# **Digital Carrier Modulation**



- In digital carrier modulation system, the modulating signal is digital which is the output of PCM or DM system and carrier signal is high frequency sinusoidal carrier.
- In digital carrier modulation system one of the properties of the carrier, namely amplitude, frequency or the phase is varied at a time with the binary modulating signal.
  - 1. Amplitude shift keying: The generation of ASK signal is simplest, is amplitude dependent, maximum noise is introduced and therefore ASK system has lowest signal to noise ratio.
    - ASK signal uses ON-OFF signaling.
    - In ASK probability of error (P<sub>a</sub>) is high.
    - The ASK system is used for telegraphy.
  - 2. Frequency shift keying: The circuit configuration of FSK system is most complex, requires large bandwidth for its transmission but has relatively high S/N ratio.
    - FSK signal uses NRZ signaling.
    - In case of FSK, P<sub>e</sub> is less.
    - Multiplexing is difficult.
    - Used in MODEM.
  - 3. Phase shift keying: The PSK system has relatively high SNR, relatively complex circuit, require lesser bandwidth as compare to FSK system.
    - PSK signal uses NRZ signaling.
    - This system has lowest probability of error
    - The PSK in its modified form is used for satellite communication or for the mobile communication.
- Comparison between ASK, PSK, FSK

| Parameter           | ASK                                      | PSK                              | FSK                             |
|---------------------|------------------------------------------|----------------------------------|---------------------------------|
| E                   | $\frac{1}{2}A^2T$                        | $\frac{1}{2}A^2T$                | Ē'                              |
| Ps                  | $\frac{1}{2} \left( \frac{E}{T} \right)$ | (≝<br>T)                         | (E)                             |
| P <sub>e(min)</sub> | $erfc\sqrt{\frac{P_sT}{\eta}}$           | erfc $\sqrt{\frac{2P_sT}{\eta}}$ | erfc $\sqrt{\frac{P_sT}{\eta}}$ |
| BW                  | 2<br>T <sub>b</sub>                      | 2<br>T <sub>b</sub>              | $(f_2 - f_1) + \frac{2}{T_b}$   |

### **Binary Phase Shift Keying (BPSK)**

- Waveform b(t) is a NRZ (non-return-to-zero) binary waveform
- Transmitted Signal

$$V_{BPSK}(t) = b(t)\sqrt{2P_s}\cos\omega_0 t$$

where,  $P_s = Signal power$ 

b(t) = 1 V for Logic level 1

= -1 V for Logic level 0

Received signal

$$V_{BPSK}(t) = b(t)\sqrt{2P_s}\cos(\omega_0 t + \theta)$$

where,  $\theta$  = Phase shift corresponding to time delay  $\theta/\omega_0$  Phase shift depends on the length of the path from transmitter to receiver

Power spectral density of the BPSK signal

$$G_{\text{BPSK}}(f) = \frac{P_{\text{S}}T_{\text{b}}}{2} \left\{ \left[ \frac{\sin \pi (f - f_0)T_{\text{b}}}{\pi (f - f_0)T_{\text{b}}} \right]^2 + \left[ \frac{\sin \pi (f + f_0)T_{\text{b}}}{\pi (f + f_0)T_{\text{b}}} \right]^2 \right\}$$

where,  $T_{b} = Bit duration$ 

· Energy contained in a bit duration

$$E_b = P_s T_b$$

· Bandwidth

$$BW = \frac{2}{nT_b}$$

where, n = Number of input

#### Remember:

- Differential phase-shift keying (DPSK) and differential encoded PSK (DEPSK) are modifications of BPSK.
- DPSK avoids the need to provide the synchronous carrier required at the demodulator for detecting a BPSK signal.

#### Quadrature Phase Shift Keying (QPSK)

Four quadrature signals

$$V_{\rm m}(t) = \sqrt{2P_{\rm s}} \cos \left[ \omega_0 t + (2m+1)\frac{\pi}{4} \right] \dots m = 0, 1, 2, 3$$

Bandwidth

$$BW = \frac{2}{2T_b} = R_b$$

M-ARY PSK

$$V_{\rm m}(t) = \sqrt{2P_{\rm s}}\cos(\omega_0 t + \phi_{\rm m})$$
 .... m = 0, 1, 2, ... (M - 1)

Phase Angle

$$\phi_{\rm m} = (2 \, \rm m + 1) \frac{\pi}{M}$$

## **Binary Frequency Shift Keying**

$$V_{BFSK}(t) = \sqrt{2P_s} \cos[\omega_0 t + d(t)\Omega t]$$

where,

d(t) = 1 for logic levels 1 of data waveform

= -1 for logic levels 0 of data waveform

 $\Omega = \text{Constant offset from nominal carrier frequency}$ 

Note: .....

$$BW_{(BFSK)} = 2 \times BW_{(BPSK)}$$

## Minimum Shift Keying

Transmitted signal

$$V_{\text{MSK}}(t) = \sqrt{2P_s} \left[ \left\{ b_a(t) \sin 2\pi \left( \frac{1}{4T_b} \right) \right\} \cos \omega_0 t + \left\{ b_0(t) \cos 2\pi \left( \frac{1}{4T_b} \right) \right\} \sin \omega_0 t \right]$$

Most important and useful feature of MSK is its phase continuity

$$\int_0^{T_b} \sin \omega_H t \cdot \sin \omega_L t \, dt = 0$$

Probability of error in the detection of any signal.

$$P_{e(min)} = erfc \left( \frac{a}{\sqrt{\eta E/2}} \right)$$

where,

erfc(u) = Complementary error function

a = Threshold level