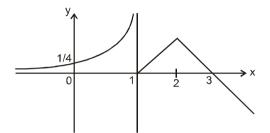
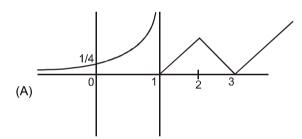
## **MATHEMATICS**

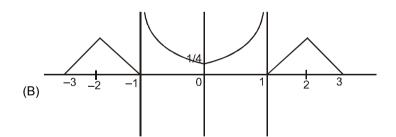


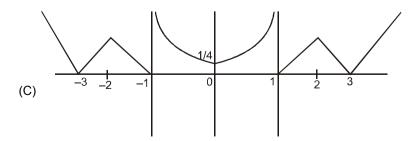
## DPP No. 4


**Total Marks: 30** 

Max. Time: 31 min.


Topics: Fundamentals of Mathematics, Quadratic Equation, Function


| Type of Questions                                           |                   | M.M. | , Min. |
|-------------------------------------------------------------|-------------------|------|--------|
| Single choice Objective (no negative marking) Q. 1, 2, 3, 4 | (3 marks, 3 min.) | [12, | 12]    |
| Short Subjective Questions (no negative marking) Q. 5, 6    | [6,               | 6]   |        |
| Subjective Questions (no negative marking) Q. 7             | (4 marks, 5 min.) | [4,  | 5]     |
| Match the Following (no negative marking) Q.8               | (8 marks, 8 min.) | [8,  | 8]     |


**1.** The graph of y = f(x) is given below



then the graph of y = |f(|x|)| is :







(D) none of these

| 2. | If $(x - a)(x - 5) + 2 = 0$ has only integral roots where $a \in I$ , then value of 'a' can be : |                                                                                                                                                   |                                            |                |                   |           |             |   |  |  |
|----|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|-------------------|-----------|-------------|---|--|--|
|    | 8 (A)                                                                                            |                                                                                                                                                   | (B) 7                                      | (C) 6          |                   | (D) 5     |             |   |  |  |
|    |                                                                                                  |                                                                                                                                                   |                                            |                |                   |           |             |   |  |  |
| 3. | If $x^2 - (a^2 - a^2)$                                                                           | $f x^2 - (a - 3) x + a = 0$ has atleast one positive root then                                                                                    |                                            |                |                   |           |             |   |  |  |
|    | (A) a ∈                                                                                          | (-∞, 0) ∪ [7, 9]                                                                                                                                  | (B) $a \in (-\infty, -1) \cup [7, \infty)$ |                |                   |           |             |   |  |  |
|    | (C) a ∈                                                                                          | $(C) a \in (-\infty, 0) \cup [9, \infty) $ (D)                                                                                                    |                                            |                | (D) none of these |           |             |   |  |  |
| 4. | If $\log_4(x + 2y) + \log_4(x - 2y) = 1$ , then the minimum value of $ x  - y$ is                |                                                                                                                                                   |                                            |                |                   |           |             |   |  |  |
|    | (A) √2                                                                                           |                                                                                                                                                   | (B) √3                                     | (C) √4         |                   | (D) √5    |             |   |  |  |
|    |                                                                                                  |                                                                                                                                                   |                                            |                |                   |           |             |   |  |  |
| 5. | For wha                                                                                          | For what values of a does the equation $2 \log_3^2 x -  \log_3 x  + a = 0$ possess four solutions?                                                |                                            |                |                   |           |             |   |  |  |
|    |                                                                                                  |                                                                                                                                                   |                                            |                |                   |           |             |   |  |  |
| 6. | If √ab                                                                                           | is irrational the                                                                                                                                 | en prove that $\sqrt{a} + \sqrt{b}$ in     | rational.(wh   | ere a > 0, b >    | > 0, a, b | 0 ∈ Q)      |   |  |  |
|    |                                                                                                  |                                                                                                                                                   |                                            |                |                   |           |             |   |  |  |
| 7. |                                                                                                  | Prove that , $[x] + [5x] + [10x] + [20x] = 36k + 35$ , $k \in I$ does not have any real solution .<br>Here [.] denotes greatest integer function. |                                            |                |                   |           |             |   |  |  |
|    |                                                                                                  | -                                                                                                                                                 | -                                          |                |                   |           |             |   |  |  |
| 8. | Match                                                                                            | latch the column                                                                                                                                  |                                            |                |                   |           |             |   |  |  |
|    | Column – I                                                                                       |                                                                                                                                                   |                                            |                |                   |           | Column – II |   |  |  |
|    | (A)                                                                                              | Number of roo                                                                                                                                     | ts of the equation sin x                   | = ℓn x         |                   |           | (p)         | 1 |  |  |
|    | (B)                                                                                              | Number of inte                                                                                                                                    | gral solution                              |                |                   |           | (p)         | 2 |  |  |
|    | of the inequality $  x-2 -3  \le 0$                                                              |                                                                                                                                                   |                                            |                |                   |           |             |   |  |  |
|    | (C)                                                                                              | Number of dist                                                                                                                                    | inct real roots                            |                |                   |           | (r)         | 3 |  |  |
|    |                                                                                                  | of the equation                                                                                                                                   | $1 x^3 - 3x + 2 = 0$                       |                |                   |           |             |   |  |  |
|    | (D)                                                                                              | Absolute value                                                                                                                                    | of the sum of the coeff                    | ficients of th | e                 |           | (s)         | 4 |  |  |
|    |                                                                                                  | quotient when                                                                                                                                     | $x^5 - 4x^2 + 2x + 1$ is divi              | ded by (x -    | 1)                |           |             |   |  |  |

## **Answers Key**

**1.** (C) **2.** (A) **3.** (C) **4.** (B)

**5.** for all  $x \in (0, 1/8)$ 

8.  $(A \rightarrow p)$ ,  $(B \rightarrow q)$ ,  $(C \rightarrow q)$ ,  $(D \rightarrow p)$