Long Answer Type Questions [4 marks]

Que 1. Construct a triangle similar to a given triangle ABC with its sides equal to $\frac{5}{3}$ of the corresponding sides of the triangle ABC (i.e., of scale factor $\frac{5}{3}$).

Sol. Steps of construction:

Step I: Draw any ray BX making an acute angle with BC on the side opposite to the vertex A. **Step II:** From B cut off 5 arcs

 B_1, B_2, B_3B_4 and B_5 on BX so that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5.$

Step III: Join B_3 to C and draw a line through B_5 parallel to B_3 C, intersecting the extended line segment BC at C'.

Step IV: Draw a line through C' parallel to CA intersecting the extended line segment BA at A' (see figure). Then, A' BC' is the required triangle.

Justification:

Note that $\triangle ABC \sim \triangle' BC'$. (Since AC || A' C')

Therefore

But,

Fore,
$$\frac{AB}{A'B} = \frac{AC}{A'C'} = \frac{BC}{BC'}$$

BC BB₃ 3

$$\frac{BC}{BC'} = \frac{BB_3}{BB_5} = \frac{5}{5},$$

Therefore, $\frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{5}{3}$.

Que 2. Draw a circle of radius 3 cm. Take two points P and Q on one of its extended diameter each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q.

Sol.

Steps of Construction:

Step I: Taking a point O as centre, draw a circle of radius 3 cm.

Step II: Take two points P and Q on one of its extended diameter such that OP = OQ = 7 cm. **Step III:** Bisect OP and OQ and let M₁ and M₂ be the mid-points of OP and OQ respectively. **Step IV:** Draw a circle with M₁ as centre and M₁ P as radius to intersect the circle at T₁ and T₂. **Step V:** Join PT₁ and PT₂.

Then, PT_1 and PT_2 are the required tangents. Similarly, the tangents QT_3 and QT_4 can be obtained.

Justification: On joining OT₁, we find $\angle PT_1O = 90^\circ$, as it is an angle in the semicircle.

 \therefore $PT_1 \perp OT_1$. Since OT₁ is a radius of the given circle, so PT₁ has to be a tangents to the circle. Similarly, PT₂, QT₃ and QT₄ are also tangents to the circle.

Que 3. Let ABC be a right triangle in which AB = 6 cm, BC = 8 cm and $\angle B = 90^{\circ}$. BD is the perpendicular from B on AC. The circle through B, C, D is drawn. Construct the tangents from A to this circle.

Sol. Steps of Construction:

Step I: Draw $\triangle ABC$ and perpendicular BD from B on AC.

Step II: Draw a circle with BC as diameter. This circle will pass through D.

Step III: Let O be the mid-point of BC. Join AO.

Step IV: Draw a circle with AO as diameter. This circle cuts the circle drawn in step II at B and

E.

Step V: Join AE. AE and AB are desired tangents drawn from A to the circle passing through B, C and D.

Que 4. Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm. Then construct another triangle whose sides are $\frac{5}{3}$ times the corresponding sides of the given triangle.

Sol. Steps of Construction:

Step I: Construct a $\triangle ABC$ in which BC = 4 cm, $\angle B = 90^{\circ}$ and BA = 3 cm. **Step II:** Below BC, make an acute $\angle CBX$. **Step III:** Along BX, mark off five arcs: B₁, B₂, B₃, B₄ and B₅ such that BB₁ = B₁ B₂ = B₂ B₃ = B₃ B₄ = B₄ B₅. **Step IV:** Join B₃ C. **Step V:** From B₅, draw B₅ D || B₃ C, meeting BC produced at D. **Step VI:** From D, draw ED || AC, meeting BA produced at E. Then EBD is the required triangle whose sides are $\frac{5}{3}$ times the corresponding sides of $\triangle ABC$.

Justification:

Since, $DE \parallel CA$

$$\therefore \quad \Delta ABC \sim \Delta EBD \quad \text{and} \quad \frac{EB}{AB} = \frac{BD}{BC} = \frac{DE}{CA} = \frac{5}{3}$$

Hence, we have the new triangle similar to the given triangle whose sides are equal to $\frac{5}{3}$ times the corresponding sides of $\triangle ABC$.