Sample Question Paper - 16

Mathematics (041)

Class- XII, Session: 2021-22 TERM II

Time Allowed: 2 hours Maximum Marks: 40

General Instructions:

- 1. This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 6 short answer type (SA1) questions of 2 marks each.
- 3. Section B has 4 short answer type (SA2) questions of 3 marks each.
- 4. Section C has 4 long answer-type questions (LA) of 4 marks each.
- 5. There is an internal choice in some of the questions.
- 6. Q 14 is a case-based problem having 2 sub-parts of 2 marks each.

Section - A

[2 Marks each]

1. Find the value of
$$\int_{-\pi/2}^{\pi/2} (x^3 + x \cos x + \tan^5 x + 1) dx$$

OR

Evaluate:
$$\int \frac{dx}{e^x + e^{-x}}$$

- **2.** Show that $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$ is the solution of $y = e^{-x} (A\cos x + B\sin x)$
- **3.** Find the projection of vector $\vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\vec{b} = 2\hat{i} + 2\hat{j} + \hat{k}$.
- **4.** If the lines $\frac{x-1}{-2} = \frac{y-4}{3p} = \frac{z-3}{4}$ and $\frac{x-2}{4p} = \frac{y-5}{2} = \frac{z-1}{-7}$ are perpendicular to each other, then find the value of p.
- **5.** If P(A) = 0.4, P(B) = 0.8 and $P\left(\frac{B}{A}\right) = 0.6$, then $P(A \cup B)$
- **6.** Find the probability distribution of *X*, the number of heads is a simultaneous toss of two coins.

Section - B

[3 Marks each]

- **7.** Find the value of $\int_0^1 \tan^{-1} \left(\frac{2x-1}{1+x-x^2} \right) dx$
- **8.** Find the general solution of $\frac{dy}{dx} + y \tan x = \sec x$

Solve the differential equation:

$$x \sin\left(\frac{y}{x}\right) \frac{dy}{dx} + x - y \sin\left(\frac{y}{x}\right) = 0$$

Given that x = 1 when $y = \frac{\pi}{2}$.

- **9.** If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} 5\hat{k}$ represent two adjacent sides of a parallelogram, find unit vectors parallel to the diagonals of the parallelogram.
- **10.** Find the shortest distance between the lines:

$$\vec{r} = (t+1)\hat{i} + (2-t)\hat{j} + (1+t)\hat{k}$$

$$\vec{r} = (2s+2)\hat{i} - (1-s)\hat{j} + (2s-1)\hat{k}.$$

OR

A plane meets the co-ordinate axes at *A*, *B* and *C* such that the centroid of $\triangle ABC$ is the point (α, β, γ) . Show that the equation of the plane is $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 3$.

Section - C

[4 Marks each]

- **11.** Find : $\int \frac{\sec x}{1 + \csc x} dx$
- **12.** Find the area bounded by lines x = 2y + 3, y 1 = 0 and y + 1 = 0.

OR

Find the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3.

13. Find the equation of plane passing through the points A(3, 2, 1), B(4, 2, -2) and C(6, 5, -1) and hence find the value of λ for which A(3, 2, 1), B(4, 2, -2), C(6, 5, -1) and $D(\lambda, 5, 5)$ are coplanar.

<u>Case-Based/Data Based</u>

14. Of the students in a school, it is known that 30% have 100% attendance and 70% students are irregular. Previous year results report that 70% of all students who have 100% attendance attain A grade and 10% irregular students attain A grade in their annual examination. At the end of the year, one student is chosen at random from the school and he was found to have an A grade. Let E_1 and E_2 be the events that selecting a student with 100% attendance and selecting a student who is not regular, respectively.

Based on the above information, answer the following questions:

(i) Find the values of $P\left(\frac{A}{E_1}\right)$ and $P\left(\frac{A}{E_2}\right)$. [2]

(ii) What is the probability that the student has 100% attendance. [2]

Solution

MATHEMATICS 041

Class 12 - Mathematics

Section - A

1. Let
$$I = \int_{-\pi/2}^{\pi/2} (x^3 + x \cos x + \tan^5 x + 1) dx$$

$$= \int_{-\pi/2}^{\pi/2} x^3 dx + \int_{-\pi/2}^{\pi/2} x \cos x dx + \int_{-\pi/2}^{\pi/2} \tan^5 x dx + \int_{-\pi/2}^{\pi/2} 1 \cdot dx$$

When f(x) is an even function, then,

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

and if f(x) is an odd function, then

$$\int_{-a}^{a} f(x) dx = 0$$

$$\therefore \qquad I = 0 + 0 + 0 + 2 \int_{0}^{\pi/2} 1 \cdot dx$$

$$= 2 \left[x \right]_{0}^{\pi/2} = \frac{2\pi}{2} = \pi$$

OR

Let
$$I = \int \frac{dx}{e^x + e^{-x}} dx$$

$$= \int \frac{e^x}{e^{2x} + 1} dx$$
Also, put $e^x = t$, $\Rightarrow e^x dx = dt$ 1
$$\Rightarrow I = \int \frac{dt}{1 + t^2}$$

$$= \tan^{-1} t + C$$

$$= \tan^{-1} (e^x) + C$$
 1

2. Given that, $y = e^{-x} (A \cos x + B \sin x)$ On differentiating both sides w.r.t., x we get

$$\frac{dy}{dx} = -e^{-x} (A\cos x + B\sin x)$$
$$+e^{-x} (-A\sin x + B\cos x)$$
$$\frac{dy}{dx} = -y + e^{-x} (-A\sin x + B\cos x)$$

Again, differentiating both sides w.r.t. x, we get

 $\frac{1}{2}$

$$\frac{d^2y}{dx^2} = \frac{-dy}{dx} + e^{-x}(-A\cos x - B\sin x) - e^{-x}$$

$$(-A\sin x + B\cos x)^{-1/2}$$

$$\Rightarrow \frac{d^2y}{dx^2} = -\frac{dy}{dx} - y - \left[\frac{dy}{dx} + y\right]$$

$$\Rightarrow \frac{d^2y}{dx^2} = -\frac{dy}{dx} - y - \frac{dy}{dx} - y$$

$$\Rightarrow \frac{d^2y}{dx^2} = -2\frac{dy}{dx} - 2y$$

$$\Rightarrow \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0 \qquad \text{Hence Proved 1}$$

3.
$$\overrightarrow{a} \cdot \overrightarrow{b} = (2\hat{i} + 3\hat{j} + 2\hat{k}) \cdot (2\hat{i} + 2\hat{j} + \hat{k})$$

$$= 4 + 6 + 2 = 12$$

$$p = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|}$$
or
$$p = \frac{12}{|\overrightarrow{b}|} \qquad |\overrightarrow{b}| = \sqrt{2^2 + 2^2 + 1^2}$$

$$= 3$$

$$= \frac{12}{2} = 4$$

4. Using formula for perpendicular condition,

$$l_1l_2 + m_1m_2 + n_1n_2 = 0$$

or $-8p + 6p - 28 = 0$

or
$$-2p = 28$$

 \therefore $p = -14$ **1**

5. Here,

$$P(A) = 0.4, P(B) = 0.8 \text{ and } P\left(\frac{B}{A}\right) = 0.6$$

 $\therefore P\left(\frac{B}{A}\right) = \frac{P(B \cap A)}{P(A)}$
 $\Rightarrow P(B \cap A) = P\frac{B}{A}.P(A)$
 $= 0.6 \times 0.4 = 0.24$ 1
 $\therefore P(A \cup B) = P(A) + P(B) - P(B \cap A)$
 $= 0.4 + 0.8 - 0.24$
 $= 1.2 - 0.24 = 0.96$ 1

6. Let *X* be the number of heads.

Possible values of *X* are 0, 1, 2. $\frac{1}{2}$

$$P(x = 0) = \frac{1}{4}, P(x = 1) = \frac{1}{2}, P(x = 2) = \frac{1}{4}$$

The probability distribution of X is :

X	0	1	2	
P(x)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	

Section - B

7. Let

$$I = \int_0^1 \tan^{-1} \left(\frac{2x - 1}{1 + x - x^2} \right) dx$$

$$\Rightarrow I = \int_0^1 \tan^{-1} \left(\frac{x - (1 - x)}{1 + x(1 - x)} \right) dx$$

$$\left[\because \tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right) \right]$$

$$\Rightarrow I = \int_0^1 [\tan^{-1} x - \tan^{-1} (1 - x)] dx ...(i) \quad \mathbf{1}$$
Apply,
$$\int_0^b f(x) dx = \int_0^b f(a + b - x) dx \qquad \frac{1}{2} dx$$

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$$

$$\Rightarrow I = \int_{0}^{1} [\tan^{-1}(1-x) - \tan^{-1}(1-1+x)] dx$$

$$\Rightarrow I = \int_{0}^{1} [\tan^{-1}(1-x) - \tan^{-1}(x)] dx \dots (ii)$$

Adding equations (i) and (ii), we obtain

$$2I = \int_0^1 [\tan^{-1} x + \tan^{-1} (1 - x) - \tan^{-1} x] dx$$
$$-\tan^{-1} (1 - x) - \tan^{-1} x] dx$$
$$2I = 0$$
$$I = 0$$

8. Given differential equation is

$$\frac{dy}{dx} + y \tan x = \sec x$$

which is a linear differential equation

Here,
$$P = \tan x$$
, $Q = \sec x$, 1

$$\therefore \qquad \text{IF} = e^{\int \tan x dx}$$

$$= e^{\log|\sec x|}$$

$$= \sec x \qquad \qquad \mathbf{1}$$

The general solution is

$$y \cdot \sec x = \int \sec x \cdot \sec x \, dx + C$$

1

$$\Rightarrow y \cdot \sec x = \int \sec^2 x \, dx + C$$

$$\Rightarrow y \cdot \sec x = \tan x + C$$

OR

We have,

11/2

$$x \sin\left(\frac{y}{x}\right) \frac{dy}{dx} + x - y \sin\frac{y}{x} = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{y \sin\left(\frac{y}{x}\right) - x}{x \sin\left(\frac{y}{x}\right)} \dots (i)$$

Above differential equation is a homogeneous equation

Put
$$y = vx$$

Then, $\frac{dy}{dx} = v + x \frac{dv}{dx}$...(ii)

From (i) and (ii),

$$\Rightarrow v + x \frac{dv}{dx} = \frac{vx \cdot \sin\left(\frac{vx}{x}\right) - x}{x \sin\left(\frac{vx}{x}\right)}$$

$$\Rightarrow v + x \frac{dv}{dx} = \frac{x(v \sin v - 1)}{x \sin v}$$

$$\Rightarrow v + x \frac{dv}{dx} = \frac{v \sin v - 1}{\sin v}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{v \sin v - 1}{\sin v} - v$$

$$\Rightarrow x \frac{dv}{dx} = \frac{v \sin v - 1 - v \sin v}{\sin v}$$

$$\Rightarrow x \frac{dv}{dx} = -\frac{1}{\sin v}$$

$$\Rightarrow \qquad \sin v \, dv = -\frac{1}{x} dx [\text{Here } x \neq 0]$$

Now, integrating both sides

$$\Rightarrow \int \sin v \, dv = -\int \frac{1}{x} dx$$

$$\Rightarrow -\cos v = -\log|x| + C$$
Put,
$$v = \frac{y}{x}$$

$$\Rightarrow -\cos\left(\frac{y}{x}\right) = -\log|x| + C \dots(iii)$$

Also, given that x = 1, when $y = \frac{\pi}{2}$

$$\Rightarrow -\cos\left(\frac{\pi}{2}\right) = -\log 1 + C$$

$$C = 0$$

$$\Rightarrow -\cos\left(\frac{y}{x}\right) + \log|x| = 0$$

Therefore $\log |x| = \cos \left(\frac{y}{x}\right)$ is the required solution.

9. Given that, $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ are two adjacent sides of a parallelogram.

Let us suppose $\overline{d_1}$ and $\overline{d_2}$ are two diagonals of parallelogram.

Then,
$$\overline{d_1} = \vec{a} + \vec{b} \\
= \hat{i} + 2\hat{j} + 3\hat{k} + 2\hat{i} + 4\hat{j} - 5\hat{k} \\
= 3\hat{i} + 6\hat{j} - 2\hat{k} \qquad \frac{1}{2}$$
and
$$\overline{d_2} = \vec{b} - \vec{a} \\
= 2\hat{i} + 4\hat{j} - 5\hat{k} - \hat{i} - 2\hat{j} - 3\hat{k} \\
= \hat{i} + 2\hat{j} - 8\hat{k} \qquad \frac{1}{2}$$

Now, unit vector parallel to $\overrightarrow{d_1}$,

$$\hat{d}_{1} = \frac{3\hat{i} + 6\hat{j} - 2\hat{k}}{|\sqrt{9 + 36 + 4}|}$$

$$= \frac{3\hat{i} + 6\hat{j} - 2\hat{k}}{|\sqrt{49}|}$$

$$\hat{d}_{1} = \frac{3\hat{i} + 6\hat{j} - 2\hat{k}}{|7|}$$

$$\hat{d}_{1} = \frac{3}{7}\hat{i} + \frac{6}{7}\hat{j} - \frac{2}{7}\hat{k}$$

$$\frac{1}{2}$$

And unit vector parallel to $\overrightarrow{d_2}$,

$$\hat{d}_{2} = \frac{\hat{i} + 2\hat{j} - 8\hat{k}}{|\sqrt{1 + 4 + 64}|}$$

$$= \frac{\hat{i} + 2\hat{j} - 8\hat{k}}{\sqrt{69}}$$

$$\hat{d}_{2} = \frac{1}{\sqrt{69}}\hat{i} + \frac{2}{\sqrt{69}}\hat{j} - \frac{8}{\sqrt{69}}\hat{k}$$
1

Commonly Made Error

 Instead of finding the parallel vectors, some students take the cross product to find the perpendicular vector.

Answering Tip

- Practice problems based on parallel and perpendicular vectors.
- **10.** Equations of lines can be written as:

$$\overrightarrow{r} = \overrightarrow{a_1} + t \overrightarrow{b_1}$$

$$\Rightarrow \overrightarrow{r} = (\widehat{i} + 2\widehat{j} + \widehat{k}) + t(\widehat{i} - \widehat{j} + \widehat{k});$$

$$\overrightarrow{r} = \overrightarrow{a_2} + s \overrightarrow{b_2}$$

$$\Rightarrow \overrightarrow{r} = (2\widehat{i} - \widehat{j} - \widehat{k}) + s(2\widehat{i} + \widehat{j} + 2\widehat{k})$$
Here, $\overrightarrow{a_1} = \widehat{i} + 2\widehat{j} + \widehat{k}$, and $\overrightarrow{b_1} = \widehat{i} - \widehat{j} + \widehat{k}$,
Also $\overrightarrow{a_2} = 2\widehat{i} - \widehat{j} - \widehat{k}$, and $\overrightarrow{b_2} = 2\widehat{i} + \widehat{j} + 2\widehat{k}$ 1

Then,
$$\overrightarrow{a_2} - \overrightarrow{a_1} = \hat{i} - 3\hat{j} - 2\hat{k}$$
,
and, $\overrightarrow{b_1} \times \overrightarrow{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 2 & 1 & 2 \end{vmatrix}$

$$= -3\hat{i} + 3\hat{k}$$
1

: Shortest distance

$$= \begin{vmatrix} \overrightarrow{(b_1 \times b_2)} \cdot (\overrightarrow{a_2} - \overrightarrow{a_1}) \\ \overrightarrow{|b_1 \times b_2|} \end{vmatrix}$$

$$= \begin{vmatrix} -3 - 6 \\ \sqrt{9 + 9} \end{vmatrix}$$

$$= \frac{3}{\sqrt{2}} \text{ or } \frac{3\sqrt{2}}{2} \text{ units}$$
 1

OR

Since, the equation of the plane having intercept a, b and c on the three co-ordinate axes is:

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

Here, the co-ordinates of A, B and C are (a, 0, 0), (0, b, 0) and (0, 0, c) respectively.

The centroid of
$$\triangle ABC$$
 is $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$.

Equating
$$\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$$
 to (α, β, γ) we get $a = 3\alpha$,

$$b = 3\beta$$
 and $c = 3\gamma$

or

Thus, the equation of the plane is

$$\frac{x}{3\alpha} + \frac{y}{3\beta} + \frac{z}{3\gamma} = 1$$
$$\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 3$$

Section - C

11.
$$\int \frac{\sec x}{1 + \csc x} dx$$

$$= \int \frac{\sin x}{\cos x (1 + \sin x)} dx$$

$$= \int \frac{\sin x \cos x}{(1 + \sin x)^2 (1 - \sin x)} dx$$

Put, $[\sin x = t \text{ or } \cos x dx = dt]$

$$=\int \frac{t}{(1+t)^2(1-t)}dt$$

Let
$$\frac{t}{(1+t)^2(1-t)} = \frac{A}{1+t} + \frac{B}{(1+t)^2} + \frac{C}{1-t}$$

or $t = A(1+t)(1-t) + B(1-t) + C(1+t)^2$

Put
$$t = -1, -1 = -2 B$$
, i.e., $B = -\frac{1}{2}$.

Put, t = 1,

$$1 = 4C$$
, i.e., $C = \frac{1}{4}$

Put t = 0,

1

$$0 = A + B + C$$
, which gives $A = \frac{3}{4}$

Therefore the required integral

$$= \frac{3}{4} \int \frac{1}{1+t} dt + \frac{-1}{2} \int \frac{1}{(1+t)^2} dt + \frac{1}{4} \int \frac{1}{(1-t)} dt + \frac{1}{4} \int \frac{1}{(1-t)} dt + \frac{1}{4} \log|1+t| + \frac{-1}{2} \times \frac{-1}{1+t} - \frac{1}{4} \log|1+t| + c$$

$$= \frac{3}{4} \log|1+\sin x| - \frac{1}{2} \times \frac{1}{1+\sin x} - \frac{1}{4} \log|1-\sin x| + c$$

$$= \frac{1}{4} \log \frac{|1 + \sin x|^3}{|1 - \sin x|} - \frac{1}{2} \cdot \frac{1}{1 + \sin x} + c \qquad 2$$

12.

From the figure, area of the shaded region,

$$A = \int_{-1}^{1} (2y+3) dy$$

$$= \left[y^{2} + 3y \right]_{-1}^{1}$$

$$= \left[1+3-1+3 \right]$$

$$= 6 \text{ sq. units}$$
2

2

2

OR

The area bounded by the curve, $y^2 = 4x$, y-axis, and y = 3 is represented as:

Area of $OAB = \int_{0}^{3} x dy$ $= \int_{0}^{3} \frac{y^{2}}{4} dy$ $= \frac{1}{4} \left[\frac{y^{3}}{3} \right]_{0}^{3}$ $= \frac{1}{12} \times 27$ $= \frac{9}{4} \text{ sq. units}$ 2

13. A plane which passes through A(3, 2, 1), B(4, 2, -2) and C(6, 5, -1) is

$$\begin{vmatrix} x-3 & y-2 & z-1 \\ 4-3 & 2-2 & -2-1 \\ 6-3 & 5-2 & -1-1 \end{vmatrix} = 0 \qquad 1$$

$$\Rightarrow \qquad \begin{vmatrix} x-3 & y-2 & z-1 \\ 1 & 0 & -3 \\ 3 & 3 & -2 \end{vmatrix} = 0$$

$$\Rightarrow \qquad (x-3)(0+9) - (y-2)(-2+9) + (z-1)(3-0) = 0$$

$$\Rightarrow \qquad 9x-7(y-2)+3(z-1) = 0$$

$$\Rightarrow \qquad 9(x-3) 9x-7y+3z = 16 \qquad 1$$

Thus, plane passing through point *A*, *B* and *C* is 9x - 7y + 3z = 16

Now, given A, B, C and D (λ , 5, 5) are coplanar. So, D lies on the plane passing through A, B and C

$$\begin{array}{ccc} \therefore & 9\lambda - 7(5) + 3(5) = 16 \\ \Rightarrow & 9\lambda = 36 \\ \Rightarrow & \lambda = 4 \end{array}$$

Case-Based/Data Based

14. Let E_1 : Selecting a student with 100% attendance

 E_2 : Selecting a student who is not regular A: selected student attains A grade.

$$P(E_1) = \frac{30}{100} \text{ and } P(E_2) = \frac{70}{100}$$
(i) $P\left(\frac{A}{E_1}\right) = \frac{70}{100} \text{ and } P\left(\frac{A}{E_2}\right) = \frac{10}{100}$

(ii)
$$P\left(\frac{E_1}{A}\right) = \frac{P(E_1) \cdot P\left(\frac{A}{E_1}\right)}{P(E_1) \cdot P\left(\frac{A}{E_1}\right) + P(E_2) P\left(\frac{A}{E_1}\right)}$$

$$= \frac{\frac{30}{100} \times \frac{70}{100}}{\frac{30}{100} \times \frac{70}{100} + \frac{70}{100} \times \frac{10}{100}} = \frac{3}{4} \qquad 2$$