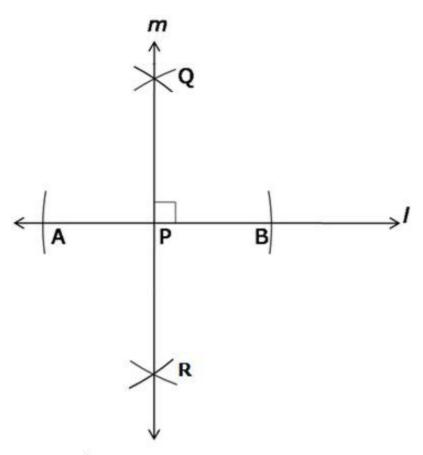
Geometrical Constructions

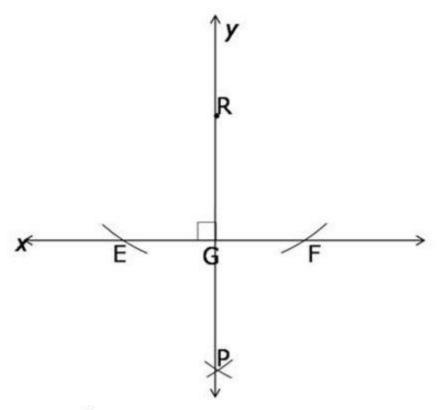
Exercise - 7.1

Solution 1:



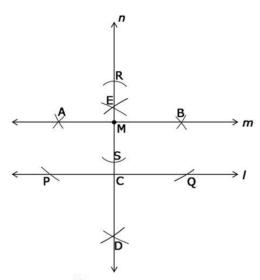
- 1.Draw line I, take any point P on it.
- Taking P as the centre and any radius, draw two arcs of circle on line l.
- 3. Name the points of intersection of line I and arcs as A and B.
- 4.Taking A and B as the centres and radius more than half of AB, draw arcs of circle above and below the line I.
- Mark the points of intersection as Q and R.
- Draw line m ⊥ line l by joining the points Q and R.
- 7.Hence, the required line m line I has been constructed.

Solution 2:



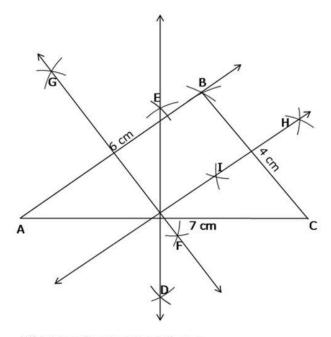
- 1. Draw line x. Take a point R outside the line.
- Taking R as the centre, draw two arcs of circle cutting line x at point E and F.
- 3. Taking E and F as centres and the radius more than half of EF, draw two arcs of circle intersecting each other below the line x and opposite to point R.
- 4. Name the point of intersection as P.
- Draw the line y passing through points P and R. Hence, line y 1 line x passing through point R, has been constructed.

Solution 3:



- 1. Draw line I, take any point Moutside it.
- Taking M as the centre and any radius, draw two arcs of circle on line!
- Name the points of intersection of the arc and line I as P and Q.
- Taking P and Q as the centres, and radius more than half of PQ, draw arcs of circle above and below the line I.
- 5. Name the points of intersection as E and D.
- 6. Draw linen⊥ linel by joining the points E and D.
- Taking M as the centre and any radius, draw arcs of circle above and below point M on line n. Name the points of intersection as R and S.
- Taking R and S as centres and radius more than half of RS, draw arcs of circle to intersect each other on both the sides of the line n at points A and B.
- Draw line m ⊥ line n by joining A and B.
 Line l ⊥ linen, line m ⊥ linen, Hence line m and line l are parallel to each other
- 10. Hence, the required line m | line l has been constructed.

Solution 4:

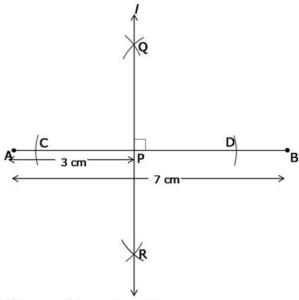


Steps of construction:

- 1. Draw seg AC = 7 cm.
- Taking A as the centre, and radius = 6 cm, draw an arc of circle above the seg AC.
- Taking C as the centre, and radius = 4 cm, draw an arc of circle above the seg AC intersecting the previous arc.
- 4. Mark the point of intersection as B.
- 5. Construct ΔABC by joining A and B, B and C.
- Taking A and C as the centres, and radius greater than half of AC, draw arcs of circle above and below AC intersecting each other at E and D.
- 7. Draw perpendicular bisectors of BC and AB in the same manner.

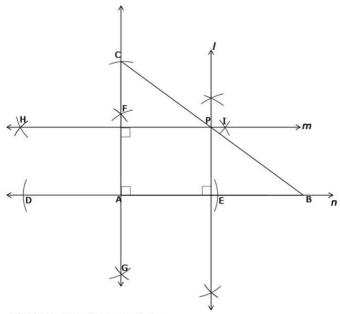
The perpendicular bisectors of \overline{AC} , \overline{BC} and \overline{AB} intersect at one point.

Solution 5:



- 1.Draw \overline{AB} of length 7 cm, take a point P, such that AP = 3 cm.
- 2. Taking P as the centre, draw two arcs of circle on \overline{AB} to intersect \overline{AB} at points C and D.
- 3.Taking C and D as the centres and radius greater than half of CD draw arcs of circle above and below AB.
- 4. Mark the points of intersection as Q and R.
- 5. Draw line $l \perp \overline{AB}$ by joining the points Q and R. Hence, l is the required line perpendicular to \overline{AB} through point P.

Solution 6:



- 1. Draw line n and mark points A and B on it.
- From point A taking any radius draw arcs of circle intersecting line n at points D and E.
- Taking D and E as centres with radius greater than half of DE draw arcs of circle above and below the line n
- 4. Mark the points of intersection as F and G.
- Join points F and G and extend the line FG on both the sides.
 FG ⊥ linen, hence m∠FAB = 90°.
- Taking A as the centre with a required radius,
 Mark an arc on FG with a compass to intersect at C.
- 7. Join C and B to draw a right angled triangle ABC.
- Taking A and C as the centres and radius more than half of AC, draw two arcs of circle on both the sides of AC
- 9. Mark the points of intersection of the arcs as H and I.
- Draw the perpendicular bisector line mby joining the points H and I.
- 11. Construct the perpendicular bisector line *l* of \overline{AB} in the similar manner.
- 12. Mark the point of intersection of the bisectors as P.

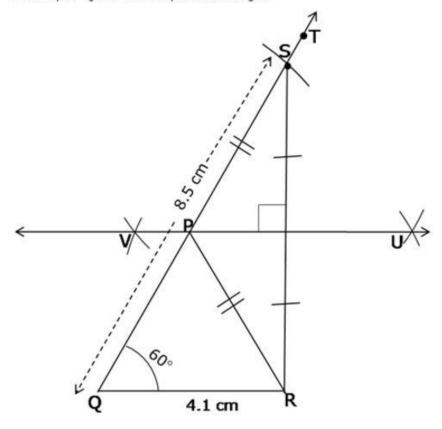
Exercise - 7.2

Solution 1:

Steps of construction:

- 1.Draw QR of length 4.1 cm.
- 2.Draw QT such that m∠RQT = 60°
- 3. With centre Q and radius 8.5 cm draw an arc which intersects $\overline{\text{QT}}$ at point S.
- 4. Join R and S.
- 5. Keeping R and S as centres and radius greater than half of RS, draw arcs of circle on both the sides of RS.
- 6. Mark the points of intersection of arcs as V and U.
- 7. Join UV which is the perpendicular bisector of RS.
- 8. The perpendicular bisector of RS intersects QS at point P.
- Now by Perpendicular Bisector Theorem, PS = PR
 QS = PQ + PS = 8.5 cm

Hence, Δ PQR is the required triangle.

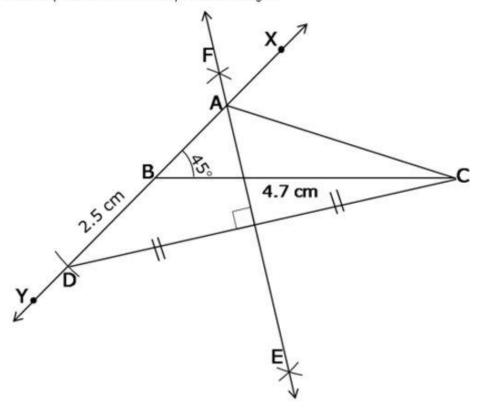


Solution 2:

Steps of construction:

- 1. Draw BC of length 4.7 cm.
- 2.Draw BX, passing through point B, such that m∠CBX = 45°
- 3. Draw a ray \overrightarrow{BY} opposite to \overrightarrow{BX}
- 4. With centre B and radius 2.5 cm, draw an arc which intersects \overrightarrow{XY} at point D.
- 5. Join D and C.
- Keeping C and D as centres and radius greater than half of CD, draw arcs of circle above and below the line segment CD.
- 7. Mark the points of intersection of arcs as F and E.
- 8. Join EF which is the perpendicular bisector of CD.
- 9. Mark the point of intersection of EF and BX as A
- 10. Join A and C.
- Now by the Perpendicular Bisector Theorem, AD = AC
 BD = 2.5 cm
 - \therefore AC AB = AD AB = 2.5 cm ($\cdot \cdot$ AC = AD)

Hence, ΔABC is the required triangle.



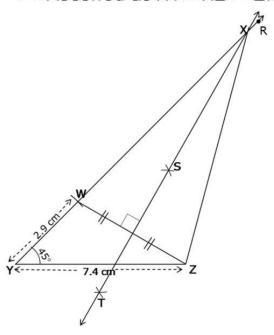
Solution 3:

Steps of construction:

- 1.Draw YZ of length 7.4 cm.
- 2.From point Y draw YR, such that m∠ZYR = 45°
- 3. ∴XY XZ = 2.9 cm, XY > XZ
 - : With centre Y and radius 2.9 cm draw an arc which intersects $\overrightarrow{\mathsf{YR}}$ at point W.
- 4. Join W and Z.
- 5. Draw the perpendicular bisector ST of WZ.
- 6.Mark the point of intersection of \overline{WZ} and \overline{YR} as X.
- 7. Draw \overline{XZ} , by joining X and Z.
- Now by the Perpendicular Bisector Theorem, XW = XZ
 YW = 2.9 cm

Hence, ΔXYZ is the required triangle.

* - Rectified as XY - XZ = 2.9 cm



Solution 4:

Here instead of lengths of each

side of the triangle, the perimeter PQ + QR + PR = 10 cm is given.

In order to construct the triangle with the given

measurements, we need to draw a rough diagram.

Let us draw DE = PQ + QR + PR.

Let P be a point above DE and Q and R are points on DE.

Relation between ∠PQR and ∠PRQ with ΔPQD and ΔPRE:

∠PQR and ∠PRQ are the exterior angles of

ΔPQD and ΔPRE respectively.

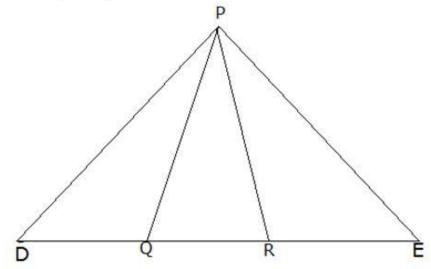
Hence, by Remote Interior Angles Theorem

 $2\angle PDE = \angle PQR$ and $2\angle PED = \angle PRQ$

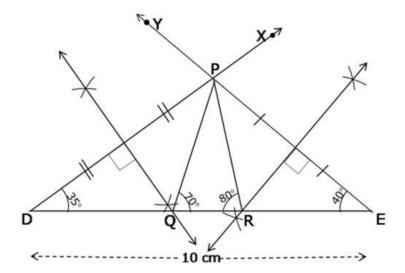
: $m\angle PQR = 70^{\circ}$, :: $m\angle PDE = 70^{\circ} \div 2 = 35^{\circ}$

And

: $m\angle PRQ = 80^{\circ}$, :: $m\angle PED = 80^{\circ} \div 2 = 40^{\circ}$



- 1.Draw DE of length 10 cm.
- 2.From point D draw \overrightarrow{DX} , such that m $\angle XDE = 35^{\circ}$
- 3. From point E draw \overrightarrow{EY} , such that m∠DEY = 40°.
- 4.Let P be the point of intersection of \overrightarrow{DX} and \overrightarrow{EY} .
- 5.Draw the perpendicular bisectors of \overline{PD} and \overline{PE} , which intersect \overline{DE} in points Q and R respectively.
- 6. Join PQ and PR.
- 7. Henœ, ΔPQR is the required triangle.



Solution 5:

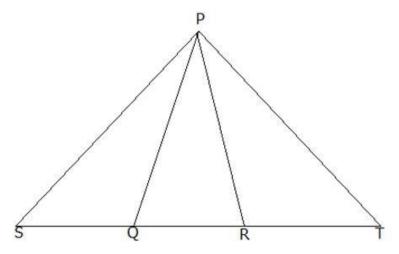
Here instead of the lengths of each side of the triangle, the perimeter PQ + QR + PR = 9.5 cm is given. In order to construct the triangle with the given measurements, we need to draw a rough diagram. Let us draw ST = PQ + QR + PR.

Let P be a point above ST and Q and R be points on ST.

Relation between \angle PQR and \angle PRQ with \triangle PQS and \triangle PRT: \angle PQR and \angle PRQ are the exterior angles of \triangle PQS and \triangle PRT respectively.

Hence, by Remote Interior Angles Theorem $2\angle$ PST = \angle PQR and $2\angle$ PTS = \angle PRQ \therefore m \angle PQR = 80°, \therefore m \angle PST = 80° ÷ 2 = 40°

And \therefore m \angle PRQ = 80°, \therefore m \angle PTS = 80° ÷ 2 = 40°



Steps of construction:

- 1.Draw ST of length 9.5 cm.
- 2.From point S draw \overline{SX} , such that m \angle XST = 40°
- 3. From point T draw $\overline{1Y}$, such that m $\angle YTS = 40^{\circ}$
- 4. Let P be the point of intersection of \overrightarrow{SX} and \overrightarrow{TY}
- 5.Draw the perpendicular bisectors of \overline{PS} and \overline{PT} .
- 6. The perpendicular bisectors intersect \overline{ST} in points Q and R respectively.
- 7. Join PQ and PR.
- 8. Hence, Δ PQR is the required triangle.

It can be observed that ΔPQR is an isosceles triangle.

