CBSE Test Paper 03 CH-14 Mathematical Reasoning

- 1. The negative of the statement: "Plant take in CO^2 and do not give out O^2 " is
 - a. Plant do not take in CO^2 and do not O^2 .
 - b. plant do not take in and do not give O^2 .
 - c. Plant take in CO^2 do not give out O^2
 - d. Plant take in CO^2 and do not give O^2 .
- 2. The negation of the compound statement $p \lor (\sim p \lor q)$ is
 - a. $(p\wedge\sim q)ee p$
 - b. $(p \wedge q) \lor p$
 - c. $(p\wedge\sim q)\wedge\sim p$
 - d. $(p\wedge\sim q)ee\sim p$
- 3. Let p be the proposition: Mathematics is interesting and let q be the proposition that Mathematics is difficult, then the symbol $p \wedge q$ means
 - a. Mathematics is interesting implies and is implied by Mathematics is difficult
 - b. Mathematics is interesting and Mathematics is difficult
 - c. Mathematics is interesting implies that Mathematics is difficult
 - d. Mathematics is interesting or Mathematics is difficult
- 4. The negation of $qee\sim (p\wedge r)$ is
 - a. $\sim q \wedge (p \wedge r)$
 - b. $\sim q \wedge (p \lor r)$

- c. $q \lor (p \lor r)$
- d. $\sim q \lor (p \lor r)$
- 5. If p
 ightarrow (q ee r) is false, then the truth values of p, q and r, are respectively
 - a. T,T,T
 - b. F,F,F
 - c. F,T,T
 - d. T,F,F
- 6. Fill in the blanks:

An assertion that a statement fails or denial of a statement is called the ______ of the statement.

7. Fill in the blanks:

The truth value of the negation of the statement "q: The earth is a star" is _____.

8. Determine the statement is whether an inclusive OR or exclusive OR. Give reasons for your answer.

"A lady gives birth to a baby boy or a baby girl"

9. Check whether the following pair of statements are negations of each other. Give reasons for your answer.

(i) x + y = y + x is true for every real numbers x and y.

- (ii) There exists real numbers x and y for which x + y = y + x.
- 10. Determine whether an inclusive OR or exclusive OR is used in the statement. Give reasons for your answer.

"To apply for a driving license, you should have a ration card or a passport"

- 11. Write the negation of the following statements.
 - i. A triangle is equilateral if and only if it is equiangular.
 - ii. Sets A and B are equal if and only if $(A\subseteq B ext{ and } B\subseteq A)$

12. Show that the statement:

p: If x is a real number such that $x^3 + 4x = 0$, the x is 0, is true by direct method.

- 13. If x and y are positive real numbers, then prove that $x < y \Leftrightarrow x^2 < y^2$.
- 14. Check whether the statement is true or not:q: If x, y are integers such that xy is even, then at least one of x and y is an even integer.
- 15. Which of the following sentences are statements? Give reasons for your answer.(i) There are 35 days in a month.
 - (ii) Mathematics is difficult.
 - (iii) The sum of 5 and 7 is greater than 10.
 - (iv) The square of a number is an even number.
 - (v) The sides of a quadrilateral have equal length.
 - (vi) Answer this question.
 - (vii) The product of (-1) and 8 is 8.
 - (viii) The sum of all interior angles of a triangle is 180°.
 - (ix) Today is a windy day.
 - (x) AII real numbers are complex numbers.

CBSE Test Paper 03 CH-14 Mathematical Reasoning

Solution

1. (a) Plant do not take in CO^2 and do not O^2 .

Explanation: Plant do not take in CO^2 and do not O^2 .

- 2. (c) $(p \land \sim q) \land \sim p$ **Explanation:** $\sim (p \lor (\sim p \lor q)) \equiv \sim p \land (p \land \sim q)$ Applying De morgan's law
- 3. (b) Mathematics is interesting and Mathematics is difficult **Explanation:** using connective and for \wedge
- 4. (a) $\sim q \wedge (p \wedge r)$

Explanation:

$$\sim (p \wedge q) \equiv \sim p ee \sim q$$

5. (d) T,F,F

Explanation:

for $p
ightarrow (q \lor r)$ to be false p=T and $q \lor r \equiv F$ Since T implies F =F.

$$q \lor r \equiv F \; implies \; extsf{q=F}$$
 and $extsf{r=F} \;$ since $extsf{F} \lor extsf{F=F}$

- 6. negation
- 7. True
- 8. The statement is: "A lady gives birth to a baby boy or a baby girl"

Here, an exclusive "OR" is used because a lady cannot give birth to a baby who is both a boy and a girl.

- 9. Let p: x + y = y + x is true for every real numbers x and y.
 q: There exists real numbers x and y for which x + y = y + x.
 Now ~ p: There exists real numbers x and y for which x + y ≠ y + x. Thus ~ p ≠ q.
- 10. The statement is: "To apply for a driving license, you should have a ration card or a

passport"

An inclusive "OR" is used because a person can have both a ration card and passport to apply for a driving license.

- 11. i. Let p : A triangle is equilateral. q : The triangle is equiangular. Then, the given statement is p q. \therefore The negation of the given statement is $(p \land \sim q) \lor (q \land \sim p)$, given by 'There exists either an equilateral triangle which is not equiangular or an equiangular triangle which is not equilateral.'
 - ii. Let p: Sets A and B are equal.

 $q: A \subseteq B$ and $B \subseteq A$. Then, the given statement is $p \Leftrightarrow q$. The negation of the given statement is $(p \land \sim q) \lor (q \land \sim p)$, given by 'Either A = B and $(A \nsubseteq B \text{ or } B \subseteq A)$, or $(A \subseteq B \text{ and } B \subseteq A)$ and $A \neq B$.'

12. Let q and r be the components given by,

q: x is a real number such that $x^3 + 4x = 0$. r : x is 0. Direct method: Let q be true. \Rightarrow x is a real number such that $x^3 + 4x = 0$ \Rightarrow x ($x^2 + 4$) = 0 \Rightarrow x = 0 or $x^2 + 4 \neq 0$ [\therefore x \in R] \Rightarrow r is true

- Hence, p is true.
- 13. We are given that x and y are real numbers.

Let p: x < y $q: x^2 < y^2$ First, we prove that $p \Rightarrow q$ Let p be true $\Rightarrow x < y$ $\Rightarrow y - x$ is a positive real.

 \Rightarrow (y - x) (y + x) is a positive real.

[: x, y are positive reals. $\therefore x + y$ is also positive and product of two positive] $\Rightarrow y^2 \cdot x^2$ is a positive real. $\Rightarrow x^2 < y^2 \Rightarrow q$ is true. $\therefore p \Rightarrow q$ is true. Next, we prove that $q \Rightarrow p$ Let q be true, $x < y \Leftrightarrow x^2 < y^2$ is positive real. $\Rightarrow (y \cdot x) (y + x)$ is positive real. $\Rightarrow y \cdot x$ is positive real. $\Rightarrow x < y \Rightarrow p$ is true. $\therefore q \Rightarrow p$ is true. Combining these two, we find that $(p \Rightarrow q) \lor (q \Rightarrow p)$ i.e., $p \Leftrightarrow q$ is true.

14. Let r and s be two statements given by

r: xy is an even integer.

s: At least one of x and y is an even integer

Let s be not true. Then,

s is not true.

 \Rightarrow Both x and y are odd integers

Let x = 2n + 1 and y = 2m + 1 for some integers n and m. Then,

 \Rightarrow xy = (2n + 1)(2m + 1) for some integers n and m.

 \Rightarrow xy = 4nm + 2(n + m) + 1 for some integers n and m.

- \Rightarrow xy is an odd integer.
- \Rightarrow xy is not an even integer.
- \Rightarrow r is true.

Thus, - s is true \Rightarrow - r is true.

Hence, the given statement is true.

15. (i) No month has 35 days. Thus the sentence is false declarative sentence. Hence it is a statement.

(ii) Here the correctness of the sentence depends upon the observer. It may be easy for someone and may be difficult for other one. Hence it is not a statement.

(iii) The sentence is true. Hence it is a statement.

(iv) Here the correctness of the sentence depends upon the number that is squared. Hence it is not a statement.

(v) This sentence is sometimes true and sometimes false. For example side in squares and rhombuses have equal length where as in a rectangles and trapezium, they have unequal length. Hence it is not a statement.

(vi) This sentence is an order. Hence it is not a statement.

(vii) The sentence is true. Hence it is a statement.

(viii) The sentence is true. Hence it is a statement.

(ix) It is not clear from the context which day is referred. Hence it is not a statement.

(x) The sentence is true because all real numbers can be written in the form

a+i imes 0. Hence it is a statement.