Introduction to Physics

Exercise Solutions

Question 1: Find the dimensions of

- (i) Linear Momentum
- (ii) Frequency and
- (iii) Pressure

Solution:

(i) Linear momentum can be written as "mv"

Dimensions of Linear momentum: mv = [MLT⁻¹]

(ii) Frequency can be written as "1/T", where T is time.

Dimensions of Frequency: $1/T = [M^0L^0T^{-1}]$

(iii) All units of pressure represent some ratio of force to area

So, dimensions of pressure: Force/Area = $\frac{[MLT^{-2}]}{[L^2]}$ = [ML⁻¹T⁻²]

Question 2: Find the dimensions of

- (a) Angular speed, $\boldsymbol{\omega}$
- (b) Angular acceleration, α
- (c) Torque, τ and
- (d) Moment of Inertia, I

$$\omega = \frac{\theta_2 - \theta_1}{t_2 - t_1}, \quad \alpha = \frac{\omega_2 - \omega_1}{t_2 - t_1}, \quad \Gamma = F.r \text{ and } I = mr^2.$$

Some of the equations involving these quantities are.

Solution:

(a) Dimensions of Angular speed, $\boldsymbol{\omega}$

We know, $\omega = \theta/t$ Dimensions are [M⁰L⁰T⁻¹]

(b) Dimensions of Angular acceleration, α We know, $\alpha = \omega/t$ So required dimensions are $=\frac{[M^0L^0T^{-1}]}{[T]} = [M^0L^0T^{-2}]$ [using (a) result)]

(c) Dimensions of Torque, $\boldsymbol{\tau}$ and

We know, $\tau = Fr$

So, $\tau = [MLT^{-2}][L] = [ML^2T^{-2}]$

(d) Dimensions of Moment of Inertia, I

Here I = $Mr^2 = [M][L^2] = [ML^2T^0]$

Question 3: Find the dimensions of

- (a) Electric Field E
- (b) Magnetic field B and

(c) Magnetic permeability μ_0

The relevant equations are

F = qE, F = qvB, and $B = \frac{\mu_0 I}{2\pi a}$;

where F is force, q is charge, v is speed, I is current, and a is distance.

Solution:

(a) Dimensions of Electric Field E = F/q = $\frac{[MLT^{-2}]}{[TI]}$ = [MLT⁻³I⁻¹]

(b) Dimensions of Magnetic field B = F/qv = $\frac{[MLT^{-2}]}{[TI][LT^{-1}]}$ = [MT⁻² I⁻¹]

(c) Dimensions of Magnetic permeability $\mu_0 = (Bx2 \pi a)/I = \frac{[MT^{-2}I^{-1}][L]}{[I]} = [MLT^{-2}I^{-2}]$

Question 4: Find the dimensions of
(a) Electric dipole moment p and
(b) Magnetic dipole moment M.
The defining equations are p = qd and M = IA
Where d is distance, A is area, q is charge and I is current.

Solution:

a) Dimensions of Electric dipole moment p = qI = [IT] [L] = [LTI](b) Dimensions of Magnetic dipole moment $M = IA = [I][L^2] [L^2I]$

Question 5: Find the dimensions of Planck's constant h from the equation E = hv where E is the energy and v is the frequency.

Solution:

Planck's constant can be written as, h = E/vWhere E = energy and v = frequency

=> h = E/v =
$$\frac{[ML^2T^{-2}]}{[T^{-1}]}$$
 = [ML² T⁻¹]

Question 6: Find the dimensions of

(a) the specific heat capacity c,

(b) the coefficient of linear expansion $\boldsymbol{\alpha}$ and

(c) the gas constant R.

Some of the equations involving these quantities are

$$Q = mc(T_2 - T_1), \ l_l = l_0[1 + \alpha(T_2 - T_1)] \ \text{and} \ PV = nRT.$$

Solution:

(a) Dimensions of specific heat capacity,

$$c = Q/m\Delta T = \frac{[ML^2T^{-2}]}{[M][K]} = [L^2 T^{-2}K^{-1}]$$

(b) Dimensions of coefficient of linear expansion,

$$\alpha = \frac{L_1 - L_2}{L_0 \,\Delta T} = \frac{[L]}{[L][R]} = K^{-1}$$

(c) Dimensions of gas constant,

 $R = PV/nT = \frac{[ML^{-1}T^{-2}][L^3]}{[mol][K]} = [ML^2 T^{-2}K^{-1} (mol)^{-1}]$

Question 7: Taking force, length and time to be the fundamental quantities find the dimensions of

- (a) Density
- (b) Pressure
- (c) Momentum and
- (d) Energy

Solution:

As per given instruction, considering force, length and time to be the fundamental quantities

(a) Density = mass/volume ...(1)

```
and, mass = Force/acceleration = (Force × time^2)/displacement.
```

(1)=> Density = {(Force × time^2)/displacement}/Volume

```
Dimensions of Density = [FL^{-4}T^2]
```

```
(b)

Pressure = F/A

Dimensions of A = [L^2]

Dimensions of Pressure = [FL^{-2}]
```

```
(c)
Momentum = mv = (force/acceleration) x velocity
= [F/LT<sup>-2</sup>] x [LT<sup>-1</sup>] = [FT]
```

Dimensions of Momentum [FT]

(d) Energy = $\frac{1}{2}$ mv² = Force/acceleration x (velocity)²

$$=\frac{[F]}{[LT^{-2}]} [LT^{-1}]^2 = [FL]$$

Dimensions of Energy = [FL]

Question 8: Suppose the acceleration due to gravity at a place is 10 m/s^2 . Find its value in cm/(minute)².

Solution:

Given: acceleration due to gravity at a place is 10 m/s² Convert units into cm/min²

Here, g = $10 \text{ m/sec}^2 = 36 \text{ x} 10^5 \text{ cm/min}^2$

Question 9: The average speed of a snail is 0.020 miles/hour and that of a leopard is 70 miles/hour. Convert these speeds in SI units.

Solution:

Average speed of a snail = 0.020 miles/hour (Given) Average speed of a leopard = 70 miles/hour (Given)

In SI Units: 0.020 miles/hour = (0.02x1.6x1000)/3600 = 0.0089 m/s [Using 1 mile = 1.6 km = 1600m] And, 70 miles/hr = (70x1.6x1000)/3600 = 31 m/s

Question 10: The height of mercury column in a barometer in a Calcutta laboratory was recorded to be 75 cm. Calculate this pressure in SI and CGS units using the following data.

Specific gravity of mercury = 13.6 Density of water = 10^3 kg/m^3, gravity, $g = 9.8 \text{ m/s}^2$ at Calcutta. Pressure = hpg in usual symbols.

Solution:

The height of mercury column in a barometer in a Calcutta laboratory was recorded to be 75 cm. (Given) Say, h = 75 cm Calculate pressure in SI and CGS units. Pressure = hpg = $10 \times 10^4 \text{ N/m}^2$ approx

In C.G.S. units, Pressure = 10×10^5 dyne/cm²

Question 11: Express the power of a 100 watt bulb in CGS unit.

Solution:

Write power 100 watt in CGS units.

In S.I. units: 100 watt = 100 Joule/sec In C.G.S. unit = 10⁹ erg/sec

Question 12: The normal duration of I.Sc. Physics practical period in Indian colleges is 100 minutes. Express this period in microcenturies. 1 microcentury = $10^{-6} \times 100$ years. How many microcenturies did you sleep yesterday?

Solution:

Given: 1 microcentury = $10^{-6} \times 100$ years. 1 year = 365 x 24 x 60 min Or 1 microcentury = $10^{-4} \times 365 \times 24 \times 60$ min So, 100 min = $10^{5}/52560 = 1.9$ microcentury

Question 13: The surface tension of water is 72 dyne/cm. Convert it in SI units.

Solution:

Given: surface tension of water is 72 dyne/cm

In S.I units: 72 dyne/cm = 0.072 N/m

Question 14: The kinetic energy K of a rotating body depends on its moment of inertia I and its angular speed ω . Assuming the relation to be K = kI^a ω^{b} where k is a dimensionless constant, find a and b. Moment of inertia of a sphere about its dimeter is 2/5 Mr².

Solution:

K = kl^a ω^{b} ; where k is a dimensionless constant, K = kinetic energy and ω = angular speed To find: a and b Now, K = [ML²T⁻²]

 I^{a} = $[\mathsf{M}\mathsf{L}^2]^{\,\mathsf{a}}$ and ω^{b} = $[\mathsf{T}^{\text{-1}}]^{\mathsf{b}}$

=> [ML²T⁻²] = [ML²]^a [T⁻¹]^b [using principle of homogeneity of dimension]

```
Equating the dimensions, we get
2a = 2 \Rightarrow a = 1
-b = -2 \Rightarrow b = 2
```

Question 15: Theory of relativity reveals that mass can be converted into energy. The energy E so obtained is proportional to certain powers of mass m and the speed c of light. Guess a relation among the quantities using the method of dimensions.

Solution:

The relationship between energy, mass and speed of light is, $E \propto M^a C^b$ Where M = mass and C = speed of light or E = K M^a C^b(1) where K = constant of proportionality

Find the dimensions of (1)

 $[ML^{2}T^{-2}] = [M]^{a} [LT^{-1}]^{b}$

By comparing values, we have

a = 1 and b = 2 So, we have required relation is $E = KMC^2$

Question 16: Let I = current through a conductor, R = its resistance and V = potential difference across its ends. According to Ohm's law, product of two of these quantities equals the third. Obtain Ohm's law from dimensional analysis. Dimensional formulae for R and V are $[ML^2I^{-2}T^{-3}]$ and $[ML^2T^{-3}I^{-1}]$ respectively.

Solution:

Given: Dimensional formulae for $R = [ML^{2}I^{-2}T^{-3}]$ and Dimensional formulae for $V = [ML^{2}T^{-3}I^{-1}]$ Therefore,

 $[ML^{2}T^{-3}I^{-1}] = [ML^{2}I^{-2}T^{-3}] [I]$

=> V = IR

Question 17: The frequency of vibration of a string depends on the length L between the nodes, the tension F in the string and its mass per unit length m. Guess the expression for its frequency from dimensional analysis.

Solution:

L = length, M = mass and F = Force Here, $f = KL^aF^bM^c ...(1)$

Dimension of frequency, $f = [T^{-1}]$ or $[M^0L^0T^{-1}]$ Dimension of length, L = [L]Dimension of mass, $M = [ML^{-1}]$ Dimension of force, $F = [MLT^{-2}]$

(1)=> $[M^{0}L^{0}T^{-1}] = K [L]^{a} [MLT^{-2}]^{b} [ML^{-1}]^{c}$ Equating both sides, we get b + c = 0-c + a + b = 0-2b = -1Solving above three equations , we have a = -1, $b = \frac{1}{2}$ and $c = -\frac{1}{2}$

Therefore, frequency is

 $f = KL^{-1}F^{1/2}M^{-1/2}$

 $f = KL^{-1}F^{1/2}M^{-1/2} = \frac{K}{L}\sqrt{\frac{F}{M}}$

Question 18: Test if the following equations are dimensionally correct:

(a) $h = \frac{2S\cos\theta}{2\pi a}$,	(b) $v = \sqrt{\frac{P}{\rho}}$,
(c) $V = \frac{\pi P r^4 t}{8 \eta l},$	(d) $v = \frac{1}{2\pi} \sqrt{\frac{mgl}{I}};$

where h = height, S = surface tension, ρ = density, P = pressure, V = volume, η = coefficient of viscosity, v = frequency and I = moment of inertia

Solution:

(a) Dimension of h = [L]

Dimension of S = $F/I = MLT^{-2}/L = [MT^{-2}]$ Dimension of density = $M/V = [ML^{-3}T^{0}]$ Dimension of radius = [L] Dimension of gravity = $[LT^{-2}]$ Now,

 $\frac{2S\cos\theta}{\rho rg} = \frac{[MT^{-2}]}{[ML^{-3}T^{0}][L][LT^{-2}]} = [M^{0}L^{1}T^{0}] = [L]$ Relation is correct.

(b) Let velocity = v = $\sqrt{(p/\rho)}$ (1) Dimension of v = [LT⁻¹] Dimension of p = F/A = [ML⁻¹T⁻²] Dimension of $\rho = m/v = [ML^{-3}]$

Substituting dimensions in (1), we have

$$\sqrt{\frac{p}{\rho}} = \sqrt{\frac{[ML^{-1}T^{-2}]}{[ML^{-3}]}} = [L^2T^{-2}]^{1/2} = [LT^{-1}]$$

Therefore, relation is correct.

(c) Dimension of V = $[L^3]$ Dimension of p = $[ML^{-1}T^{-2}]$ Dimension of r⁴ = $[L^4]$ Dimension of t = [T]Dimension of $\eta = [ML^{-1}T^{-1}]$

 $\frac{\pi pr^{4}t}{8\eta I} = \frac{[ML^{-1}T^{-2}][L^{4}][T]}{[ML^{-1}T^{-1}][L]}$

Therefore, relation is correct.

(d) Dimension of $v = [T^{-1}]$ Dimension of m = [M]Dimension of $g = [LT^{-2}]$ Dimension of I = [L]Dimension of inertia = $[ML^2]$

$$\sqrt{(mgl/l)} = \sqrt{\frac{[M][LT^{-2}][L]}{[ML^2]}} = [T^{-1}]$$

Therefore, relation is correct.

Question 19: Let x and a stand for distance. Is below equation dimensionally correct?

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \frac{1}{a} \sin^{-1} \frac{a}{x}$$

Solution:

Dimensions of a = [L] Dimensions of x = [L] LHS $\int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{L}{\sqrt{(L^2 - L^2)}} = [L^0]$ RHS $\frac{1}{a} \sin^{-1} \left(\frac{a}{x}\right) = [L^{-1}]$ $\int \frac{dx}{\sqrt{a^2 - x^2}} \neq \frac{1}{a} \sin^{-1} \left(\frac{a}{x}\right)$