2 + z^2 = 49$ and plane is $2x + 3y - z - 5\sqrt{(14)} = 0$

In fig. above, O is the centre (0, 0, 0) of the sphere and PQ represents a plane.

Length of perpendicular (OB) = $|2 \times 0 + 3 \times 0 - 1 \times 0 - 5\sqrt{(14)}/\sqrt{(14)}| = |-5| = 5$ units.

BQ is the radius of the circle formed by cutting the sphere by plane.

 Δ OBQ is a right angled triangle.

Therefore, $OB^2 + BQ^2 = OQ^2$

Or, $5^2 + BQ^2 = 49 = BQ^2 = 49 - 25 = 24$

Therefore, BQ = $\sqrt{(24)}$ units.

Hence, radius of the circle $=\sqrt{(24)}$ units.