Frequency Response Analysis

Frequency response analysis implies varying ω from zero to ∞ and observing corresponding variation in magnitude and phase angle of the response.

Frequency Response Analysis for Second Order System

Transfer Function

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Resonant Frequency

It is defined as, the frequency at which the magnitude has maximum value.

$$\omega_r = \omega_n \sqrt{1 - 2\xi^2}$$

Resonant Peak

It is maximum value of magnitude occurring at resonant frequency $\boldsymbol{\omega}_{\!\scriptscriptstyle f}$

$$|\mathsf{M}_r| = \frac{1}{2\xi\sqrt{1-\xi^2}}$$

Phase Angle at Resonant Frequency

$$\phi_r = -\tan^{-1}\left[\frac{\sqrt{(1-2\xi^2)}}{\xi}\right]$$

Remember:

- As ζ approaches zero, ω_r approaches ω_n and M_r approaches to infinity.
- For $0 < \zeta \le 1/\sqrt{2}$, the resonant frequency always has a value less than ω_n and the resonant peak has a value greater than 1.

Cut-off Frequency and Bandwidth

Cut-off frequency

$$\omega_{\rm c} = \omega_{\rm n} \left[1 - 2\zeta^2 + \sqrt{4\zeta^4 - 4\zeta^2 + 2} \right]^{1/2}$$

□ Bandwidth

$$B.W. = \omega_c$$

Stability from Frequency Response Plot

□ Phase Margin (P.M.)

$$P.M. = 180^{\circ} + \angle G(j\omega) H(j\omega)$$

....at gain cross over frequency

☐ Gain Margin (G.M.)

$$G.M. = \frac{1}{|G(j\omega)| + (i\omega)|_{\omega = \omega_{pc}}} = \frac{1}{X} \cdots$$
 at phase crossover frequency

GM (dB) =
$$20\log\left(\frac{1}{X}\right)$$

Remember:

- For stable systems
 - (i) Gain cross over frequency < phase cross-over frequency
 - (ii) G.M. and P.M. both are positive
- For unstable systems
 - (i) Gain cross over frequency > phase cross-over frequency
 - (ii) G.M. and P.M. both are negative
- For marginally stable systems
 - (i) Gain cross over frequency = Phase cross-over frequency
 - (ii) G.M. and P.M. both are zero

G.M. and P.M. for Second Order System

☐ Gain cross-over frequency

$$\omega_{gc} = \omega_n \sqrt{-2\zeta^2 + \sqrt{4\zeta^4 + 1}}$$

☐ Phase margin

P.M. =
$$\tan^{-1} \left[\frac{2\zeta}{\sqrt{-2\zeta^2 + 4\zeta^4 + 1}} \right] = 100\zeta$$

Polar Plot

It is a plot of absolute values of magnitude and phase angle in degree of open loop transfer function $G(j\omega)$ $H(j\omega)$ versus ω drawn on polar coordinates.

General Shapes of Polar Plot

1. Type-0/Order-1

$$G(s) = \frac{1}{1 + Ts}$$

2. Type-0/Order-2

$$G(s) = \frac{1}{(1 + T_1 s)(1 + T_2 s)}$$

3. Type-0/Order-3

$$G(s) = \frac{1}{(1 + T_1 s)(1 + T_2 s)(1 + T_3 s)}$$

4. Type-0/Order-4

$$G(s) = \frac{1}{(1+T_1s)(1+T_2s)(1+T_3s)(1+T_4s)}$$

5. Type-1/Order-1

$$G(s) = \frac{1}{s}$$

6. Type-1/Order-2

$$G(s) = \frac{1}{s(1+Ts)}$$

7. Type-1/Order-3

G(s) =
$$\frac{1}{s(1+T_1s)(1+T_2s)}$$

12, Type-3/Order-3

$$G(s) = \frac{1}{s^3}$$

8. Type-1/Order-4

$$G(s) = \frac{1}{s(1+T_1s)(1+T_2s)(1+T_3s)}$$

13. Type-3/Order-4

$$G(s) = \frac{1}{s^3(1+Ts)}$$

9. Type-2/Order-2

$$G(s) = \frac{1}{s^2}$$

Note:

 For standard transfer function of type-2 and type-3 systems, the polar plot intersects negative real axis as many times as there are zeros in open loop transfer function.

10. Type-2/Order-3

$$G(s) = \frac{1}{s^2(1+Ts)}$$

Nyquist Stability Criteria

Open loop transfer function

$$G(s)H(s) = \frac{K(s \pm Z_1)}{s(s \pm P_1)}$$

$$1 + G(s) H(s) = 0$$

$$1 + \frac{K(s \pm Z_1)}{s(s \pm P_1)} = 0$$

11. Type-2/Order-4

$$G(s) = \frac{1}{s^2(1+T_1s)(1+T_2s)}$$

$$\frac{s(s \pm P_1) + K(s \pm Z_1)}{s(s \pm P_1)} = 0 \qquad ...(i)$$

Nyquist stability criteria states that the number of encirclements about the critical point (-1 + j0) should be equal to poles of open loop transfer function G(s) H(s), which are in the right half of s-plane.

$$N = P - Z$$

For stability

(i)
$$Z = 0$$

where.

P = Number of open loop poles in RHS of s-plane

Z = Number of closed loop poles in RHS of s-plane

N = Number of encirclements about of the point (-1 + -6)by G(s) H(s) plot. The positive direction is encirclements being anti-clockwise.

Bode Plot

The variation of magnitude of sinusoidal transfer function expressed in decibel and the corresponding phase angle in degrees being plotted with frequency on a logarithmic scale in rectangular axis. The plot thus obtains known as Bode plot. . .

Procedure to Draw Bode Plot

- s is replaced by jω to convert into frequency domain.
- Find magnitude in terms of ω and write in terms of dB.

$$M_{dB} = 20 \log |G(j\omega) H(j\omega)|$$

Find the phase angle ∠o

$$\angle \phi = \tan^{-1} \left(\frac{\text{imaginary part}}{\text{real part}} \right)$$

With required approximation by varying the frequency minimum to maximum, draw the magnitude and phase plot.

$$G(s)H(s) = K$$

then

$$|M_{dB}| = 20 \log K$$

System gain K shift the magnitude plot either in upward or downward by "20 logK".

□ Slope

Slope =
$$\frac{d|M|_{dB}}{d\log \omega}$$

The magnitude plot should be started at the frequency of 0.1 with opposite sign of the slope and it should be passes through 0 dB line and intersect at $\omega = 1$, when K = 1.

n poles at origin gives

$$\angle \phi = -90$$
n°

n zeros at origin gives

Slope =
$$+20n dB/dec$$

$$\angle \phi = +90n^{\circ}$$

Remember:

The initial slope of the magnitude plot is given by the poles or zero located

Corner frequency

The frequency at which slope changes from one level to another level. Corner frequencies are nothing but a finite poles and finite zeroes location in the form of magnitude.

$$G(s)H(s) = \frac{1}{(1+sT)^n}$$

Frequesicy	Slope	Phase (t)
Below corner frequency	0	0
Above comer frequency	-20n dB/dec	−90n°

$$\Box \text{ if } G(s)H(s) = (1 + sT)^n$$

Frequency	ppe Phase (φ)
Below corner frequency	0
Above corner requency 20n di	B/dec 90n°

Error

Maximum error between the exact and asymptotic plot occurs at corner frequency

Frequency	Error in magnitude plot	Error in phase plot
0.1 T	0 dB	–5.6°
0.5 T	0.96 dB	–26.56°
$\frac{1}{T}$	3 dB	_45°
10 T	0 dB	-5.6°

Remember:

- The error is nothing but difference between actual value and asymptotic value.
- Error is maximum at corner frequency.
- Error is even function w.r.t. corner frequency.
- 6 dB/oct = 20 dB/dec.

Classification of system

1. Minimum Phase System

A system in which all finite poles and finite zeros are located in left half of s-plane then it is called as minimum phase system.

2. Non Minimum Phase System

A system in which one or more zeros lies in the right half of s-plane, remaining all the poles and zeros lies on the left half of s-plane.

3. All Pass System

A system in which zeros lies on the right half of s-plane, poles lies on the left half of s-plane and which are symmetrical about imaginary axis. For all pass system magnitude should be 1 and phase angle is -180°.

Note:

- Non minimum system = Minimum phase system * all pass system
- $\angle \phi_{MNPS} = \angle \phi_{MPS} + \angle \phi_{ALP}$

Constant Magnitude Loci (M-circles)

n Radius of M-circles

Radius =
$$\frac{M}{1-M^2}$$

Centre of M-circles

Centre =
$$\left(\frac{M^2}{1-M^2}, 0\right)$$

Constant Phase Angles Loci (N-circles)

□ Radius of N-circles

Radius =
$$\sqrt{\frac{1}{4} + \frac{1}{4N^2}}$$

□ Centre of N-circles

Centre
$$=\left(-\frac{1}{2},\frac{1}{2N}\right)$$