Ordinary Thinking

Objective Questions

Preliminary Test

1.	In	borax	bead	test,	which	of	the	following
	cor	npound	is forr	ned		[CBSE	PMT 2002]
	(a)	Meta b	orate		(b) Te	tra	borat	te

(c) Double oxide

(d) Ortho borate

The metal that does not give the borax-bead test 2.

[MP PMT 1999]

(a) Chromium

(b) Nickel

(c) Lead

(d) Manganese

Which of the following is coloured compound? 3.

[BCECE 2005]

(a) CuF_2

(b) Cul

(c) NaCl

(d) $MgCl_2$

The composition of 'Golden spangles' is [CBSE PMT 1990] 4.

(a) PbCrO₄

(b) PbI_2

(c) As_2S_3

(d) BaCrO₄

The alkaline earth metal that imparts apple green 5. colour to the bunsen flame when introduced in it in the form of its chloride is [EAMCET 1979]

(a) Barium

(b) Strontium

(c) Calcium

(d) Magnesium

Which gives violet coloured bead in borax bead 6. test

[BHU 1988; MP PET 1997]

(a) Fe^{2+}

(b) Ni^{2+}

(c) Co 2+

(d) Mn^{2+}

Sodium borate on reaction with H_2SO_4 (conc.) and C_2H_5OH gives a compound 'A' which burns with green flame. The compound 'A' is[MP PET 1994]

(a) $H_2B_4O_7$

(b) $(C_2H_5)_2B_4O_7$

(c) H_3BO_3

(d) $(C_2H_5)_3BO_3$

On mixing two colourless gases, a deep brown 8. colour is observed. The gases are [CPMT 1977]

(a) N_2O and O_2

(b) NO and O_2

(c) N_2O_3 and O_2

(d) None of these

Which one of the following metals will give blue 9. ash when its salt is heated with Na_2CO_3 solid and $Co(NO_3)$, on a charcoal piece [MNR 1987]

(a) Cu

(b) Mg

(d) Zn

The metal that does not give the borax bead test is

[BHU 1987; AFMC 1995; MHCET 2003]

(a) Cr

(b) Ni

(c) Na

(d) Mn

11. When concentrated H_2SO_4 is added to dry KNO_3 , brown fumes evolve. These fumes are [CPMT 1988; IIT 1987

(a) SO₂

(b) SO_2

(c) NO

(d) NO_2

Which one of the following salt give green coloured flame when the salt is tested by Pt wire

(a) Barium salt

(b) Calcium salt

(c) Borate

(d) Lead salt

A precipitate of calcium oxalate will not dissolve

[CPMT 1971]

(a) HCl

(b) HNO_3

(d) Acetic acid (c) Aqua-regia

Sodium sulphite on heating with dilute HCl liberates a gas which [NCERT 1972]

(a) Turns lead acetate paper black

(b) Turns acidified potassium dichromate paper green

(c) Burns with a blue flame

(d) Smells like vinegar

Starch-iodide paper is used for the test of

(a) Iodine

(b) Iodide ion

(c) Oxidising agent

(d) Reducing agent

Which of the following salt gives white precipitate with $AgNO_3$ solution and dil. H_2SO_4 solution and gives green flame test

(a) CuCl₂

(b) $BaCl_2$

(c) $PbCl_{2}$

(d) $Cu(NO_3)_2$

Two gases when mixed give white dense fumes, 17. the gases are

(a) NH_3 and SO_2

(b) SO_2 and steam

(c) NH_3 and HCl

(d) NH_3 and N_2O

18. Blue borax bead is obtained with

[MADT Bihar 1982; MP PET 1995]

(a) *Zn*

(b) Cobalt

(c) Chromium

(d) Fe

Which of the following imparts green colour to 19. the burner flame [DCE 2004] (a) $B(OMe)_3$ **(b)** *Na(OMe)*

(c) $Al(OPr)_3$ In laboratory burners, we use 20.

(d) $Sn(OH)_2$

(a) Producer gas

(b) Oil gas

[DCE 2004]

(c) Gobar gas

(d) Coal gas

A colourless gas with the smell of rotten fish is [AFMC 2005]

(a) H_2S

(b) PH_3

(c) SO,

(d) None of these

Which BLUE LIQUID is obtained on reacting equimolar amounts of two gases at -30°C?[IIT 2005] (a) N_2O (b) N_2O_3

- (c) N_2O_4
- (d) N_2O_5
- MnO_2 and H_2SO_4 added to NaCl, the greenish 23. yellow gas liberated is

[Orissa JEE 2005]

- (a) *Cl*₂
- (b) NH_3
- (c) N_2
- (d) H_2

Wet Test for acid radical

Which of the following statement(s) is(are) correct when a mixture of NaCl and $K_2Cr_2O_7$ is gently warmed with conc. H_2SO_4 [IIT 1998; CPMT 1988; AMU 1984 $_{Br}^+$

MP PMT 2002]

- (a) A deep red vapour is evolved
- (b) The vapour when passed into NaOH solution gives a yellow solution of Na2CrO4
- (c) Chlorine gas is evolved
- (d) Chromyl chloride is formed
- 2. Starch can be used as an indicator for the detection of traces of [CPMT 1992]
 - (a) Glucose in aqueous solution
 - (b) Proteins in blood
 - (c) Iodine in aqueous solution
 - (d) Urea in blood
- Which of the following combines with Fe (II) ions 3. to form a brown complex[AIIMS 1982, 87; AFMC 1988;

CBSE PMT 2000; Pb. PMT 2000; MP PET 2000, 01]

- (a) N_2O
- (b) NO
- (c) N_2O_3
- (d) N_2O_5
- Sodium nitroprusside, when added to an alkaline 4. solution of sulphide ions, produces purple colour ion due to the formation of
 - (a) $Na[Fe(H_2O)_5 NOS]$
- (b) $Na_2[Fe(H_2O)_5NOS]$
- (c) $Na_3[Fe(CN)_5NOS]$
- (d) $Na_4[Fe(CN)_5 NOS]$
- In the chromyl chloride test, the reagent used is [AMU 1963] Nitrate is confirmed by ring test. The brown 5.
 - (a) K_2CrO_4
- (b) *CrO*₃
- (c) $K_2Cr_2O_7$
- (d) $(NH_4)_2 Cr_2 O_7$
- Which of the following will not produce a 6. precipitate with AgNO₃ solution [MP PMT 1990]
 - (a) F^-
- (b) Br⁻
- (c) CO_3^{2-}
- (d) PO_4^{3-}
- When a mixture of solid NaCl, solid $K_2Cr_2O_7$ is 7. heated with conc. H_2SO_4 , orange red vapours are obtained of the compound[CPMT 1974, 78, 81, 88; DPMT 1983, NCERT 1977; AFMC 1982; AMU 1984]
 - (a) Chromous chloride (b) Chromyl chloride
- - (c) Chromic chloride
- (d) Chromic sulphate
- Chromyl chloride vapours are dissolved in NaOH 8. and acetic acid and lead acetate solution is added, then
 - (a) The solution will remain colourless

- (b) The solution will become dark green
- (c) A yellow solution will be obtained
- (d) A yellow precipitate will be obtained
- Which of the following gives black precipitate 9. when H_2S gas is passed through its solution[CPMT 1974]
 - (a) Acidic AgNO₃
- (b) $Mg(NO_3)_2$
- (c) Ammonical BaCl₂
- (d) Copper nitrate
- 10. A salt gives violet vapours when treated with conc. H_2SO_4 . It contains [DPMT 1981; CPMT 1971]
- (b) I^-

- (d) NO_{3}^{-}
- When Cl2 water is added to a salt solution containing chloroform, chloroform layer turns violet. Salt contains

[CPMT 1982]

- (a) Cl^{-}
- (b) I^-
- (c) NO_3^-
- (d) S^{2-}
- A salt is heated first with dil. H_2SO_4 and then 12. with conc. H_2SO_4 . No reaction takes place. It may be [CPMT 1978]
 - (a) Nitrate
- (b) Sulphide
- (c) Oxalate
- (d) Sulphate
- Phosphate radical with ammonium molybdate 13. gives precipitate of which colour
 - (a) Violet
- (b) Pink
- (c) Canary yellow
- (d) Green
- Which compound is soluble in NH₄OH [AFMC 1987] 14.
 - (a) $PbCl_2$
- (b) PbSO₄
- (c) AgCl
- (d) CaCO₃
- 15. Nitrates of all the metals are [DPMT 1983, 89]
 - (a) Coloured
- (b) Unstable
- (c) Soluble in water
- (d) Insoluble in water

colour of the ring is due to the formation of

[EAMCET 1979; AFMC 1981, 88, 90; RPET 1999; MP PMT 2000; MP PET 2002; CPMT 2004]

- (a) Ferrous nitrite
- (b) FeSO ANO
- (c) $FeSO_4NO_2$
- (d) Ferrous nitrate
- Which of the following precipitate does not 17. dissolve even in large excess of NH4OH [MP PMT 1991]
 - (a) AgCl
- (b) AgBr
- (c) AgI
- (d) None of these

89; Aqueous solution of a salt when treated with AgNO₃ solution gives a white precipitate, which dissolves in NH_AOH . Radical present in the salt is

- (a) Cl^-
- (b) Br⁻

(c) I^-

(d) NO_3^-

				Cilei	ilical Allalysis 94/
19.	=	l into lime water it turns f CO_2 is passed, milkyness	28.	sulphate ions from sulphate and chloride	would enable you to remove a solution containing both e ions[NCERT 1975; CPMT 1979, 81]
	(a) Reaction is reverse	ed		(a) Sodium hydroxid	
	(b) Water soluble Ca(A	HCO_3) ₂ is formed		(c) Barium sulphate	(d) Potassium hydroxide
20.	(d) None of these	m derivative is formed ed with conc. H_2SO_4 with	29.	liberates certain p	vith potassium iodide solution roduct, which turns starch atted substance is[Orrisa JEE 2 (b) Iodine
	MnO_2 brown fumes ar			(c) Hydrogen iodide	
	(a) <i>Br</i> ⁻	(b) NO_3^-	20		with conc. H_2SO_4 a reddish-
		-	30.		I. The evolved gas is [EAMCET 1978]
	(c) <i>Cl</i>	(d) I^-		(a) Bromine	i. The evolved gas is[EAMCE1 19/0]
21.		eatment with dil H_2SO_4		(b) Mixture of bromi	ne and <i>HBr</i>
		s gas which produces (i) ta water and (ii) turns		(c) <i>HBr</i>	nie una 1167
	-	solution green. The reaction		(d) NO_2	
	indicates the presence		31.	-	alt in dilute sulphuric acid
	(a) CO_3^{2-}	(b) S ²⁻	31.	imparts deep blue	colour with starch iodine the presence of which of the
	(c) SO_3^{2-}	(d) NO_2^-		following	1
22.	In the test of sul precipitate of sulphate	phate radical, the white		[MP PET	2003; NCERT 1974; CPMT 1977]
	(a) Conc. <i>HCl</i>	(b) Conc. H_2SO_4		(a) NO_2^-	(b) <i>I</i> ⁻
		- '		(c) NO_3^-	(d) CH_3COO^-
23.	(c) Conc. HNO ₃	(d) None of these ure dil. H_2SO_4 is added in	32.	Ammonia reacts with	n excess of chlorine to form
23.		urless gas is evolved. The		(a) N and UCl	[DPMT 2000]
	mixture contains	arress gas is evolved. The		(a) N₂ and HCl(c) NCl₃ and HCl	(b) NH_4Cl and NCl_3 (d) N_2 and NH_4Cl
		[AMU 1982]	33.		
	(a) Sulphite	(b) Acetate	55.	[EAMCET 1978;	
	(c) Nitrite	(d) Carbonate			AIIMS 1996; DCE 1999]
24.	Which reagent is used	to remove SO_4^- and Cl^-		(a) Nitrate	(b) Nitrite
		[Pb. PMT 2002]		(c) Bromide	(d) Iron
	(a) BaSO ₄	(b) NaOH	34.	Which of the following acidified $KMnO_4$ solu	ing anions would decolourise ution
	(c) $Pb(NO_3)_2$	(d) KOH		(a) SO_4^{2-}	(b) S^{2-}
25.	is formed when with conc. H_2SO_4	potassium iodide is heated [CPMT 1971]		(c) NO_3^-	(d) <i>CH</i> ₃ <i>COO</i> ⁻
	(a) HI	(b) <i>I</i> ₂	35.	e e	bsorbed by ferrous sulphate ish brown colour is[AMU 1999]
	(c) HIO_3	(d) <i>KIO</i> ₃		(a) <i>NO</i>	(b) <i>CO</i>
26.	Chromyl chloride to	est is performed for the		(c) N_2	(d) NH_2
	confirmation of the pr mixture	resence of the following in a	36.		ollowing anions is not easily us solutions by precipitation[IIT 19
	[СРМТ	1990; KCET 1992; RPET 1999]		(a) Cl^-	(b) NO_3^-
	(a) Sulphate	(b) Chromium		(c) CO_3^{-2}	(d) SO_4^{-2}
abla	(c) Chloride	(d) Chromium and	37.	Na_2CO_3 cannot be us	•
chlo		tinguigh between a chloride	3,		(b) SO_3^{2-}
27.	and a peroxide is	tinguish between a chloride [EAMCET 1976]		(a) CO_3^{2-}	-
	(a) Water	(b) Dil. H_2SO_4		(c) S^{2-}	(d) SO_4^{2-}
	(c) KOH solution	(d) <i>NaCl</i>			
	(c) KOH SOIULIOH	(u) Ivuci			

38.		kide ions, produced by one carbonate (Na_2CO_3) on	6.	A salt gives br	nisation of ammonium hydroxide right red colour to the flame. To s the presence of
39.	(a) 2 (c) 3 Gas A is bubbled the white precipitate is bubbling, the precipitate the resultant solution reappears with the even	[Pb. CET 2002] (b) 1 (d) 4 rough slaked lime when a seformed. On prolonged ate is dissolved. on heating on, the white precipitate polution of gas B. The gases	7.	(a) Ba^{2+} (c) Ca^{2+} The compound (a) Calcium oxi (c) Calcium oxi	(b) Sr^{2+} (d) Cr^{3+} insoluble in acetic acid is [CPMT 198] ide (b) Calcium carbonate alate (d) Calcium hydroxide
	 A and B respectively (a) CO₂ and CO (c) CO and CO 	(b) CO and CO_2	8. ^L		following give white precipit lded to its aqueous solution (b) Mg^{++}
40.	By passing H_2S gas in we get	n acidified $KMnO_4$ solution, [MP PET 1997]	9.	(c) Zn^{++} Of the following	(d) Cd^{++} ag sulphides which one is insoluted but soluble in alkalies [CPMT 199]
	(a) K_2S (c) K_2SO_3	(b) S (d) MnO ₂		(a) <i>PbS</i> (c) <i>FeS</i>	(b) CdS (d) Sb_2S_3
41.	Which of the followin silver nitrate solution. (a) Ethyl bromide (c) Calcium chloride	[J & K 2005] (b) Sodium bromide (d) Sodium chloride	10.	Reagent used in group is (a) HCl (c) (NH ₄) ₂ S	in the qualitative analysis of IV (b) H_2S (alkaline) (d) None of these
	Wet Test for		11.	Which of the	following radicals will not passing H_2S in concentrated a [BHU 1986]
1.	Which sulphide is solution (a) SnS (c) Sb ₂ S ₃	ble in $(NH_4)_2 CO_3$ (b) $As_2 S_3$ (d) CdS	12.		(b) Antimony (d) Cadmium ollowing pairs would be expected the when solution are mixed[NCER
		/			

- 2. When acetic acid and $K_4 Fe(CN)_6$ is added to a copper salt, a chocolate precipitate is obtained of the compound
 - (a) Copper cyanide
- (b) Copper ferrocyanide
- (c) Basic copper sulphate
- (d)Basic copper cyanide
- A precipitate of the following would be obtained 3. when HCl is added to a solution of stannous
 - sulphide (SnS) in yellow ammonium sulphide[CPMT 1977; NCERT 1974\$ olution is aqueous
 - (a) SnS
- (b) SnS 2
- (c) Sn_2S_2
- (d) $(NH_4)_2 SnS_3$
- When H_2S is passed through in II group 4. sometimes solution becomes milky. It indicates the presence of

[MP PMT 1995]

- (a) Acidic salt
- (b) An oxidising agent
- (c) Thiosulphate
- (d) A reducing agent
- Conc. HNO_3 is added before proceeding to test for 5. group III members. This is to [NCERT 1974]
 - (a) Oxidise any remaining H_2S
 - (b) Convert ferrous ion into ferric ion
 - (c) Form nitrates which give granular ppts

39]

- ate
- ble 106
- /th
- he cid
- to T 1984]
 - (a) K^+ , SO_4^{2-}
- (b) Na^+, S^{2-}
- (c) Ag^+, NO_3^-
- (d) Al^{3+}, OH^{-}
- H_2S will precipitate the sulphides of all the metals from the solution of chlorides of Cu, Zn and Cd, if

[MP PMT 1985]

- (b) The solution is acidic
 - (c) The solution is dilute acidic
- (d) Any of these solutions is present
- Addition of solution of oxalate to an aqueous 14. solution of mixture of Ba^{++} , Sr^{++} and Ca^{++} will precipitate

[MP PMT 1985]

- (a) Ca^{++}
- (b) Ca^{++} and Sr^{++}
- (c) Ba^{++} and Sr^{++}
- (d) All the three
- Which one among the following pairs of ions 15. cannot be separated by H_2S in dilute hydrochloric acid [IIT 1986]
 - (a) Bi^{3+} , Sn^{4+}
- (b) Al^{3+} , Hg^{2+}

				Cher	nical Analys	sis 949
_	(c) Zn^{2+} , Cu^{2+}	(d) Ni ²⁺ , Cu ²⁺		(a) Fe [Fe(CN) ₄]	(b) Fe[F	
16.	,	at between silver and lead		(c) $Fe_4[Fe(CN)_6]$		[Fe(CN) ₆]
10.	salts is	[MADT Bihar 1984]	26.	If Na^+ ion and S^{2-} ion	n is larger th	
	(a) H_2S gas			(a) MgS	(b) NaCl	!
	(b) Hot dilute <i>HCl</i> sol	ution		(c) Na_2S	(d) MgC	l_2
	(c) NH_4Cl (solid) + N		27.	An aqueous solutio	n of an in	organic salt on
	(d) NH_4Cl (solid) + (I	·		treatment with HCl	gives a white	precipitate. This
17.	•	e precipitation of group II		solution contains		[MP PMT 2001]
1/•	basic radicals for the	qualitative analysis table is[MA	ADT Bil	1a r₃1982] ₃ +2	(b) <i>Hg</i> ²⁺	
	(a) Dil. $HCl + H_2S$	-		(c) Zn^{2+}	(d) Cd^{2+}	
	(b) NH_4Cl (solid) + NH_4Cl	VH_4OH solution + H_2S	28.	Lead sulphate is solu	ble	[MP PET 1999]
	(c) $(NH_4)_2 CO_3$ solution			(a) In conc. nitric aci	id	
	(d) None of these			(b) In conc. hydrochl		
18.		e precipitated by both <i>HCl</i>		(c) In a solution of a	mmonium ac	etate
10.	and H_2S is	[IIT 1982; CPMT 1989]		(d) In water		
	(a) Pb ²⁺	(b) <i>Cu</i> +	29.	Which one of the foll	owing sulphi	
	(c) Ag +	(d) Sn^{2+}		(a) Zinc sulphide	(h) Cadr	[MP PMT 1999] nium sulphide
10	_	• •		(c) Nickel sulphide		sulphide
19.	(a) Orange	colour with H_2S [DPMT 2000] (b) Red	30.	When H_2S gas is		-
	(c) Black	(d) White		containing aqueous s	solutions of C	luCl2, HgCl2, BiCl3
20.		uished by Fe^{3+} ion by [DPMT 200	001			tate out[MP PMT 2002]
	(a) NH ₄ SCN	(b) $AgNO_3$	-	(a) CuS	(b) HgS	
	(c) BaCl ₂	(d) None of these		(c) Bi_2S_3	(d) CoS	TT 7 1 -
21.	Which of the following	ng change the colour of the $[eCl_3]$ [Roorkee Qualifying 1998]	31.	Group reagent for an		kshetra CET 2002]
	(a) $K_4[Fe(CN)_6]$	(b) H_2S		(a) $NH_4Cl + NH_4OH$		
	(c) NH_4CNS	(d) KCNS		(b) $NH_4Cl + NH_4OH + COMPANY = CO$		
				(c) $NH_4OH + (NH_4)_2O$	CO_3	
22.	concentrated <i>HNO</i> ₃	g substances are soluble in [Roorkee Qualifying 1998]	22	(d) $HCl + H_2S$	-hnough Ha C	wo got [AIEEE accol
	(a) $BaSO_4$	(b) CuS	32.	When H_2S is passed t	in ough <i>Hg2</i> 3. (b) <i>HgS</i>	_
	(c) <i>PbS</i>	(d) <i>HgS</i>		(a) HgS (c) Hg₂S + Hg	(d) Hg ₂ S	-
23.		ing cannot give iodometric	33.	How do we different group III	-	
	citi ations	[AIIMS 1997]		8 - 1		[AIEEE 2002]
	(a) Fe^{3+}	(b) Cu ²⁺		(a) By taking excess		
	(c) Pb ²⁺	(d) Ag^{2+}		(b) By increasing NH		
24.		g mixture is chromic acid		(c) By decreasing <i>OF</i> (d) Both (b) and (c)	<i>∃</i> ion concen	tration
•		[Pb. PMT 2000]	34.	$[X] + H_2SO_4 \rightarrow [Y] \text{ a}$	colourless g	as with irritating
	(a) $K_2Cr_2O_7$ and HCl		J-1.	smell	5	
	(b) K_2SO_4 and conc. H_2			$[Y] + K_2Cr_2O_7 + H_2SO_7$	$_4$ \rightarrow green so	lution
	(c) $K_2Cr_2O_7$ and conc.	H_2SO_4		[X] and $[Y]$ is	[IIT-JEE	(Screening) 2003]
	(d) H_2SO_4 and HCl			(a) SO_3^{2-} , SO_2	(b) <i>CI</i> ⁻ ,	HCI
25.	which of the follow	ving compounds is brown			_	

In the analysis of basic radicals, the group

reagent H_2S gas is generally used in the groups [MP PMT 26]

(c) S^{2-}, H_2S

(d) CO_3^{2-}, CO_2

coloured

Which of the following compounds is brown

[AFMC 2001]

- (a) I and II groups
- (b) II and III groups
- (c) III and V groups
- (d) II and IV groups
- 36. A mixture of two salts is not water soluble but dissolves completely in dilute hydrochloric acid to form a colourless solution. The mixture could be [Pb. PMT 1998] Decrease concentration of OH^- ions
 - (a) $AgNO_3$ and KBr
- (b) $BaCO_3$ and ZnS
- (c) $FeCl_3$ and $CaCO_3$
- (d) $Mn(NO_3)_2$

and

 $MgSO_4$

- 37. Which of the following is not precipitated as sulphide by passing H_2S in presence of conc. $HCl[\mathbf{MP} \ \mathbf{PMF} \ \mathbf{2000}]^{Ferric}$ ion forms a prussian blue coloured ppt. due
- (b) Arsenic
- (c) Cadmium
- (d) Lead
- Concentrated sodium hydroxide can separate a 38. mixture of

[MP PMT 2000]

- (a) Zn^{2+} and Pb^{2+}
- (b) Al^{3+} and Zn^{3+}
- (c) Cr^{3+} and Fe^{3+}
- (d) Al^{3+} and Cr^{3+}
- 39. AgCl dissolves in ammonia solution giving

[MP PMT 1989; MP PET 2001]

- (a) Ag^+ , NH_4^+ and Cl^-
- (b) $Ag(NH_3)^+$ and Cl^-
- (c) $Ag_2(NH_3)^+$ and Cl^- (d) $Ag(NH_3)^+_2$ and Cl^-
- What product is formed by mixing the solution of $K_4[Fe(CN)_6]$ with the solution of $FeCl_3$ [Roorkee 1989]
 - (a) Ferro-ferricyanide
- (b) Ferric-ferrocyanide
- (c) Ferri-ferricyanide
- (d) None of these
- In fifth group, $(NH_4)_2 CO_3$ is added to precipitate out the carbonates. We do not add Na_2CO_3 because

[AIIMS 1982]

- (a) $CaCO_3$ is soluble in Na_2CO_3
- (b) Na_2CO_3 increases the solubility of fifth group carbonates
- (c) $MgCO_3$ will be precipitated out in fifth group
- (d) None of these
- Al^{3+} , Fe^{3+} , Zn^{2+} and Ni^{2+} ions are present in an 42. acidic solution. Excess of ammonium chloride solution is added followed by addition of ammonium hydroxide solution. The available precipitate will contain [MP PMT 1996]
 - (a) $Zn(OH)_2$ and $Ni(OH)_2$
 - (b) $Al(OH)_3$ and $Fe(OH)_3$
 - (c) $Zn(OH)_2$ and $Al(OH)_3$
 - (d) $Ni(OH)_2$ and $Fe(OH)_3$
- When H_2S is passed through a mixture containing 43. Cu^{+2} , Ni^{+2} , Zn^{+2} in acidic solution then ion will precipitate

[RPMT 2002]

- (a) Cu^{+2} , Ni^{+2}
- (b) Ni^{+2}
- (c) Cu^{+2} , Zn^{+2}
- (d) Cu^{+2}

In the precipitation of the iron group in 44. qualitative analysis, ammonium chloride is added before adding ammonium hydroxide to[AIIMS 1980; NCERT

CPMT 1971, 73, 77,78, 80, 81, 83, 86; KCET 1999]

- (b) Prevent interference by phosphate ions
- (c) Increase concentration of Cl^- ions
- (d) Increase concentration of NH_4^+ ions

[CPMT 1980; BHU 1980; MP PET 1995; Kurukshetra CEE 1998; RPET 1999; MP PMT 2001]

- (a) $K_A Fe(CN)_6$
- (b) $Fe_{\Lambda}[Fe(CN)_{6}]_{2}$
- (c) $KMnO_4$
- (d) $Fe(OH)_3$
- When H_2S gas is passed into a certain solution, it reacts to form a white precipitate. The solution referred to contains ions of [EAMCET 1979]
 - (a) Lead
- (b) Zinc
- (c) Copper
- (d) Nickel
- 47. A precipitate of would be obtained on adding HCl to a solution of (Sb_2S_3) in yellow ammonium sulphide

[CPMT 1979]

- (a) Sb_2S_3
- (b) Sb_2S_5
- (c) SbS
- (d) SbS_{2}
- **48.** A 0.3 *M HCl* solution contains the following ions Hg^{++} , Cd^{++} , Sr^{++} , Fe^{++} , Cu^{++} The addition of H_2S to above solution will precipitate
 - (a) Cd, Cu and Hg
- (b) Cd, Fe and Sr
- (c) Hq, Cu and Fe
- (d) Cu, Sr and Fe
- Which of the following gives a ppt. with $Pb(NO_3)_2$ 49. but not with $Ba(NO_3)_2$ [CPMT 1979; MP PET 1997]
 - (a) NaCl
 - (b) Sodium acetate
 - (c) Sodium nitrate
 - (d) Sodium hydrogen phosphate
- On adding excess of ammonium hydroxide to a copper sulphate solution [MP PMT 1995]
- (a) Blue precipitate of copper hydroxide is obtained
 - (b) Black precipitate of copper oxide is obtained
 - (c) A deep blue solution is obtained
 - (d) No change is observed
- A black sulphide is formed by the action of H_2S 51.

[IIT 1978]

- (a) Cupric chloride
- (b) Cadmium chloride
- (c) Zinc chloride
- (d) Sodium chloride

					, , ,
52.	Hg^{2+} , Pb^{2+} , and Cd^{2+}	ontains the ions as Hg_2^{2+} , The addition of dilute	62.		nnot be used in place of for the precipitation of the cause
	$HCl(6N)$ precipitates (a) Hg_2Cl_2 only	[IIT 1995] (b) <i>PbCl</i> ₂ only			ere with the detection of
	(c) $PbCl_2$ and $HgCl_2$				rbonate ions is very low
53.		s, in place of NH_4Cl which		(c) Sodium will react w	
	of the following can be	used[AIIMS 1980, 82; MP PMT	1985]	(d) Magnesium will be Nessler's reagent is use	= =
	(a) NH_4NO_3	(b) $(NH_4)_2 SO_4$	03.	· ·	9; AIIMS 1997; MP PET 1999]
	(c) $(NH_4)_2 CO_3$	(d) NaCl		(a) CrO_4^{2-}	(b) PO_4^{3-}
54.		assed through saturated ite ppt. is obtained. This is		(c) MnO_4^-	(d) NH ₄ ⁺
	due to		64.		ed salt was soluble in water.
		[CPMT 1979]		-	e solution a black precipitate
	(a) Impurities in BaCl ₂	-		was obtained which di metal ion present is	ssolve readily in <i>HCl</i> . The [BHU 1981]
		l_2 (d)Formation of comple	ex	(a) Co^{+2}	(b) Fe^{2+}
55.	-	not dissolve in hot dilute		(c) Ni^{+2}	(d) Mn^{+2}
	HNO ₃	[IIT 1996]	65.	• •	phide solution is a suitable
	(a) HgS	(b) <i>PbS</i>		(a) HgS and PbS	
56.	(c) CuS The ion that can be pred	(d) <i>CdS</i> cipitated by <i>HCl</i> as well as		(c) Bi_2S_3 and CuS	2 3
50.	H_2S is	ipitated by Hei as well as	66.		arated from $Al(OH)_3$ by
	[MP PET	[1996; JIPMER (Med.) 2002]		addition of	
	(a) Pb^{2+}	(b) Fe^{3+}			[BHU 1981]
	(c) Zn^{2+}	(d) Cu ²⁺		(a) Dil. HCl	(b) NaCl solution
57•		g sulphate is insoluble in		(c) NaOH solution	(d) NH_4Cl and NH_4OH
	water	[MNR 1995]	67.	The reagents NH_4Cl	and aqueous NH_3 will
	(a) CuSO ₄	(b) <i>CdSO</i> ₄		precipitate	[IIT 1991]
	(c) PbSO ₄	(d) $Bi(SO_4)_3$		(a) Ca ²⁺	(b) Al^{+3}
58.	A solution when treate	d with dimethyl glyoxime			(d) Zn^{2+}
	gives a rose red complex.	d with dimethyl glyoxime The metal present is[AFMC 19 (b) V	982; BF 68.	IU 1979] The aqueous solutions	of the following salts will
	()			be coloured in the case	
59.	(c) Co When hismuth chloride	(d) <i>Mn</i> e is poured into a large		(a) $Zn(NO_3)_2$	(b) $LiNO_3$
33.		white precipitate produced		(c) CrCl ₃	(d) Potash alum
	is	ENER RASE CONTRACTOR	69.	A mixture containing	Cu^{2+} and Ni^{2+} can be
	(a) $Bi(OH)_3$	[MP PMT 1985; CPMT 1979] (b) Bi_2O_3		separated for identification	•
	(c) $BiOCl$	(d) Bi_2OCl_3		(a) Passing H_2S in acid	d medium
60.		which turns black with		(b) Passing H_2S in alk	aline medium
00.	NH_4OH	willen turns black with		(c) Passing H_2S in neu	itral medium
		[AFMC 1981; MP PMT 1995]		(d) Passing H_2S in dry	mixture
	(a) Lead chloride	(b) Mercurous chloride	70.	Addition of $SnCl_2$ to H_8	gCl_2 gives ppt [BVP 2003]
٥.	(c) Mercuric chloride	(d) Silver chloride		(a) White turning to re	d (b) White turning to
61.	Colour of cobalt chloride (a) Pink	e solution is [AFMC 1981] (b) Black		gray	
	(c) Colourless	(d) Green		(c) Black turning to wh	
	(c) colouriess	(a) dreen	71.		plution of $AgNO_3$ (excess) is positively charged sol.

	33	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	Particles of <i>AgI</i> are for ion [BHU 2003]	med due to adsorption of		(a) It reacts with <i>KI</i> to give i	
	(a) NO_3^-	(b) O_2^-		(b) It reacts with <i>KCl</i> to give(c) It reacts with <i>NaOH</i> and g	
	(c) Ag^+	(d) K^{+}		(d) It gives <i>CuO</i> on strong he	
			82.	Mark the correct statement	[MP PMT 2002]
72.	Heamoglobin is a compl			(a) I group basic radicals pred	ipitate as chlorides
	(a) Fe^{3+}	(b) Fe^{2+}		~ <u>-</u>	cals precipitate as
	(c) Fe^{4+}	(d) Cu ²⁺		sulphides	
73.	HCI. On adding NaOH	salt 'X' is soluble in dilute solution, it gives a white soluble in excess of NaOH.		(c) V group basic radio carbonates(d) All of these statement are	cals precipitate as
	'X' is	[KCET 2003]	83.	The following four solutions	
	(a) $Al_2(SO_4)_3$	(b) ZnSO ₄		beakers and copper metal is	put in each of them.
	(c) MgSO ₄	(d) SnCl ₂		Which solution will become b	_
74.	Precipitate of group IV H_2S is	cations takes place when		(a) $AgNO_3$ solution (b) (c) $Ba(NO_3)_2$ solution (d)	<i>Zn(NO</i> ₃)₂ solution <i>NaNO</i> ₃ solution
		[RPET 2003]	84.	Cu^{2+} ions will be reduced	_
	(a) Highly ionised	(b) Less ionised		addition of an aqueous soluti	
75	(c) Not ionised In Nessler's reagent for	(d) None of these the detection of ammonia		(a) <i>KF</i> (b)	
75.	the active species is	[Kerala (Med.) 2003]	0-		KOH
	(a) Hg_2Cl_2	(b) Hg^{2+}	85.	Which radicals are precipit presence of alkali	[Pb. PMT 2001]
	(c) Hg_2I_2	(d) HgI_4^{2-}		(a) <i>Ca</i> , <i>Ba</i> , <i>Sr</i> (b) (c) Both (d)	My None
76.	white gelatinous preci	NaOH to a salt solution, a ipitate is formed, which alkali. The salt solution	86.	Which of the following is ammonium sulphide	
	contains	[MP PMT 1994]		(a) <i>CuS</i> (b)	
	(a) Chromium ions	(b) Aluminium ions		(c) <i>SnS</i> (d)	PbS
	(c) Barium ions	(d) Iron ions	87.	Which mixture is separate	
77•		conc. HCl sometimes gives		solution of sodium hydroxide	
	-	the absence of 1 st group,			Al^{3+} and Fe^{3+} Zn^{2+} and Pb^{2+}
	presence of	to it. It is due to the	88.	H_2S is passed through an	
	(a) Hg^{2+}	(b) Sb 3+		Ag, Cu and Zn . Which forms	
	(c) Ag^{3+}	(d) Sb^{3+} or Bi^{3+} or both		(a) Ag (b)	
-0					None of these
78.	in dilute solutions may	pairs of ions when mixed	89.	The presence of NH_4Cl in the	
	= :	987; Kurukshetra CEE 1998] (b) NH_4^+, CO_3^{2-}		precipitating group III-qualitative inorganic analysi	A hydroxides (in
	(c) Na^+, S^{2-}	(d) Fe^{3+}, PO_4^{3-}		(a) Lowering OH^- (b)	Lowering $[NH_4OH]$
79.		lowing sulphides is only		(c) Increasing OH^{-} (d)	Increasing $[NH_4OH]$
, 50		when the acidic solution	90.	On saturating aqueous solut and Zn (II) ions with H_2S with	
	(a) HaC	[MP PET 2000]		(a) Only CuS (b)	Only <i>PbS</i>
	(a) HgS (c) CdS	(b) PbS (d) CuS		(c) Both CuS and PbS (d)	CuS, PbS and ZnS
80.		the presence of Fe^{2+} ion is [KCET 1998]	91.	A chloride dissolves appreciate when placed on a platinum v	wire in Bunsen flame,
	(a) H_2S	(b) NH ₄ CNS		no distinctive colour is note be present	d, which cation could [Pb. PMT 1998]
	-	(d) $K_3 Fe(CN)_6$		_	[PD. PM I 1998] Ba ²⁺
81.		t which is not correct			Ca^{2+}
01.	regarding copper sulpha		[1	(c) Pb^{2+} (d) JPSEAT 2001]	Ca

- **92.** A solid (*A*) which has photographic effect reacts with the solution of a sodium salt (*B*) to give a pale yellow ppt. (*C*). Sodium salt on heating gives brown vapour. Identify *A*, *B* and *C*.
 - (a) $AgNO_3$, NaBr, AgBr
- (b) $AgNO_3$, NaCl, $AgCl_2$
- (c) $AgNO_3$, NaBr, $AgCl_2$
- (d) AgCl, NaBr, AgBr,
- **93.** In qualitative analysis, in order to detect second group basic radical, H_2S gas is passed in the presence of dilute HCl to

[KCET 2004]

- (a) Increase in dissociation of H_2S
- (b) Decrease the dissociation of salt solution
- (c) Decrease the dissociation of H_2S
- (d) Increase the dissociation of salt solution
- **94.** H_2S gas when passed through a solution of a contains HCl precipitate the cations of group of qualitative analysis but not those belonging to the fourth group. It is because

[CBSE PMT 2005]

- (a) Presence of *HCl* decreases the sulphide ion concentration
- (b) Presence of *HCl* increases the sulphide ion concentration
- (c) Solubility product of group II sulphides is more than that of group IV sulphides
- (d) Sulphides of group IV Cations are in HCl
- **95.** A metal nitrate reacts with *KI* to give a black precipitate which on addition of excess of *KI* convert into orange colour solution. The cation of the metal nitrate is

[IIT-JEE (Screening) 2005]

- (a) Hg^{2+}
- (b) Bi^{3+}
- (c) Pb^{2+}
- (d) Cu+
- **96.** Which of the following basic radicals will not be precipated by H_2S gas in the presence of NH_3 [Pb. CET12003]What weight of sodium hydroxide is required to
 - (a) Mn^{2+}
- (b) Ni^{2+}
- (c) Cd^{2+}
- (d) Ca^{2+}
- **97.** On passing H_2S black ppt. of II group is obtained. The mixture may not contain [CPMT 1989]
 - (a) *Pb* ++
- (b) Cd ++
- (c) Hg^{++}
- (d) Cu ++
- **98.** Ferrous and ferric ions in solution may be distinguished by using
 - (a) Silver nitrate solution
 - (b) Lead acetate solution
 - (c) Acidified solution of potassium permanganate
 - (d) Sodium chloride solution
- 99. Solution of II A group precipitate in dil. HNO_3 when treated with NH_4OH becomes blue because of the presence of
 - (a) Mg
- (b) *Cd*

- (c) Bi (d) Cu
- 100. When calomel react with NH_4OH solution the compound formed is [BCECE 2005]
 - [Orissa JEE 2004] (a) $NH_2 - Hg - Cl$
- (b) $Hg_2Cl_2NH_3$
- (c) $Hg(NH_3)_2Cl_2$
- (d) $HgCl_2NH_3$
- 101. Copper sulphate solution react with KCN [BCECE 2005]
 - (a) $K_3[Cu(CN)_4]$
- (b) CuCN
- (c) $Cu(CN)_2$
- (d) $K_2[Cu(CN)_4]$
- **102.** A metal nitrate reacts with *KI* to give a black precipitate which on addition of excess of *KI* convert into orange colour solution. The cation of the metal nitrate is [IIT 2005]
 - (a) Hq^{2+}
- (b) Bi^{3+}
- (c) Pb^{2+}
- (d) Cu^+
- **103.** H_2S gas when passed through a solution of a contains HCl precipitates the cations of group of qualitative analysis but not those belonging to the fourth group. It is because

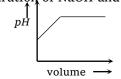
[CBSE PMT 2005]

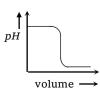
- (a) Presence of *HCl* decreases the sulphides ion concentration
- (b) Presence of *HCl* increases the sulophide ion concentration
- (c) Solubility product of group II sulphides is more than that of group IV sulphides
- (d) Sulphides of group IV cations are in HCl.
- **104.** Sodium nitroprusside when added to an alkaline solution of sulphide ions produce a [AFMC 2005]
 - (a) Red colouration
- (b) Blue colouration
- (c) Purple colouration
- (d) Brown colouration

Volumetric Analysis

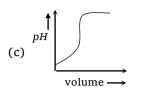
- What weight of sodium hydroxide is required to neutralise 100 ml of 0.1 N-HCl [MP PMT 1994]
- (a) 4.0 gm
- (b) 0.04 gm
- (c) 0.4 gm
- (d) 2.0 gm
- 2. The range of methyl orange as an indicator is in between pH
 - (a) 6 8
- (b) 8 9
- (c) 3 5
- (d) 2 4
- **3.** Phenolphthalein is not a good indicator for titrating

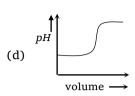
[NCERT 1977]


- (a) NaOH against oxalic acid
- (b) Ferrous sulphate against KMnO₄
- (c) NaOH against HCl
- (d) NaOH against H_2SO_4


	954 Chemical An	alysis			
4.	•	aOH solution completely	12.		and 100 ml of 0.3N HCl
	neutralises 12 ml or normality of H_2SO_4 so	of H_2SO_4 solution. The lution will be		are mixed together. resul tant sel ut igg js	Acidic normality of the
	(a) <i>N</i> /5	(b) <i>N</i> /10			[DPMT 1991]
	(c) N/8	(d) N		(a) 0.5 <i>N</i>	(b) 0.9 <i>N</i>
	·		4.5	(c) 0.3 N	(d) 0.6 N
5.		N-HCl was titrated with ion. The titration was	13.	= '	is mixed to 100 ml 1M Sultant solution will be[NCERT 197:
		dding 30 ml of NaOH		(a) Acidic	(b) Neutral
		g titration was completed		(c) Weakly alkaline	
	by adding 0.25 $N - KO$ KOH required for com	H solution. The volume of	14.		required to neutralize 30
	non roquired for com	[MP PMT 1997]	-1-		EAMCET 1978; MP PMT 2001]
	(a) 16 <i>ml</i>	(b) 32 ml		(a) 30 ml	(b) 15 <i>ml</i>
	(c) 35 ml	(d) 70 ml		(c) 40 ml	(d) 60 ml
6.		xide, metal precipitated is	15.	$5N$ H_2SO_4 was dilute	d from 1 litre to 10 litres.
•	0.68 <i>gram</i> . what is the	equivalent weight of metal[JIF	PMER 2	obormality of the solution	on obtained is
	(a) 17	(b) 34		(a) 10 N	(b) 5 <i>N</i>
	(c) 68	(d) 52		(c) 1 N	(d) 0.5 N
7.		g acid and 30 <i>ml</i> of 0.2 <i>N</i> of then the resulting solution	16.	_	wt. = 90) required 20 <i>ml</i> of ete neutralization. Basicity
	(a) 0.25 <i>N</i> basic	(b) 0.2 <i>N</i> acidic			[CPMT 1979]
	(c) 0.25 N acidic	(d) 0.2 N basic		(a) 1	(b) 2
8.		P. of gaseous NH_3 will be		(c) 3	(d) 4
0.		d into 30 ml of NH_2SO_4	17.	Equivalent weight of cr	ystaline oxalic acid is[MP PMT 199
	solution to bring down	n the acid strength of this		(a) 12	(b) 63
	solution to 0.2 N	[UPSEAT 2001]		(c) 53	(d) 40
	(a) 357.2 <i>ml</i>	(b) 444.4 ml	18.	Volume of $\frac{N}{10}H_2SO_4$ re	equired to neutralize 10 ml
	(c) 537.6 ml	(d) 495.6 ml		$5 N Na_2CO_3$ is	
9.	8 ml of $\frac{N}{10}HCl$ are re	quired to neutralize 20 ml		(a) 100 ml	(b) 50 ml
	10	in water. Normality of		(c) 500 ml	(d) 1000 ml
	Na_2CO_3 solution is		19.		at of $KMnO_4$ in alkaline
	(a) 0.40 <i>N</i>	(b) 0.040 N		medium win be	[MP PMT 2001]
	(c) 4.0 N	(d) 1.4 N		(a) 31.60	(b) 52.66
10.	•	rystalline oxalic acid (eq.		(c) 79.00	(d) 158.00
	solution is	N/10 250 ml oxalic acid [MP PMT 1996]	20.	is made up to 250 ml.	6.3 <i>g</i> oxalic acid dehydrate The volume of 0.1 <i>N NaOH</i>
	(a) 0.158 <i>g</i>	(b) 1.575 <i>g</i>		solution is	neutralize 10 <i>ml</i> of this
	(c) 15.75 g	(d) 6.3 <i>g</i>		001441011 10	[IIT-JEE (Screening) 2001]
11.		i is required to complete		(a) 40 ml	(b) 20 <i>ml</i>
		30 ml acid solution.		(c) 10 ml	(d) 4 ml
	Concentration of the ac	[NCERT 1985; CPMT 1986]	21.	In the standardization of iodometry, the equivale	of $Na_2S_2O_3$ using $K_2Cr_2O_7$ by ent weight of $K_2Cr_2O_7$ is
	(a) 0.1 <i>N</i>	(b) 0.3 N			[IIT-JEE (Screening) 2001]
	(c) 0.15 N	(d) 0.4 N		(a) (Molecular weight).	/2

(b) (Molecular weight)/6(c) (Molecular weight)/3


- (d) Same as molecular weight
- **22.** 25 ml of a solution of Na_2CO_3 having a specific gravity of 1.25 required 32.9 ml of a solution of HCl containing 109.5 grams of the acid per litre for complete neutralization. Calculate the volume of 0.84 $N H_2SO_4$ that will be completely neutralized by 125 grams of the Na_2CO_3 solution [UPSEAT 2001]
 - (a) 460 ml
- (b) 540 ml
- (c) 480 ml
- (d) 470 ml
- **23.** The volume of 0.05 M H_2SO_4 required to neutralise 80 ml of 0.13 N NaOH will be[CPMT 1989]
 - (a) 104 ml
- (b) 52 ml
- (c) 10.4 ml
- (d) 26 ml
- **24.** How many grams of *NaOH* will be required to prepare 250 *ml* of 0.1 *M* solution **[EAMCET 1978]**
 - (a) 1 gm
- (b) 4 gms
- (c) 40 gms
- (d) 10 gms
- **25.** Molecular weight of oxalic acid is 126. The weight of oxalic acid required to neutralise 100 *cc* of normal solution of *NaOH* is
 - (a) 6.3 gm
- (b) 126 gm
- (c) 530 gm
- (d) 63 qm
- **26.** Concentrated *HCl* is 10 *N*, 1000 cc of 1*N HCl* can be obtained by diluting **[EAMCET 1978]**
 - (a) 1 cc of conc. HCl to 1000 cc
 - (b) 10 cc of conc. HCl to 1000 cc
 - (c) 20 cc of conc. HCl to 1000 cc
 - (d) 100 cc of conc. HCl to 1000 cc
- 27. The equivalent weight of an acid is equal to[AIIMS 1998]
 - (a) Molecular weight × acidity
 - (b) Molecular weight × basicity
 - (c) Molecular weight / basicity
 - (d) Molecular weight / acidity
- **28.** A metal oxide is reduced by heating it in a stream of hydrogen. It is found that after complete reduction, $3.15 \ g$ of the oxide have yielded 1.05 of the metal. We may deduce that
 - (a) The eq. weight of the metal is 8
 - (b) The atomic weight of the metal is 8
 - (c) The atomic weight of the metal is 4
 - (d) The eq. weight of the metal is 4
- **29.** The molecular weight of a tribasic acid is *M*. What will be its equivalent weight[CPMT 1974, 79; MP PMT 2093]
 - (a) $\frac{M}{2}$
- (b) M
- (c) $\frac{M}{3}$


- (d) $\sqrt{\frac{M}{3}}$
- **30.** Which of the following plot represents the graph of *pH* against volume of alkali added in the titration of *NaOH* and *HCl*

(a) (b)

- 31. Phenolphthalein is not suitable for the titration of [MP PMT 2003]
 - (a) NaOH vs (COOH)₂
- (b) KOH vs H₂SO₄
- (c) K_2CO_3 vs HCl
- (d) None of these
- **32.** In order to prepare one *litre* normal solution of $KMnO_4$, how many gm of $KMnO_4$ are required, if the solution is to be used in acid medium for oxidation [MP PET 2002]
 - (a) 158 gm
- (b) 31.60 gm

INCERT 79939m

- (d) 790 gm
- 33. 20 ml of a solution of a weak monobasic acid neutralizes 22.18 ml of a solution of NaOH and 20 ml of N/10 HCl neutralizes 21.5 ml of the same NaOH solution. The normality for the acid is nearly [MP PET 2002]
 - (a) 10 N
- (b) 1 N
- (c) 0.10 N
- (d) 100 N
- **34.** How many ml of 1 (M) H_2SO_4 is required to neutralise 10 ml of 1(M) NaOH solution

[MP PET 1997; MP PMT 1999]

- (a) 2.5
- (b) 5.0
- (c) 10.0
- (d) 20.0
- 35. The maximum amount of $BaSO_4$ precipitated on mixing $BaCl_2$ (0.5M) with H_2SO_4 (1M) will correspond to

[AIIMS 1997]

- (a) 0.5 M
- [MP PMT 2003) 1.0 M
- (c) 1.5 M
- (d) 2.0 M
- **36.** How many grams of *NaOH* are equivalent to 100 *ml* of 0.1 *N* oxalic acid
 - (a) 0.2
- (b) 2.0
- (c) 0.4
- (d) 4.0

How much of NaOH is required to neutralize 1500 cm^3 of 0.1 N HCl (At. wt. of Na = 23)[KCET (Med.) 2001]

- (a) 4g
- (b) 6 g
- (c) 40 q
- (d) 60 q
- **38.** 0.126 *g* of an acid requires 20 *ml* of 0.1 *N NaOH* for complete neutralization. The equivalent weight of the acid is

[MP PET 2001]

[Orrisa JEE 2002]

- (a) 45
- (b) 53

- (c) 40
- (d) 63
- 39. The ratio of amounts of H_2S needed to precipitate all the metal ions from 100 ml of 1 M $AgNO_3$ and 100 ml of 1 M $CuSO_4$ is [MP PET 2001]
 - (a) 1:2
- (b) 2:1
- (c) Zero
- (d) Infinity
- **40.** The equivalent weight of a divalent metal is 31.82. The weight of a single atom is [MH CET 2000]
 - (a) 63.64
- (b) $\frac{63.64}{6.02 \times 10^{23}}$
- (c) $32.77 \times 6.02 \times 10^{23}$
- (d) $63.64 \times 6.02 \times 10^{23}$
- 41. For the preparation of sodium thiosulphate by "Springs reaction", the reactants used are [EAMCET 2005].
 - (a) $Na_2S + Na_2SO_3 + Cl_2$
 - (b) $Na_2S + SO_2$
 - (c) $Na_2SO_3 + S$
 - (d) $Na_2S + Na_2SO_3 + I_2$
- **42.** Phenolphthalein is most suitable indicator for the titration of

[MP PMT 2000]

- (a) CH₃COOH and NH₄OH
- (b) CH3COOH and NaOH
- (c) HCl and NH4OH
- (d) H_2CO_3 and NH_4OH
- **43.** The simplest formula of a compound containing 50% of element X (at. wt. 10) and 50% of element Y (at. wt = 20) is

[DPMT 2000]

- (a) X_2Y_3
- (b) XY₂
- (c) X_2Y
- (d) XY
- **44.** The equivalent weight of a metal is 4.0. The vapour density of its chloride is 59.25. Its atomic weight is **[DPMT 2000]**
 - (a) 12

(b) 8

(c) 36

- (d) 24
- **45.** Indicator for the titration of HCl and Na_2CO_3 would be

[RPMT 1999]

- (a) $K_4 Fe(CN)_6$
- (b) $K_3 Fe(CN)_6$
- (c) Phenolphthalein
- (d) Methyl orange
- **46.** 20 ml of a N solution of $KMnO_4$ just reacts with 20 ml of a solution of oxalic acid. The weight of oxalic acid crystals in 1N of the solution is[JIPMER 1999]
 - (a) 31.5 g
- (b) 126 g
- (c) 63 g
- (d) 6.3 g
- **47.** 0.53 gm of Na_2CO_3 has been dissolved in 100 ml of a sodium carbonate solution. The normality of the solution will be [MP PMT 1996]
 - (a) $\frac{N}{5}$
- (b) $\frac{N}{2}$

- (c) $\frac{N}{10}$
- (d) N
- **8.** 2N-HCl will have the same molar concentration as

[CPMT 1996]

- (a) 0.5 $N H_2SO_4$
- (b) 1.0 $N H_2SO_4$
- (c) 2 $N H_2 SO_4$
- (d) 4 $N H_2 SO_4$
- 19. Which of the following pair does not distinguish by passing H_2S [CPMT 1996]
 - (a) Hg, Pb
- (b) *Cd*, *Pb*
- (c) As, Cu
- (d) Zn, Mn

If 100 ml of 1 N sulphuric acid were mixed with 100 ml of 1 M sodium hydroxide, the solution will be [MP PET 1999]

- (a) Acidic
- (b) Basic
- (c) Neutral
- (d) Slightly acidic
- 100 cm^3 of 0.1 N HCl solution is mixed with 100 cm^3 of 0.2 N NaOH solution. The resulting solution is

[MP PET 1996]

- (a) 0.1 N and the solution is basic
- (b) 0.05 N and the solution is basic
- (c) 0.1 N and the solution is acidic
- (d) 0.05 N and the solution is acidic
- 52. For preparing 0.1 N solution of a compound from its impure sample, of which the percentage purity is known, the weight of the substance required will be [MP PET 1996]
 - (a) More than the theoretical weight
 - (b) Less than the theoretical weight
 - (c) Same as theoretical weight
 - (d) None of these
- 53. The equivalent weight of $Zn(OH)_2$ in the following reaction is equal to its, $[Zn(OH)_2 + (NO_3) \rightarrow Zn(OH)(NO_3) + H_2O]$

[MH CET 1999]

- (a) $\frac{\text{Formula wt.}}{2}$
- (b) $\frac{\text{Formula wt.}}{1}$
- (c) $3 \times \text{formula wt.}$
- (d) $2 \times \text{formula wt.}$
- In the titration of strong acid and weak base, the indicator used is [MH CET 1999]
- (a) Thymol blue
- (b) Phenolphthalein
- (c) Thymolphthalein
- (d) Methyl orange
- To neutralize 25 ml of 0.25 M Na_2CO_3 solution how much volume of 0.5 M HCl is required[MP PET 1994]
 - (a) 12.5 ml
- (b) 25 ml
- (c) 37.5 ml
- (d) 50 ml
- **56.** 0.16 *gm* of a dibasic acid required 25 *ml* of decinormal *NaOH* solution for complete

				. 55,
	neutralization. The mis [CPMT 1989; MP PE	olecular weight of the acid T 1993]	66.	Which indicator can be used in the titration of strong acid and strong base
	(a) 32	(b) 64		(a) Only phenolphthalein (b)Only methyl orange
	(c) 128	(d) 256		(c) Either of the two (d) Red litmus
57•	N sulphuric acid solut	H solution and 10 ml of 10 ion are mixed together, the be[DPMT 1982; MP PET 1993]	67.	The indicator used in titrating weak acid (<i>e.g.</i> oxalic acid) with a strong base (<i>e.g.</i> caustic soda) solution is
	(a) Alkali	(b) Weakly acidic		[IIT-JEE 1985; CPMT 1990; MNR 1980;
	(c) Strongly acidic	(d) Neutral		NCERT 1973, 77; MP PMT 1994]
58.		end point of precipitation is called[KCET (Med). 2000]		(a) Methyl orange(b) Methyl red(c) Fluorescein(d) Phenolphthalein
	(a) Absorption indicat	or (b) Adsorption indicator	68.	The pink colour of phenolphthalein in alkaline
	-	(d) Normal indicator		medium is
59.		acid is dissolved in approx.		[CPMT 1990]
	20 ml of water. 25 ml	of 0.12 <i>N NaOH</i> required for		(a) Due to negative form
	the complete neutrali The equivalent weight	zation of the acid solution. of the acid is		 (b) Due to positive form [MP PET 2000] (c) Due to OH ions
	(a) 65	(b) 64		(d) Due to neutral form
	(c) 63.80	(d) 62.50	60	Phenolphthalein does not act as an indicator for
60.	Molecular weight of equivalent weight is	a tribasic acid is W, its		the titration between [NCERT 1976] (a) KOH and H_2SO_4
	(a) 2W	(b) $W/3$		(b) $Ba(OH)_2$ and HCl
	(c) 3W	(d) $W-3$		7-
61.	Approximate atomic	weight of an element is		(c) $NaOH$ and acetic acid (d) Oxalic acid and $KMnO_4$
	26.89. If its equivale atomic weight of elem	nt weight is 8.9, the exact ent would be	7 0.	If wern the same of the same o
	(a) 26.89	(b) 8.9		titration of Na_2CO_3 with HCl , the usual result is [CBSE
	(c) 17.8	(d) 26.7		(a) No visible change will occur(b) The indicator reacts with the acid
62.		found to combine with 80	form	(c) The indicator reacts with the base
	2	gm of calcium (valency 2) of bromine. The equivalent		(d) Sodium chloride and carbonic acid will be
	weight of calcium is	[NCERT 1982]	71.	Methyl orange gives red colour in [NCERT 1972]
	(a) 10	(b) 20	•	(a) Sodium carbonate solution
	(c) 40	(d) 80		(b) Sodium chloride solution
63.		da is dissolved in 100 cc		(c) Hydrochloric acid solution
		y of solution is[MP PMT 1995]		(d) Potassium hydroxide solution
	(a) 1.0	(b) 0.1	72.	A 0.1 N solution of Na_2CO_3 is titrated with 0.1 N
	(c) 0.5	(d) 4.0		HCl solution. The best indicator to be used is [NCERT 1971; DPMT 1983; AFMC 1992; CPMT 1983, 97]
64.	Which of the following litre $N - NaOH$	g is required to neutralize 1		(a) Potassium ferricyanide (b) Phenolphthalein
	(a) 1 $l - N - H_2 SO_4$	(b) 1 $l - M - H_2 SO_4$	73.	(c) Methyl red (d) Litmus paper When $KMnO_4$ solution is titrated with a solution
	(c) $1 l - 2N - H_2SO_A$	(d) 1 $l - 0.5N - H_2SO_4$	/3•	containing Fe^{2+} ion, the indicator used in this
65.		me of CO_2 at S.T.P., obtained		titration is
05.		aCO_3 (Atomic number of Ba		[CPMT 1989; AIIMS 1996]
	= 137)			(a) Phenolphthalein (b) Methyl orange
		[MP PMT 2003]		(c) $K_3[Fe(CN)_6]$ (d) None of these
	(a) 1.12 <i>litre</i>	(b) 0.84 <i>litre</i>	74.	The strength of a solution (S) in gram/litre, is
	(c) 2.24 litre	(d) 4.06 litre		related to its normality (N) and equivalent weight of solute (e) by the formula

	(a) $S = \frac{N}{E}$	(b) $S = \frac{E}{N}$	84.	(c) 40 <i>ml</i> What volume of water is	(d) 80 <i>ml</i> s to be added to	o 50 ml of 4
	(c) $S = N.E$	(d) All of these		N NaOH solution to obta	in a 1 <i>N</i> solutio	on[MP PET 2002]
75.	The normality of 1 M sol	lution of H_3PO_4 will be		(a) 100 ml	(b) 150 ml	
		[AIIMS 1983, 91]		(c) 200 ml	(d) 250 ml	
	(a) 1 N	(b) 0.5 <i>N</i>	85.	In alkaline condition KM	=	
	(c) 2 N	(d) 3 N		$2KMNO_4 + 2KOH \rightarrow 2K_2$		
76.	In the reaction I_2 +	· · -		The eq. wt. of $KMnO_4$ is	_	DPMT 2000]
, 0.	equivalent weight of iod			(a) 79	(b) 31.6	
	equivalent weight of fou	[MNR 1985; UPSEAT 2000]	0.0	(c) 158	(d) 52.7	1 (1 1 1)
	(a) Molecular weight	[1905, 0102.11 2000]	86.	When a standard solution air for a few hours,		a PMT 2004]
	(b) 1/2 the molecular we	eight		(a) A precipitate will for	_	a PW1 2004]
	(c) 1/4 the molecular we	_		(b) Strength will decrease		
	(d) Twice the molecular	_		(c) The concentration of		docrosco
77.		st a given solution of		(d) All are wrong.	iva ions win	decrease.
, , .		g silver nitrate per ml be	87.	In the iodometric estimate	ation in labora	tory which
		ion of concentration of 16	07.	process is involved?		sa JEE 2004]
	$mg AgNO_3$ per ml	[NCERT 1977]		(a) $Cr^2 O_7^{2-} + H^+ + \Gamma \rightarrow 2C$	_	,
	(a) Each <i>ml</i> must be dilu	ited to 2.5 ml		$I_2 + S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} +$	4'	
oe ad		on 2.5 ml of water should		(b) $MnO_4^- + H^+ + \Gamma \to MnO_4^-$		
	(c) To 2.5 ml of solution	n 2 <i>ml</i> of water should be		$I_2 + S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} +$		
adde		1.5 <i>ml</i> of water should be		(c) $MnO_4^- + OH^- + \Gamma \rightarrow M$	$InO_2 + I_2$	
adde		1 1.5 01 5110 414 50		$I_2 + S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} +$		
78.	10 ml of conc. H_2SO_4	(18 molar) is diluted to 1		2 2 3 + 0		
		strength of dilute acid		(d) $Cr_2O_7^{2-} + OH^- + \Gamma \rightarrow 2$	$Cr^{3+} + I_2$	
	could be	[CPMT 1971]		$I_2 + S_2 O_3^{2-} \rightarrow S_4 O_6^{2-} +$	Γ	
	(a) 0.18 <i>N</i>	(b) 0.36 <i>N</i>	88	What is the volume of o		red to react
	(c) 0.09 N	(d) 18.00 N	00.	completely with 1.0		
79.	For preparing one litre	$N/10$ solution of H_2SO_4 ,		carbonate.	3 - 1	
	we need H_2SO_4	[DPMT 1982]			[DPMT 2004]
	(a) 98 gms	(b) 10 <i>gms</i>		(a) 100 cm^3	(b) 150 cm ³	
	(c) 100 gms	(d) 4.9 gms		•	` '	
3o.	What is the concentrati	on of nitrate ions if equal		(c) 250 cm^3	(d) 200 cm^3	
	volumes of 0.1 <i>M AgN</i> mixed together	IO_3 and 0.1 <i>M NaCl</i> are	89.	The weight of a residue <i>g</i> of silver carbonate is	-	eating 2.76 • PMT 2004]
	illixed together	[NCERT 1981; CPMT 1983]		•	_	. TMT 2004]
	(a) 0.1 N	(b) 0.2 <i>M</i>		(a) 2.76 g	(b) 2.98 g	
	(c) 0.05 <i>M</i>	(d) 0.25 <i>M</i>		(c) 2.16 <i>g</i>	(d) 2.44 <i>g</i>	
31.	· · · =	M/5 NaOH the volume of	90.	What is the molarity of	= :	
	M/20 HCl required is	[EAMCET 1980]		exactly neutralised wit NaOH	h 32.63 <i>ml</i> o [DCE 2003]	t 0.164 <i>M</i> ,
	(a) 10 ml	(b) 15 <i>ml</i>		(a) 0.107 <i>M</i>	(b) 0.126 M	
	(c) 40 ml	(d) 25 <i>ml</i>		(c) 0.214 M	(d) -0.428 M	
82.	To change the strength	of 25 <i>ml</i> of 0.15 <i>M HCl</i> to	91.			250 <i>ml</i> of
		ater that is to be added is[EAN	ICET 1	979] solution with $pH = 13$	The property	[BVP 2004]
	(a) 37.5 ml	(b) 12.5 ml		(a) $0.925 g$	(b) 0.0125 <i>g</i>	[211 2004]
. -	(c) 25.0 ml	(d) 18.75 ml		_	_	
33.		H_2SO_4 that is needed to		(c) $0.25 g$	(d) 1 g	tion if it!
		o ml of 0.2 M NaOH is[EAMC	E 197 97	gyvnat will be the volume equivalent to 240 <i>ml</i> 18	or a 12 M solu M solution	
	(a) 10 <i>ml</i>	(b) 20 ml		=		[BVP 2004]
				(a) 6 litre	(b) 600 litre	

- (c) 400 litre
- (d) 0.36 litre
- **93.** The volume of $\frac{N}{10}$ *NaOH* require to neutralise 100

ml of $\frac{N}{25}$ HCl is

[Pb. CET 2000]

- (a) 30 ml
- (b) 100 ml
- (c) 40 ml
- (d) 25 ml
- **94.** The volume of 0.6 *M NaOH* required to neutralise 30 cm^3 of 0.4 *M HCl* is [Pb. CET 2001]
 - (a) 40 cm^3
- (b) 30 cm³
- (c) 20 cm³
- (d) 10 cm³
- **95.** Solubility of iodine in water may be increased by adding

[DCE 2004]

- (a) Chloroform
- (b) Potassium iodide
- (c) Carbon disulphate
- (d) Sodium Thiosulphate
- **96.** If 30 ml of H_2 and 20 ml of O_2 reacts to form water, what is left at the end of the reaction [AFMC 2005]
 - (a) 10ml of H_2
- (b) 5ml of H_2
- (c) 10ml of O_2
- (d) 5ml of O_2
- 97. The primary standard solution for estimation of $Na_2S_2O_3$ is
 - (a) I_2 solution
- (b) $KMnO_4$
- (c) $K_2Cr_2O_7$
- (d) Oxalic acid
- **98.** Acidic solution of $S_2O_3^{2-}$ is converted to in presence of I_2
 - (a) $S_4 O_6^{2-} + I^-$
- (b) $SO_4^{2-} + I^-$
- (c) $SO_3 + I^-$
- (d) $S_4 O_6^{2-} + I_3^-$

Critical Thinking

Objective Questions

- A white solid 'A' on heating gives off a gas which turns lime water milky. The residue is yellow when hot but turns white on cooling. This solid 'A' is [MP PMT 1999]
 - (a) Zinc sulphate
- (b) Zinc carbonate
- (c) Lead sulphate
- (d) Lead carbonate
- 2. A salt on treatment with dil. *HCl* gives a pungent smelling gas and a yellow precipitate. The salt gives green flame when tested. The salt solution gives a yellow precipitate with potassium chromate. The salt is [MP PET 1996]
 - (a) NiSO 4
- (b) BaS_2O_3
- (c) PbS_2O_3
- (d) CuSO 4

- The salt used for performing 'bead' test in qualitative inorganic analysis is [UPSEAT 2001]
 - (a) $K_2SO_4.Al_2(SO_4)_3.24H_2O$
 - (b) $FeSO_4.(NH_4)_2SO_4.6H_2O$
 - (c) $Na(NH_A)HPO_A.4H_2O$
 - (d) $CaSO_4 2H_2O$
- where chlorine water is added to an aqueous solution of potassium halide in presence of chloroform, a violet colour is obtained. On adding more of chlorine water, the violet colour disappears, and a colourless solution is obtained. This test confirms the presence of the following in aqueous solution [CPMT 1990]
 - (a) Iodide
- (b) Bromide
- (c) Chloride
- (d) Iodide and bromide
- 5. Upon the addition of a solution *A* to a strongly acidified solution of barium nitrate, a white precipitate was obtained which did not dissolve even after large addition of water. Solution *A* contained [NCERT 1971]
 - (a) Sodium phosphate
- (b) Sodium carbonate
- (c) Sodium sulphate
- (d) Sodium chloride
- 6. To an acid solution of an anion a few drops of [Orissa] FE 28051 are added. Which of the following, if present will not decolourise the KMnO₄ solution [MP PMT 1997]
 - (a) NO_2^-
- (b) S^{2-}
- (c) Cl^- [Orissa JEE 2005]
- (d) CO_3^{2-}

7. The brown ring test for NO_2 and NO_3^- is due to the formation of complex ion with the formula

[KCET (Eng./Med.) 2000; Kerala PMT 2004]

- (a) $[Fe(H_2O)_6]^{2+}$
- (b) $[Fe(NO) (CN)_5]^{2+}$
- (c) $[Fe(H_2O)_5NO]^{2+}$
- (d) $[Fe(H_2O) (NO)_5]^{2+}$
- **8.** Mixture is heated with dil. H_2SO_4 and the lead acetate paper turns black by the evolved gases. The mixture contains
 - (a) Sulphite
- (b) Sulphide
- (c) Sulphate
- (d) Thiosulphate
- 9. To a solution of a substance, gradual addition of ammonium hydroxide results in a black precipitate which does not dissolve in excess of NH_4OH . However, when HCl is added to the original solution, a white precipitate is formed. The solution contained [BHU 1973]
 - (a) Lead salt
- (b) Silver salt
- (c) Mercurous salt
- (d) Copper salt
- 10. If NaOH is added to an aqueous solution of zinc ions, a white precipitate appears and on adding excess NaOH, the precipitate dissolves. In this solution zinc exists in the

[NCERT 1981; MP PET 1993]

(a) Cationic part

- (b) Anionic part
- (c) Both in cationic and anionic parts
- (d) There is no zinc in the solution
- 11. On performing a borax-bead test with a given inorganic mixture for qualitative analysis, the colour of the bead was found to be emerald green both in oxidising and reducing flame. It indicates the possibility of the presence of

[MP PMT 2001]

- (a) Co⁺²
- (b) Ni^{+2}
- (c) Cr^{+3}
- (d) Cu^{+2}
- 12. A red solid is insoluble in water. However it becomes soluble if some *KI* is added to water. Heating the red solid in a test tube results in liberation of some violet coloured fumes and droplets of a metal appear on the cooler parts of the test tube. The red solid is [AIEEE 2003]
 - (a) $(NH_4)_2Cr_2O_7$
- (b) HgI_2
- (c) HqO
- (d) Pb_3O_4
- 13. An aqueous solution of $FeSO_4$, $Al_2(SO_4)_3$ and chrome alum is heated with excess of Na_2O_2 and filtered. The materials obtained are
 - (a) A colourless filtrate and a green residue
 - (b) A yellow filtrate and a green residue
 - (c) A yellow filtrate and a brown residue
 - (d) A green filtrate and a brown residue
- 14. Phosphoric acid (H_3PO_4) is tribasic acid and one of its salts is sodium dihydrogen phosphate (NaH_2PO_4) . What volume of 1 M NaOH solution should be added to 12 g of sodium dihydrogen phosphate (mol. wt. 120) to exactly convert it into trisodium phosphate Na_3PO_4

[Kurukshetra CET 1998]

- (a) 80 ml
- (b) 100 ml
- (c) 200 ml
- (d) 300 ml
- 15. Three separate samples of a solution of a single salt gave these test results: One formed a white precipitate with excess ammonia solution, one formed a white precipitate with dil. NaCl solution and one formed a black precipitate with H_2S . The salt could be [Pb. PMT 1998]
 - (a) $AgNO_3$
- (b) $Pb(NO_3)_2$
- (c) $Hg(NO_3)_2$
- (d) MnSO₄
- 16. 10 ml of concentrated HCl were diluted to 1 litre. 20 ml of this diluted solution required 25 ml of 0.1 N sodium hydroxide solution for complete neutralization, the normality of the concentrated hydrochloric acid will be
 - (a) 8.0
- (b) 9.5
- (c) 12.5
- (d) 15.0
- 17. To a 25 ml of H_2O_2 solution, excess of acidified solution of KI was mixed. The liberated I_2 require 20ml of 0.3M hypo solution for neutralization. The volume strength of H_2O_2 will be [MP PET 2003]
 - (a) 1.34 ml
- (b) 1.44 ml
- (c) 1.60 ml
- (d) 2.42 ml

- 18. A chemistry student trying to detect the metallic ion in a salt, makes a paste on a clean platinum wire loop of the salt with concentrated HCl. When he takes a small amount of this paste and keeps it in a non-luminous Bunsen flame, the colour of the flame changes to grassy green. He should, therefore, conclude that the metal is[Manipal MEE]
 - (a) Barium
- (b) Calcium
- (c) Potassium
- (d) Strontium
- On passing H_2S in this solution, a black precipitate is obtained. The black precipitate dissolves completely in hot HNO_3 . On adding a few drops of conc. H_2SO_4 a white precipitate is obtained. This precipitate is that of **[CPMT 1990]**
 - (a) $BaSO_4$
- (b) $SrSO_4$
- (c) $PbSO_4$
- (d) $CdSO_4$
- **20.** The best explanation for the solubility of *MnS* in dil. *HCl* is that **[UPSEAT 2001]**
 - (a) Solubility product of $MnCl_2$ is less than that of $MnEr_{1996}$
 - (b) Concentration of Mn^{2+} is lowered by the formation of complex ions with chloride ions
 - (c) Concentration of sulphide ions is lowered by oxidation to free sulphur
 - (d) Concentration of sulphide ions is lowered by formation of the weak acid H_2S

Read the assertion and reason carefully to mark the correct option out of the options given below:

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.
- 1. Assertion: Lime water becomes turbid on passing CO_2 but becomes clear on passing more CO_2 .

Reason : Lime water is calcium hydroxide, $Ca(OH)_2$.

[AIIMS 2000]

2. Assertion : *Sb*(III) is not precipitated as

sulphide when in its alkaline solution $% \left(\left(1\right) \right) =\left(1\right) \left(\left(1\right) \right) \left(1\right) \left($

 H_2S is passed.

Reason : The concentration of S^{2-} ion in alkaline medium is inadequate for precipitation.

[AIIMS 2004]

3. Assertion : CuS will give H_2S in dilute acid test.

Reason : All sulphides react with dil. H_2SO_4 ,

on heating, to give H_2S .

4. Assertion: $PbCl_2$ will give HCl in conc. H_2SO_4

test.

Reason : All chlorides react with conc. H_2SO_4 ,

on heating, to give HCl

5. Assertion: $ZnCO_3$ will not give any gas when

treated with conc. H_2SO_4 .

Reason : CO_3^{2-} can only be detected in dil. acid

test

6. Assertion : *CdS* is yellow in colour.

Reason : Cd^{2+} salts are yellow in colour.

7. Assertion: A brown gas which intensifies on

adding Cu-turnings in conc. H_2SO_4

test is NO₂

Reason : Copper reacts with conc. HNO_3 to

give NO_2 .

8. Assertion: CuS is blue in colour.

Reason : All Cu^{2+} salts are blue in colour.

9. Assertion: Acidified $K_2Cr_2O_7$ is turned green

when SO_2 is passed through it.

Reason : In this reaction SO_2 acts as a

reducing agent.

10. Assertion: White ppt. of AgCl is soluble in

 $NH_{A}OH$.

Reason : It is due to the formation of soluble

complex.

11. Assertion: All soluble sulphides gives white ppt.

with $BaCl_2$ solution.

Reason : BaS is insoluble in water.

12. Assertion: A solution of $BiCl_3$ in conc. HCl when

diluted with water gives white ppt.

Reason : $BiCl_3$ in insoluble in dil. HCl.

13. Assertion: Addition of NH_4OH to an aqueous

solution of $BaCl_2$ in the presence of

 NH_4Cl (excess) precipitates

 $Ba(OH)_2$.

Reason : $Ba(OH)_2$ is insoluble in water.

[AIIMS 2005]

Preliminary Test 2 3 5 а а 7 8 d d 9 h С 10 C d 12 13 14 b 15 а 16 b 17 18 b 19 20 b С а b 22 b 23

Wet Test for Acid Radical

1	abd	2	С	3	b	4	d	5	С
6	а	7	b	8	d	9	а	10	b
11	b	12	d	13	С	14	С	15	С
16	b	17	С	18	а	19	b	20	а
21	С	22	d	23	d	24	С	25	b
26	С	27	b	28	b	29	b	30	а
31	а	32	С	33	а	34	b	35	а
36	b	37	а	38	а	39	d	40	b
41	а								

Wet Test for Basic Radical

1	b	2	b	3	b	4	b	5	b
6		7						10	
	b		С	8	а	9	d		b
11	d	12	d	13	С	14	d	15	а
16	b	17	а	18	b	19	С	20	а
21	abcd	22	bcd	23	С	24	С	25	b
26	а	27	а	28	а	29	b	30	d
31	b	32	С	33	d	34	С	35	d
36	b	37	С	38	С	39	d	40	b
41	С	42	b	43	d	44	а	45	b
46	b	47	b	48	а	49	а	50	С
51	a	52	d	53	а	54	С	55	а
56	а	57	d	58	а	59	С	60	b
61	а	62	d	63	d	64	b	65	d
66	С	67	b	68	С	69	а	70	b
71	С	72	b	73	С	74	d	75	d
76	b	77	d	78	d	79	С	80	d
81	b	82	d	83	а	84	С	85	а
86	С	87	b	88	С	89	а	90	d
91	С	92	а	93	С	94	а	95	b
96	а	97	b	98	С	99	d	100	а
101	а	102	b	103	а	104	С		

Volumetric Analysis

1	С	2	С	3	b	4	С	5	а
6	а	7	d	8	С	9	b	10	b
11	а	12	а	13	а	14	а	15	d
16	b	17	b	18	С	19	d	20	а
21	b	22	d	23	а	24	а	25	а
26	d	27	С	28	d	29	С	30	С
31	d	32	b	33	С	34	b	35	а
36	С	37	b	38	d	39	а	40	b

41	d	42	b	43	С	44	а	45	d
46	С	47	С	48	С	49	а	50	С
51	b	52	b	53	b	54	d	55	а
56	С	57	d	58	b	59	С	60	b
61	d	62	b	63	а	64	d	65	а
66	С	67	d	68	а	69	d	70	а
71	С	72	С	73	d	74	С	75	d
76	b	77	а	78	b	79	d	80	С
81	С	82	b	83	С	84	b	85	С
86	b	87	b	88	d	89	С	90	а
91	а	92	d	93	С	94	С	95	b
96	d	97	a	98	а				

Critical Thinking Questions

1	b	2	b	3	С	4	а	5	С
6	d	7	С	8	b	9	С	10	d
11	С	12	b	13	С	14	С	15	а
16	С	17	а	18	а	19	С	20	d

Assertion and Reason

1	b	2	С	3	d	4	d	5	е
6	С	7	а	8	d	9	а	10	а
11	е	12	С	13	b				

Answers and Solutions

Preliminary Test

1. (a)
$$Na_2B_4O_7.10H_2O \xrightarrow{-10 H_2O} Na_2B_4O_7$$

$$\xrightarrow{\Delta} 2NaBO_2 + B_2O_3$$

$$CuO + B_2O_3 \rightarrow Cu(BO_2)_2$$
 (Copper meta borate blue)

- **2.** (c) Borax bead test is generally given by transition elements.
- 5. (a) Ba^{2+} imparts green colour to the flame.
- **6.** (d) As Mn^{+2} has all it's electrons (5) unpaired in it's d-orbital, so it's extra stable configuration requires high excitation energy and so it gives violet colour.
- **8.** (b) $2NO + O_2 \rightarrow 2NO_2$ (Deep brown gas)
- 9. (c) $CoAlO_2$ is formed which is blue. Follow cobalt nitrate-charcoal test.

- **10.** (c) Metals which form basic compounds and have coloured salts give the borax bead test.
- 11. (d) $2KNO_3 + H_2SO_4 \rightarrow 2KHSO_4 + 2NO_2 \uparrow$ (Brown gas)
- **12.** (a) Barium salt gives green coloured flame as it has low ionization energy
- (d) Calcium oxalate will not dissolve in acetic acid (weak acid) but only in strong acid
- 14. (b) Na_2S + dil.2 $HCl \rightarrow 2NaCl + H_2S$ $H_2S + H_2SO_4 + K_2Cr_2O_7 \xrightarrow{\text{acidic}} K_2SO_4 + Cr_2(SO_4)_3 + S$ (green)
- **15.** (a) Starch Iodide paper is used for the test of Iodine, as Starch + Iodine → Starch Iodide (Blue)
- 16. (b) Flame colour of Ba salt is green $2AgNO_3 + BaCl_2 \rightarrow 2AgCl + Ba(NO_3)_2.$ White ppt.
- 17. (c) $NH_3 + HCl \rightarrow NH_4Cl$ dense white fumes
- **18.** (b) $CoO + B_2O_3 \xrightarrow{\text{Heat}} Co(BO_2)_2$ Copper metabrate (blue
- **20.** (b) In laboratory burners, oil gas is generally used. Oil gas is mixture of $CH_4 + CO + CO_2 + H_2$
- 21. (b) H₂S → colourless gas with unpleasant odour of rotten eggs.
 SO₂ → colourless gas with a pungent suffocating odour PH₃ → colourless gas with unpleasant garlic like odour or rotten fish odour.
- 22. (b) $NO(g) + NO_2(g) \xrightarrow{-30^{\circ}C} N_2O_3(l)$ (BLUE)
- 23. (a) Yellowish-green gas of chlorine with sufocating odour is evolved when the solid chloride mixed with manganese dioxide is heated with concentrated H_2SO_4 .

$$\begin{aligned} &NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl \\ &MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2 \end{aligned}$$

Wet Test for Acid Radical

1. (abd) Chromyl chloride test

$$4 NaCl + K_2 Cr_2 O_7 + 3H_2 SO_4 \xrightarrow{\text{heat}}$$

$$K_2 SO_4 + 2Na_2 SO_4 + 2CrO_2 Cl_2 + 3H_2 O_{\text{chromylchloride (orange red)}}$$

$$4 NaCl + K_2 Cr_2 O_7 + 3H_2 SO_4 \xrightarrow{\text{heat}}$$

$$6 CO_7 Cl_2 + 3H_2 CO_7 Cl_2 + 3H_2 O_7 Cl_2$$

$$4\,NaOH\,+CrO_2Cl_2 \rightarrow 2\,NaCl\,+Na_2CrO_4\,+2H_2O$$
 Sod. chromate (Yellow)

$$Na_2CrO_4 + (CH_3COO)_2Pb \rightarrow 2CH_3COONa +$$

PbCrO₄ ↓
Lead chromate (yellowppt.)

- 2. (c) Starch is colourless but $Starch + \underbrace{Iodine}_{(violet)} \rightarrow \underbrace{Starch}_{(blue-black)} \underbrace{Iodine}_{(blue-black)}$
- **3.** (b) Brown ring test with (FeSO_{4..}NO)
- **4.** (d) $Na_4[Fe(CN)_5 NO] + S^{2-} \rightarrow Na_4[Fe(CN)_5 NOS]$ Sodium thio -nitroprus ide (violet)
- **6.** (a) With F^- , no precipitate is obtained because of low lattice energy of AgF, so it remains in ionized state

- 7. (b) $NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$ $K_2Cr_2O_7 + 2H_2SO_4 \rightarrow 2KHSO_4 + 2CrO_3 + H_2O$ $CrO_3 + 2HCl \rightarrow CrO_2Cl_2$ (orange red vapour)
- **8.** (d) $CrO_2Cl_2 \xrightarrow{NaOH} Na_2CrO_4 \xrightarrow{CH_3COOPb}$ $\left[(CH_3COO)_2Pb \right] \xrightarrow{CrO_2Cl_2} \rightarrow PbCrO_4$ yellowppt.
- 9. (a) $2AgNO_3 + H_2S \rightarrow Ag_2S + 2HNO_3$ Black ppt.
- 10. (b) Iodine vapours are violet \therefore the salt must contain I^- as $KI + H_2SO_4 \rightarrow KHSO_4 + HI$ $2HI + H_2SO_4 \rightarrow I_2 + 2H_2O + SO_2$ violet vapour
- 11. (b) As Cl^- is more electronegative than Br^- and $I^ \therefore$ it replaces them from their salt as $2I^- + Cl_2 \rightarrow I_2 + 2Cl^- \Rightarrow \text{Violet vapour}$ $2Br^- + Cl_2 \rightarrow Br_2 + 2Cl^- \Rightarrow \text{Brown vapour}$
- 12. (d) The salt must have SO_4^{2-} group which is also present in the acid so reaction is not takes place.
- 13. (c) Phosphates give canary yellow precipitate with ammonium molybdate in the presence of conc. HNO_3 $H_3PO_4 + 12(NH_4)_2MoO_4 + 21HNO_3$

 $(NH_4)_3$ PO_4 . $12\,MoO_3$ + $21\,NH_4$ NO_3 + $12\,H_2O$ ammonium phosphomo lybdate (canary yellow ppt.)

- 15. (c) Nitrates and acetates of all metals are water soluble.
- **16.** (b) When NO_3^- is passed through $FeSO_4^-$ (neutral) and then few drops of conc. H_2SO_4 is added then the brown ring is obtained.

$$FeSO_4 + NO \rightarrow Fe(NO)SO_4$$
(Brown ring)
Nitroso Ferrousulp hate

- 17. (c) AgCl and AgBr dissolve in NH_4OH and form complexes but AgI doesn't react with NH_4OH . e.g. $AgCl + 2NH_4OH \rightarrow \left[Ag(NH_3)_2\right]Cl + 2H_2O$
- 18. (a) When Cl^- , Br^- and F^- are treated with $AgNO_3$ solution in presence of dilute HNO_3 , corresponding silver halide is obtained which is soluble in NH_4OH , NaCN, and $Na_2S_2O_3$.

$$\begin{array}{c} \textit{AgNO}_{3} + \textit{NaCl} & \longrightarrow \textit{AgCl} \downarrow + \textit{NaNO}_{3} \\ \\ \textit{AgCl} + \textit{dil}.2\textit{NH}_{4}\textit{OH} & \longrightarrow \begin{bmatrix} \textit{Ag(NH}_{3})_{2} \end{bmatrix} \textit{Cl} + 2\textit{H}_{2}\textit{O} \\ \\ \\ \textit{complex} \end{array}$$

- 19. (b) $Ca(OH)_2 + CO_2 \longrightarrow CaCO_{3(S)} + H_2O$ $\underset{\text{white precipitate}}{\text{white precipitate}}$ $CaCO_3 + CO_2(\text{excess}) + H_2O \longrightarrow Ca(HCO_3)_2$ $\underset{\text{whith } le}{\text{white precipitate}}$
- 20. (a) It is a lab method for the preparation of Br_2 e.g. $2 KBr + MnO_2 + H_2SO_4 \rightarrow$

$$Br_2 + 2 KHSO_4 + MnSO_4$$

- 21. (c) $Na_2SO_3 + 2HCl(\text{dil.}) \rightarrow 2NaCl + H_2O + SO_2$, $K_2Cr_2O_2 + H_2SO_4 + 3SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + H_2O$ (Green)
- **22.** (d) As the sulphate radical is a strong oxidising agent, it is insoluble in acids and so detection of sulphate radicle requires no other reagent.
- 23. (d) Sulphite radicle will give a burning sulphur odour. Acetate radical will give a sweet, venegar odour. Nitrite will give a reddish brown gas. Carbonate will give a colourless, odourless gas, *i.e.* CO₂.
- **24.** (c) $PbSO_4$ and $PbCl_2$ are insoluble in cold water hence the reagent $Pb(NO_3)_2$ is used to remove SO_4^{2-} and Cl^{-}
- 25. (b) $2KI + 2H_2SO_4$ (Conc.) $\rightarrow 2KHSO_4 + 2HI$ $MnO_2 + H_2SO_4 \rightarrow MnSO_4 + H_2O + (O)$ $2HI + (O) \rightarrow H_2O + I_2$ $2KI + MnO_2 + 3H_2SO_4 \rightarrow I_2 + MnSO_4 + 2H_2O$

2KHSO

- **26.** (c) It is a test for chloride ion.
- 27. (b) Dil. H_2SO_4 doesn't react with chloride but reacts with peroxide
- **28.** (b) $Ba(OH)_2$ is not highly basic and bond is not easily broken
- **29.** (b) Ozone react with KI solution to liberate I_2 gas.
- 30. (a) $2KBr + MnO_2 + 3H_2SO_4 \rightarrow MnSO_4 + 2KHSO_4 + 2H_2O + Br_2 \uparrow$

(reddish brown gas)

- **32.** (c) $NH_3 + 3Cl_2 \rightarrow NCl_3 + 3HCl$
- 33. (a) At the junction of salt solution and $FeSO_4$ solution with conc. H_2SO_4 a brown ring is obtained ($FeSO_4$.NO)

 Brown ring
- **34.** (b) $2KMnO_4 + 3H_2SO_4 + 5H_2S \rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5S$
- 35. (a) $3FeSO_4 + NO_2 + 3H_2SO_4 \rightarrow$ $Fe_2(SO_4)_3 + FeSO_4.NO + H_2O$ (Black brown)
- **36.** (b) As most of the nitrates are soluble in water.
- 37. (a) SO_3^{2-} , S^{2-} and SO_4^{2-} salts from comparatively stronger acids (than H_2CO_3) in solution hence evolve CO_2 with Na_2CO_3 solution and give effervesence. While CO_3^{2-} does not react with Na_2CO_3 solution
- 38. (a) $Na_2CO_3 + 2H_2O \rightarrow 2NaOH + H_2CO_3$ and $2NaOH \rightleftharpoons 2Na^+ + 2OH^-$ Hence, it is clear that $2OH^-$ ions will be formed on hydrolysis of one molecule of sodium corbonate.
- 39. (d) According to the equation, $Ca(OH)_2 + CO_2 \xrightarrow{\Delta} CaCO_3 + H_2O$ $CaCO_3 + H_2O + CO_2 \xrightarrow{\Delta} Ca(HCO_3)_2$ $Ca(HCO_3)_2 \xrightarrow{\Delta} CaO + H_2O + 2CO_2$ Hence, the gas A and B are CO_2 and CO_2 respectively
- **40.** (b) $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 5S + 8H_2O_4$
- **41.** (a) It doesn't provide free Br^- ions to react with $AgNO_3$.

Wet Test for Basic Radical

- 1. (b) As_2S_3 forms complex with $(NH_4)_2CO_3$
- 2. (b) $Cu(NH_3)_4(NO_3)_2 + 4CH_3COOH \rightarrow Cu(NO_3)_2 + 4CH_3COONH_4$ $2Cu(NO_3)_2 + K_4[Fe(CN)_6] \rightarrow Cu_2Fe(CN)_6 + 4KNO_3$
- 3. (b) $SnS + (NH_4)_2 S_2 \xrightarrow{HCl} (NH_4)_2 S + SnS_2$
- **4.** (b) For the solution to become milky H_2S must be oxidised to SO_2
- 5. (b) HNO_3 oxidises Fe^{2+} to Fe^{3+} otherwise Fe^{2+} is not completely precipitated as hydroxide
- **6.** (b) Sr^{2+} give bright red colour to the flame
- (c) Calcium oxalate will not dissolve in acetic acid (weak acid) but only in strong acid
- 8. (a) $2Hg + 2HCl \rightarrow Hg_2Cl_2 + H_2 \uparrow$ white ppt.
- 9. (d) It is an acidic salt
- 10. (b) In presence of NH_4OH , dissociation of H_2S is remarkably high so increases the solubility product of IV^{th} group sulphides $H_2S \square 2H^+ + S^{2-}$

$$NH_4OH \rightarrow NH_4^+ + OH^-$$

 $OH^- + H^+ \rightarrow H_2O$

- **11.** (d) As cadmium belongs to the IInd group and is precipitated as sulphide and not as chloride.
- **12.** (d) Aluminium is in IIIrd group and is precipitated as hydroxide [*Al(OH)*₃].
- 13. (c) Due to common ion effect as $HCl \rightarrow H^+ + Cl^- \; ; \quad H_2S \rightarrow 2 \; H^+ + S^{\; 2^-} \; .$
- 14. (d) Oxalate of these metals are insoluble
- **15.** (a) Both will precipitate as sulphide.
- 16. (b) Both Pb and Ag form white ppt. of their chlorides. But PbCl₂ is soluble in hot water while AgCl does not dissolve in hot water.
- 19. (c) $(CH_3COO)_2Pb + H_2S \rightarrow 2CH_3COOH + PbS \downarrow$
- **20.** (a) $(NH_4)SCN$ is a red colour substance.
- 21. (abcd) $FeCl_3 + K_4[Fe(CN)_6] \rightarrow Fe_4[Fe(CN)_6]_3$ Ferri ferrocyanide (Blue) $2FeCl_3 + 3H_2S \rightarrow Fe_2S_3 + 6HCl$ $3NH_4CNS + FeCl_3 \rightarrow Fe(CNS)_3 + 3NH_4Cl$ (Blood red) $FeCl_3 + 3KCNS \rightarrow Fe(CNS)_3 + 3KCl$ (Blood red)
- **24.** (c) (Conc. $H_2SO_4 + K_2Cr_2O_7$) mixture is called as chromic acid
- 26. (a) $NaCl > MgCl_2 > Na_2S > MgS$ Solubility decreasing order
- **30.** (d) Cobalt sulphide does not ppt. in second group.
- **36.** (b) $BaCO_3 + 2HCl \rightarrow BaCl_2 + H_2O + CO_2$ $ZnS + 2HCl \rightarrow ZnCl_2 + H_2S$
- 37. (c) Cd^{2+} is not precipitated by H_2S in concentrated acid solution that is why the solution is diluted before passing H_2S through it.

- (d) $AgCl + 2NH_3 \rightarrow [Ag(NH_3)_2]Cl = [Ag(NH_3)_2]^+ + Cl^-$ 39.
- (b) $Fe^{3+} + K_4[Fe(CN)_6] \rightarrow K[Fe[Fe(CN)_6]] + 3K^+$ 40.
- 41. (c) As Na_2CO_3 is a strong electrolyte it will cause the precipitation of $MgCO_3$. So $(NH_4)_2CO_3$ is used as it's a weaker electrolyte than Na_2CO_3 .
- (b) As the concentration of OH^- ions is less due to common 42. ion effect but enough to precipitate the IIIrd group radicals as hydroxides, as the solubility product of III group hydroxides is lower than IV, V and VI group hydroxides.
- (a) As NH₄Cl is a strong electrolyte. It supresses the ionization 44. of NH_4OH , so the concentration of OH^- ions in the solution is decreased, but it is sufficient to precipitate the III group basic radicals because the solubility product of III group hydroxides is lower than IV, V and VI group hydroxides. As

$$NH_4OH \square$$
 $NH_4^+ + OH^-$
 $NH_4Cl \rightarrow NH_4^+ + Cl^-$
Common ion effective to the state of the

- $NH_4Cl \rightarrow NH_4^+ + Cl^-$ Common ion effect(b) $4FeCl_3 + 3K_4 \left[Fe(CN)_6 \right] \rightarrow Fe_4 \left[Fe(CN)_6 \right]_3 + 12KCl$ Prussian45.
- 46. (b) ZnS is white.
- 47. (b) $Sb_2S_3 + 2(NH_4)_2S_2 \rightarrow 2(NH_4)_2S + Sb_2S_5$
- (a) The second group radicals will precipitate because their 48. solubility product is very low so sulphates will be precipitated.
- 49. As $Pb(NO_3)_2$ is an ionic compound so the reaction is easy. $Pb(NO_3)_2 + 2NaCl \rightarrow 2NaNO_3 + PbCl_2$, but $Ba(NO_3)_2$ has a higher lattice energy, so no reaction takes place.
- $4NH_4OH + CuSO_4 \rightarrow [Cu(NH_3)_4]SO_4 + 4H_2O$ 50.
- $CuCl_2 + H_2S \rightarrow CuS + 2HCl$ 51.
- 52. (d) As they have low K_{SD} value.
- 53. (a) NH₄ ions are required to supress the ionization of NH₄OH but sufficient to precipitate the III group radicals. $(NH_4)_2SO_4$ can't be used as SO_4^{2-} ions will precipitate Ba^{2+} as $BaSO_4$
- 54. (c) White precipitate obtained is of $BaCl_2$, as the Cl^- ion's concentration increases due to the addition of HCl, the ionic product becomes more than solubility product and thus, BaCl2 is precipitated
- 55. (a) $HgS + HNO_3 \rightarrow No reaction$
- (a) Pb2+ as it's precipitated as chloride and sulphide in Ist and **56.** IInd group respectively
- As $Bi(SO_4)_3$ is a covalent compound with high lattice 57. energy and hence it is insoluble in water.
- The solution must contain Ni^{+2} as it forms a complex **58.** with DMG giving $[Ni(DMG)_2]$ which is red in colour.
- (c) $BiCl_3 + H_2O \rightarrow BiOCl_{(white ppt)} + 2HCl_3$ 59.
- (b) $Hg_2Cl_2 + 2NH_4OH \rightarrow NH_2 Hg Cl_+ + Hg_{(Black ppt)}$ 60. $+NH_{4}Cl + 2H_{2}O$
- 61. (a) Colour of anhydrous COCl2 is blue and when it comes in contact with moisture then it turns in pink.

- (d) When $(NH_4)_2CO_3$ is used then the concentration of CO_3^{2-} 62. is comparatively low but when Na₂CO₃ is added then concentration of CO_3^{2-} increases so Mg^{2+} will be precipitated along with other 5th group radicals
- (d) Nessler's reagent gives red precipitate with NH_A^+ 63. $NH_{\perp}Cl + 2K_{2}[HgI_{\perp}] + 4KOH \rightarrow$ $N\!H_2 - H\!g - O - H\!g - I\! + 7K\!I + K\!Cl + 3H_2O$ Iodide of Millon's base (Brown ppt)
- (b) FeS is soluble in HCl. Also Fe^{2+} salts are green. 64.
- (d) Cd^{+2} belongs to II A group while As^{+3} to II B. All the 65. sulphides of II B are soluble in yellow ammonium sulphide but those of II A are insoluble.
- 66. As $Fe(OH)_3$ is soluble in NaOH whereas $Al(OH)_3$ is not.
- **67.** (b) $NH_3 + H_2O \rightarrow NH_4OH$ due to common ion effect NH 4 ion concentration increases which leads to the precipitation of Al(OH)3.
- 68. (c) $CrCl_3$, as $Cr^{+3} \Rightarrow 3d^3$, has unpaired electron in orbital as a result it will show paramagnetism and thus forms coloured complexes.
- 69. (a) Cu^{2+} will be precipitated as CuS in acidic medium where as Ni^{2+} is not precipitated.
- (b) Even SnCl₂ added into HgCl₂ solution to give white gray 70.
- (b) $Al^{+3} + (OH^{-})_{3} \rightarrow Al(OH)_{3}$ 76. which is soluble in excess alkali.
- (d) As the ionic product of Sb^{3+} and Bi^{3+} is very low and 77. Cl^- is present in high concentration, therefore Sb and Biget precipitated, as

$$Sb^{3+} + 3Cl^{-} \rightarrow SbCl_{3}$$

- **78.** (d) $Fe_3(PO_4)_2$ is insoluble in water.
- (c) Sulphide having high ionic product are completely 79. precipitated in acidic medium. CdS has maximum ionic product hence it is completely precipitated.
- 80. (d) $3FeCl_2 + 2K_3[Fe(CN)_6] \rightarrow Fe_3[Fe(CN)_6]_2 + 6KCl$
- (a) $Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$ 83.
- $2CuSO_4 + 4KI \rightarrow 2CuI + 2K_2SO_4 + I_2$. 84. Cuprous iodide
- 85. (a) Ca, Ba, Sr these radicals are precipitated in basic medium.
- (c) $Cu^{2+} + H_2S \rightarrow CuS \downarrow$ black ppt. 88.
- 89. (a) $NH_4OH \square NH_4^+ + OH$ $NH_{4}Cl \rightarrow NH_{4}^{+} + Cl^{-}$
 - NH₄Cl decreases the dissociation of NH₄OH by common ion effect
- 93. (c) HCl suppresses ionisation of weakly dissociated H_2S , with the result only the ionic product of the sulphides of group II radicals exceed their corresponding solubility product and hence only these are precipitated.
- (b) $Cd^{++} + H_2S \rightarrow CdS_{Yellow ppt} + H_2O$ 97.
- 98. (c) Acidified solution of potassium permanganate. $Fe^{+2} \xrightarrow{KMnO_4} Fe^{+3}$

$$Fe^{+3} \xrightarrow{KMnO_4} No reaction$$

99. (d)
$$CuCl_2 + 2HNO_3 \rightarrow Cu(NO_3)_2 + 2HCl$$

 $Cu(NO_3)_2$ reacts with NH_4OH and gives $Cu(NH_3)_4^{2+}$ which has deep blue colour.

102. (b)
$$Bi(NO_3)_3(aq) + 3KI(aq) \longrightarrow BiI_3(s) + 3KNO_3(aq)$$
 Black

$$BiI_3(s) + KI(aq) \longrightarrow K[BiI_4]$$

Orange colour

- 103. (a) HCl suppresses ionisation of weakly dissociated H_2S , with the result only the ionic product of the sulphides of group II radicals exceed their corresponding solubility product and hence only these are precipitated.
- **104.** (c) $Na_2S + Na_2[Fe(NO)(CN)_5] \rightarrow$

$$Na_3[Fe(ONSNa\)(CN)_5]$$
 or $Na_4[Fe(CN)_5\ NOS\]$ violet coloured complex purple colour complex

Volumetric Analysis

1. (c)
$$0.1 = \frac{x \times 1000}{40 \times 100} \Rightarrow x = 0.45 \text{ gms}$$
.

- **2.** (c) As methyl orange is a weak base.
- **3.** (b) Phenolphthalein is an indicator for strong base and weak acid, but *KMnO*₄ oxidises it.

4. (c)
$$N_1 V_1 = N_2 V_2$$
, $\frac{1}{10} \times 15 = N_2 \times 12 \Rightarrow N_2 = \frac{1}{8} N_2$

5. (a) In the neutralization of acid and base $N \times V$ of both must be equivalent

$$N \times V$$
 of $HCl = 0.1 \times 100 = 10$

$$N \times V$$
 of $NaOH = 0.2 \times 30 = 6$

as to obtain $10 N \times V$ of base

 $4 N \times V$ of base is required

$$N \times V$$
 of $KOH = 0.25 \times 16 = 4$

$$N_1V_1 = N \times V + N \times V$$

$$N_{AOH} \times V + N \times V$$

$$0.1 \times 100 = 0.2 \times 30 + 0.25 \times V$$

$$10 = 6 + 0.25 V$$

$$V = \frac{400}{0.25} \implies V = 16 \ ml$$

6. (a) 1 - 0.68 = 0.32 g oxygen

$$\frac{0.68}{eq.wt.} = \frac{0.32}{8} \implies eq.wt. = \frac{0.68 \times 8}{0.32} = 17$$

7. (d)
$$V_1 = 20 \text{ ml}, N_1 = 0.25 \text{ N}, V_2 = 30 \text{ ml}$$

$$N_2 = 0.2 \text{ N}$$

$$\therefore N = \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2} = \frac{20(0.25) + 30(0.2)}{20 + 30}$$

$$=\frac{5+6}{50}=\frac{11}{50}=0.2N$$
 basic

9. (b)
$$N_1V_1 = N_2V_2 \Rightarrow \frac{1}{10} \times 8 = N_2 \times 20$$
, $\therefore N_2 = 0.04 N_2$

10. (b)
$$N = \frac{W_B \times 1000}{E \times V} \Rightarrow \frac{N}{10} = \frac{x \times 1000}{63 \times 250}$$

$$\therefore x = 1.575 grams$$

- 11. (a) $N_1V_1 = N_2V_2$ $15 \times 0.2 = 30 \times x : x = 0.1 N$
- 12. (a) $N_1V_1 + N_2V_2 = N_3V_3$ $200 \times 0.6 + 100 \times 0.3 = N_3V_3$ and $V_3 = V_2 + V_1 = 300 \ ml$ $\therefore N_3 = 0.5 \ N$
- 13. (a) $10 M H_2SO_4 \Rightarrow 20 N H_2SO_4$ $\therefore 20 \times 10 = 200 \text{ for } H_2SO_4 \text{ and } 100 \times 1 = 100 \text{ for } NaOH$ \therefore Acidity>Basicity
- **14.** (a) 0.1M of $H_2SO_4 \Rightarrow 0.2 N$ of H_2SO_4 $\therefore N_1V_1 = N_2V_2$ [N = 2m for H_2SO_4] $0.2 \times V_1 = 30 \times 0.2$ $\therefore V_1 = 30 \ ml$
- **15.** (d) $N_1 V_1 = N_2 V_2$ $5N \times 1 \ lit = x \times 10 \ lit.$ $\therefore x = 0.5 \ N$

16. (b) Normality =
$$N = \frac{W_B \times 1000}{Eq.wt \times V}$$

$$\therefore \text{ Eq. Wt} = \frac{0.45 \times 1000}{0.5 \times 20} = 45$$

$$\therefore \text{ Basicity} = \frac{\text{Molec. Wt}}{\text{Eq. Wt}} = \frac{90}{45} = 2$$

- 17. (b) $\stackrel{COOH}{\downarrow}$. $2H_2O \rightarrow 126$ is molecular wt.
 - ∴ Equivalent wt. = Molecular wt. /2 = 63
- **18.** (c) $N_1V_1 = N_2V_2 \implies 5 \times 10 = \frac{1}{10x} \times x : x = 500 \, ml$
- 19. (d) $KMnO_4 \rightarrow K_2MnO_4$ $\frac{\text{Molecular weight}}{1} = \frac{158}{1} = 158$
- 21. (b) Hyposolution are used as the reducing agent with potassium dicromate solution $K_2Cr_2O_7 = \frac{\text{Molecular weight}}{\text{Molecular weight}}$
- 22. (d) $N_1 V_1 = N_2 V_2$ $N \times 25 = \frac{109.5 \times 32.9}{36.5} \Rightarrow N = \frac{109.5 \times 32.9}{36.5 \times 25}$ $N_3 V_3 = N_4 V_4$ $(V_3 = \frac{m}{d}, V_3 = \frac{125}{1.25})$ $\frac{109.5 \times 32.9}{36.5 \times 25} \times 100 = 0.84 \times V \Rightarrow V = 470 \, ml$
- 23. (a) $N_1V_1 = N_2V_2$ $0.1 \times V_1 = 0.13 \times 80 \Rightarrow V_1 = 104 \ ml$
- 24. (a) Molarity = $\frac{wt \times 1000}{\text{Eq. wt.} \times \text{vol.}}$ $0.1 = \frac{wt \times 1000}{40 \times 250}$

$$\therefore$$
 wt. required = 1 gm

- **25.** (a) $1 = \frac{x \times 1000}{63 \times 100} \Rightarrow x = 6.3 \ gms$
- **26.** (d) $10 \times x = 1 \times 1$ x = 0.1 *liter* = 100 *cc*

32. (b) In acidic medium 2 molecules of $KMnO_4$ gives 5 atoms of oxygen

$$2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5(O)$$

$$2 \times 158 = \frac{316 \times 8}{80} = 31.6$$
.

So, equivalent wt. of $KMnO_4$ in acidic medium is = 31.6 gm

33. (c) $N_1 V_1 = N_2 V_2$

$$N_1 \times 20 = N_2 \times 22.18$$

$$N_1 = \frac{N_2 \times 22.18}{20}$$
(i)

NaOH solution = HCl solution

$$N_2 \times 21.5 = \frac{1}{10} \times 20$$

$$N_2 = \frac{20}{10 \times 21.5}$$
(ii)

by eq. (i) and (ii)

$$N_1 = \frac{20 \times 22.18}{20 \times 10 \times 21.5} = \frac{22.18}{215} = 0.1N$$

34. (b) $1M H_2 SO_4 = 2N H_2 SO$

$$2 \times V_1 = 10 \times 1$$
, $V_1 = \frac{10 \times 1}{2} = 5 \ ml$

36. (c) $N = \frac{W_B \times 1000}{\text{Eq.}wt. \times V}$; $W_B = \frac{N \times Eq.wt \times V}{1000}$

$$=\frac{0.1\times40\times100}{1000}=0.4$$

38. (d) 20 ml of 0.1N NaOH neutralize 20 ml of 0.1N acid Weight of acid = 0.126 g

Volume =
$$20 \text{ ml} = \frac{20}{1000} \text{ litre}$$

Normality = 0.1 N

Equivalent weight = ?

Equivalent weight =
$$\frac{\text{weight of acid}}{N \times V}$$

$$=\frac{0.126\times1000}{0.1\times20}=63$$

- **40.** (b) 2×31.82 , \therefore wt of one atom $= \frac{2 \times 31.82}{N} = \frac{63.64}{N}$
- **41.** (d) $Na_2S + I_2 + Na_2SO_3 \rightarrow Na_2S_2O_3 + 2NaI_3$
- **43.** (c) $X = \frac{50}{10} = 5$; $Y = \frac{50}{20} = 2.5$

Ratio of g atoms of X and Y = 2:1

47. (c)
$$N = \frac{0.53 \times 1000}{53 \times 100} \Rightarrow N = \frac{1}{10}$$

So normality of the solution will be $\frac{N}{10}$.

51. (b) Acid = $0.1 \times 100 = 10$

Base = $0.2 \times 100 = 20$

- \therefore solution will be basic. 0.1N of HCl is neutralised by 0.1 N of NaOH and the remaining 0.1N of NaOH is in 200 cm³ of solution.
- \therefore resulting normality = 0.05 N, basic.

53. (b) Equivalent weight of

$$Zn(OH)_2 = \frac{\text{Molecular weight}}{\text{acidity}} = \frac{M}{1}$$

Acidity of $Zn(OH)_2 = 1$, only one OH is replaced.

55. (a) $M_1 V_1 = M_2 V_2$

$$(Na_2CO_3) = (HCl)$$

$$0.25 M \times 25 \qquad = \qquad 0.5 M \times V_2$$

$$V_2 = \frac{0.25 \, M \times 25}{0.5 \, M} = 12.5 \, ml$$

56. (c) $\frac{0.16}{x} \times \frac{1000}{25} = \frac{1}{10}$ $\Rightarrow \frac{6.4}{x} = \frac{1}{10}$ $\therefore x = 64$

Mol. wt. = $64 \times 2 = 128$

- 57. (d) If $N_1V_1 = N_2V_2$ then the solution will be neutral $\therefore 1 \times 100 = 10 \times 10$ $100 = 100 \implies$ solution in neutral
- **59.** (c) Volume = 25 $ml = \frac{25}{1000} litre$

Normality =
$$\frac{wt}{eq.wt \times \text{Volume}}$$
 $\Rightarrow 0.12 = \frac{0.1914 \times 1000}{E \times 25}$

$$eq.wt. = \frac{0.1914 \times 1000}{0.12 \times 25} = 63.8$$

- **60.** (b) Eq. wt = $\frac{\text{Molecular Wt.}}{\text{basicity}} = \frac{W}{3}$
- **61.** (d) Valency = $\frac{26.89}{8.9} = 3$

at. mass = Eq.wt \times valency = $8.9 \times 3 = 26.7$

- **62.** (b) : 4 gms of Br_2 combines with 1 gm of Ca
 - \therefore 80 gms of Br combines with $\frac{1}{4} \times 80 = 20$

Therefore,

equivalent wt of Ca = 20

- **63.** (a) $N = \frac{4 \times 1000}{40 \times 100} = 1N$
- **64.** (d) $N_1V_1 = N_2V_2$

 $1 \times 1 = 0.5 \times 2 \times 1$

as 0.5 N will give double the amount of H^+ ions

65. (a) $BaCO_3 \rightarrow BaO + CO_2 \uparrow$

∴ 197 g BaCO₃ on decompose gives = 22.4 litre CO_2

$$\therefore 1 g \ BaCO_3 \text{ will give} = \frac{22.4}{197} = litre \ CO_2$$

$$=\frac{22.4\times9.85}{197}=1.12$$
 litre CO₂

- **66.** (c) As the resultant solution will be neutral so either of them can be used.
- **67.** (d) Phenolphthalein is used as it is colourless and becomes pink only in basic medium.
- **69.** (d) Here $KMnO_4$ itself works as an indicator.
- **70.** (a) The resulting solution is colourless.
- **71.** (c) As it is a weak aromatic base so it gives colour in acidic medium.
- **72.** (c) As the resulting solution is acidic.
- 73. (d) Here $KMnO_4$ is used as an indicator as well as a reactant.
- **74.** (c) Strength = $\frac{W}{V} = NE$

- **75.** (d) As H_3PO_4 can donate $3H^+$ in the solution, as a result the normality of solution is 3N, as Molarity \times basicity = Normality
- **76.** (b) $I_2 + 2S_2O_3^- \to 2I + S_4O_6^{2-}$ \therefore Eq. wt. = $\frac{1}{2} \times$ molecular wt.
- 77. (a) $40 \times 1 = 16 \times x \implies x = \frac{40}{16} = 2.5 \text{ ml}$
- **78.** (b) $18 M \text{ of } H_2 SO_4 = 36 N \text{ of } H_2 SO_4$ $N_1 V_1 = N_2 V_2 \Rightarrow 36 \times 10 = N_2 \times 1000$ $\therefore N_2 = 0.36 N$
- 79. (d) $\frac{1}{10} = \frac{W \times 1000}{\text{eq.wt} \times \text{vol.}} = \frac{W \times 1000}{49 \times 1000} \Rightarrow W = 4.9 \text{ gms}$
- **80.** (c) $M_1V_1 = M_2V_2$ $0.1 \times V = M_2 \times 2V \Rightarrow M_2 = \frac{1 \times V}{2V} = 0.05 M$
- **81.** (c) $N_1 V_1 = N_2 V_2 \Rightarrow \frac{1}{5} \times 10 = \frac{1}{20} \times V_2 \Rightarrow V_2 = 40 \text{ ml}$
- **82.** (b) $N_1V_1 = N_2V_2$ $0.15 \times 25 = 0.1V_2 \Rightarrow V_2 = 37.5 \, ml$ Water to be added = $37.5 - 25 = 12.5 \, ml$
- **83.** (c) $N_1 V_1 = N_2 V_2 \Rightarrow 0.2 \times V_1 = 0.2 \times 40 \Rightarrow V_1 = 40 \, ml$
- **85.** (c) $Mn^{+7} \rightarrow Mn^{+6} = \frac{158}{1} = 158$
- **88.** (d) Given, N = 0.1, w = 1.0 gm, equivalent weight = 50, V = ?

$$V = \frac{w \times 1000}{Eq.wt. \times N} = \frac{1 \times 1000}{50 \times 0.1} = 200 \text{ cm}^3$$

- 89. (c) $2Ag_2CO_3 \xrightarrow{\Delta} 4Ag + 2CO_2 + O_2$ $[(2 \times 108) + 12 + 48] 4 \times 108$ $2(216 + 12 + 48) 4 \times 108$ $2 \times 276 = 552 4 \times 108$ $\therefore 552 \ gm \ silver \ carbonate \ gives \ silver = 432 \ gm.$
 - \therefore 2.76 gm silver carbonate gives $\frac{432 \times 2.76}{552}$ 2.16 gm
- 90. (a) $0.164 \ M \ NaOH \cong 0.164 \ N \ NaOH$ We know, $N_1V_1 = N_2V_2$; $N_1 \times 25 = 0.164 \times 32.63$ $0.214 \ N \ H_2SO_4 \cong \frac{0.214}{2} \ M \ H_2SO_4$

 $\cong 0.107 \ M \ H_2 SO_4$

91. (a) We know, $[H^+] = 10^{-pH} = 10^{-13}$; $\therefore [OH^-] = \frac{10^{-14}}{10^{-13}} = 10^{-1}$

Hence, normality of solution = 0.1

We know, $w = \frac{NEV}{1000} = \frac{0.1 \times 74 \times 250}{2 \times 1000} = 0.925 \text{ gm}$

(: basicity of H_2SO_4 is 2)

- 92. (d) $N_1 V_1 = N_2 V_2$ or $M_1 V_1 = M_2 V_2$ $\therefore 12 \times V_1 = 18 \times 240$ $V_1 = \frac{18 \times 240}{12} 260 \ ml = 0.36 \ little$
- **93.** (c) For complete neutralisation,

milli equivalent of base = milli equivalent of acid

 $N_1 V_1 = N_2 V_2 \Rightarrow \frac{1}{10} \times V_1 = \frac{1}{25} \times 100 \; ; \; V_1 = 40 \; ml.$

94. (c) Normality = molarity × basicity or acidity (for HCl) $N_2 = 0.4 \times 1 = 0.4 N$ basicity =1 (for NaOH acidity =1)

$$N_1 = 0.6 \times 1 = 0.6N$$
 $V_1 = ? V_2 = 30$ cm³

From the equation, $N_1V_1 = N_2V_2$

$$0.6 \times V_1 = 0.4 \times 30$$

$$V_1 = \frac{0.4 \times 30}{0.6} = 20 \ cm^3$$

95. (b) The solubility of I_2 in water increases by the addition of KI due to ormation of polyhaldie ion, *i.e.*, I_3^-

$$KI + I_2 \rightarrow KI_3$$

96. (d) $H_2 + \frac{1}{2}O_2 \to H_2O$

1 mole
$$\frac{1}{2}$$
 mole 1 mole

1 volume $\frac{1}{2}$ volume

 $1ml \ H_2$ reacts with $\frac{1}{2} ml \ O_2$

30ml of H_2 reacts with $=\frac{1}{2} \times 30 = 15ml$ O_2

(20-15) = 5ml of O_2 will left at the end of the reaction.

- **97.** (a) Standard solution of I_2 is used to estimate sulphite, thiosulphite, arsenite etc.
- **98.** (a) $I_2 + Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$ $I_2 + S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$

Critical Thinking Questions

- 1. (b) $ZnCO_3 \xrightarrow{\Delta} ZnO + CO_2$ Turns lime water milky

 (Hot) $ZnO \ \Box \ ZnO$ (Cool)

 vellow White
- 2. (b) $Ba^{+2} + 2CH_3COO^- \rightarrow (CH_3COO)_2Ba$ BaS_2O_3 gives SO_2 gas with dil. HCl and also yellow ppt. of Barium chromate. $(CH_3COO)Ba + K_2CrO_4 \rightarrow 2CH_3COOK + BaCrO_4 \downarrow$
- 3. (c) $Na(NH_4)HPO_4 \xrightarrow{\Delta} NaPO_3 + NH_3 + H_2O$ Microcosmic salt Sodium meta phosphate (transparent)
- **4.** (a) It is a test for iodide.
- 5. (c) $Ba(NO_3)_2 + Na_2SO_3 \rightarrow Ba(NO_2)_2 + Na_2SO_4$ Na_2SO_4 is insoluble in water.
- **6.** (d) Except CO_3^{--} all other ions are reduced by $KMnO_4$ solution.
- 7. (c) The brown ring test for NO_2^- and NO_3^- is due to formation of $[Fe(H_2O)_5 NO]^{2+}$
- **8.** (b) It must be sulphide as $Pb(CH_3COO)_2 + H_2S \rightarrow PbS + 2CH_3COOH$ (Black ppt.)
- 9. (c) Hg_2Cl_2 is white insoluble salt.

$$Hg_2Cl_2 + 2NH_4OH \rightarrow Hg + Hg(NH_2)Cl + NH_4Cl + 2H_2O$$

- 10. (d) $Zn^{2+} + 2NaOH \rightarrow Zn(OH)_2 + 2Na^+$ $Zn(OH)_2 + 2NaOH \rightarrow Na_2ZnO_2 + 2H_2O.$
- **11.** (c) Chromium ion gives in hot and cold. Oxidising and reducing flame green-colour.
- 12. (b) $HgI_2 + 2KI \rightarrow K_2(HgI_4)$ soluble Red solid $HgI_2 \rightarrow Hg + I_2$ violet foams.
- 13. (c) Yellow filtrate is due to chromate ions (CrO_4^{--}) and green residue is due to $Fe(OH)_2$.
- **14.** (c) $1 \times V = \frac{12}{120} \times 2 = 200 \, ml$.
- 15. (a) $AgNO_3$ react with all conditions and gives corresponding result.

$$\begin{array}{c} \textit{AgNO}_{3} + 2\textit{NH}_{3} \rightarrow [\textit{Ag}(\textit{NH}_{3})_{2}] \textit{NO}_{2} + \textit{H}_{2}\textit{O} \\ \text{White ppt} \end{array}$$

$$\textit{AgNO}_{3} + \textit{NaCl} \rightarrow \textit{AgCl}_{\text{White ppt}} + \textit{NaNO}_{3}$$

$$2AgNO_3 + H_2S \rightarrow Ag_2S + 2HNO_3$$
.

Black ppt

16. (c) HCl NaOH $N_1V_1 = N_2V_2$

$$N_1 \times 20ml = 0.1 \times 25$$

$$N_1 = \frac{0.1 \times 25}{20} = 0.125 \ .$$

If one litre HCl present in 0.125

Therefore in 10 *ml*
$$\frac{0.125}{1000} \times 10 = 12.5$$

The normality of conc. HCl is 12.5N.

- **17.** (a) 20 ml of 0.3N $Na_2S_2O_3$
 - =20ml of $0.3NI_2$ Solution
 - = $20 \, ml$ of $0.3 N H_2 O_2$ solution
 - $\equiv 25 \, ml$ of $0.08 \, N \, H_2 O_2$ solution

Mass of
$$H_2O_2$$
 100*ml* solution = $\frac{0.08 \times 17 \times 100}{1000}$

$$=0.136 \ gm$$

$$% = 0.136$$

 $68 gm H_2O_2$ evolve oxygen at NTP = 22400 ml

 $0.00136 \ gm \, H_2 O_2$ evolve oxygen at NTP

$$=\frac{22400}{68}\times0.00136=0.448$$

For 0.1N, the solution is of 0.448 volume.

$$\therefore 3N$$
, volume = 0.448 $\times 3 = 1.344 \, ml$.

18. (a) 'Ba' gives characteristic green flame in Bunsen burner.

19. (c)
$$Pb^{+2} + H_2S \xrightarrow{\text{acidic}} PbS \downarrow + H_2 \uparrow$$

 $(Black ppt.)$
 $3PbS + 8HNO_3 \rightarrow 3Pb(NO_3)_2 + 2NO + 3S + 4H_2O$
 $Pb(NO_3)_2 + H_2SO_4 \rightarrow PbSO_4 \downarrow + 2HNO_3 \uparrow$
(white ppt.)

20. (d) It is a characteristic property of IV group concentration of sulphide ions is lowered by formation of the weak acid H_2S .

Assertion and Reason

1. (b) Lime water become turbid on passing CO_2 into it because both reacts to produce insoluble calcium carbonate.

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$$

Lime Water Calcium Carbonate (Insoluble)

If more ${\it CO}_2$ is passed than soluble calcium bicarbonate is formed which clear the solution

$$CaCO_3 + H_2O + CO_2 \rightarrow Ca(HCO_3)_2$$
Insoluble

Calcium bi Carbonate
(Soluble)

The reason that lime water is $Ca(OH)_2$ is also correct. Here, both assertion and reason are correct but reason is not a correct explanation of assertion.

- 2. (c) Assertion is true but reason is false. Sb(III) is a basic radical of IIB group for which group reagent is H_2O is presence of dilute HCl. It is necessary to maintain the proper hydrogen ion concentration for the precipitation of IV group cations.
- 3. (d) CuS is one such exception which is not decomposed by dil. H_2SO_4
- **4.** (d) $PbCl_2$ does not react with conc. H_2SO_4 as $PbSO_4$ is insoluble in water.
- 5. (e) $ZnCO_3$ will react with conc. H_2SO_4 to give CO_2 Radicals of dil. acid test are decomposed by conc. H_2SO_4 in cold.
- **6.** (c) Cd^{2+} salts are generally white in colour, however, CdS is yellow in colour.
- **7.** (a) Both assertion and reason are correct and reason is the correct explanation of assertion.
- **8.** (d) Cu^{2+} salts are generally blue in colour, however, CuS is black in colour.
- **9.** (a) Both assertion and reason are correct and reason is the correct explanation of assertion.
- **10.** (a) Both assertion and reason are correct and reason is the correct explanation of assertion.
- **11.** (e) Sulphides do not give any test with BaCl₂ (aq.) as BaS is soluble in water.
- 12. (c) It is due to the formation of insoluble BiOCl on hydrolysis. $BiCl_3 + H_2O \rightarrow BiOCl + 2HCl$ White part