

Problems based on units and dimensions

1.	Nun	nber of base SI units is							[MP PET 2003]
	(a)	4	(b)	7	(c)	3	(d)	5	
2.	The	unit of Planck's constant is						[RPMT 1999	; MP PET 2003]
	(a)	Joule	(b)	Joule/s	(c)	Joule/ m	(d)	Joule- s	
3.	The	unit of reactance is							[MP PET 2003]
	(a)	Ohm	(b)	Volt	(c)	Mho	(d)	Newton	
4.	The	dimension of $\frac{R}{L}$ are							[MP PET 2003]
	(a)	T^2	(b)	T	(c)	T^{-1}	(d)	T^{-2}	
5.	Dim	nensions of potential energy	are						[MP PET 2003]
	(a)	MLT^{-1}	(b)	ML^2T^{-2}	(c)	$ML^{-1}T^{-2}$	(d)	$ML^{-1}T^{-1}$	
6.	The	dimensions of electric pote	ntial	are					[UPSEAT 2003]
	(a)	$[ML^2T^{-2}Q^{-1}]$	(b)	$[MLT^{-2}Q^{-1}]$	(c)	$ML^2T^{-1}Q$	(d)	$ML^2T^{-2}Q$	
7.	The	physical quantities not havi	ng s	ame dimensions are					[AIEEE 2003]
	(a)	Speed and $\left(\mu_0 \varepsilon_0\right)^{-1/2}$			(b)	Torque and work			
	(c) Momentum and Planck's constant				(d)	Stress and Young's modulu	ıs		
8.	The	dimensional formula for Bo	ltzm	ann's constant is					[MP PET 2002]
	(a)	$[ML^2T^{-2}\theta^{-1}]$	(b)	$[ML^2T^{-2}]$	(c)	$[ML^0T^{-2}\theta^{-1}]$	(d)	$[ML^{-2}T^{-1}\theta^{-1}]$	
9.	Whi	ich of the following quantitie	es is	dimensionless					[MP PET 2002]

(b) Planck's constant

(a) Gravitational constant

10.

Which of the two have same dimensions

(c) Power of a convex lens

(d) None of these

[AIEEE 2002]

			Units	, Dimensions and Measurement o
	(a) Force and strain		(b) Force and stress	
	(c) Angular velocity and frequency	uency	(d) Energy and strain	
11.	The dimensions of pressure is	equal to		[AIEEE 2002]
	(a) Force per unit volume	(b) Energy per unit volume	(c) Force	(d) Energy
12.	Identify the pair whose dimens	sions are equal		[AIEEE 2002]
	(a) Torque and work	(b) Stress and energy	(c) Force and stress	(d) Force and work
13.	A physical quantity x depends	on quantities y and z as follow	/s: $x = Ay + B \tan Cz$, where	A,B and \mathcal{C} are constants. Which of the
	following do not have the sam	ne dimensions		[AMU (Eng.) 2001]
	(a) x and B	(b) C and z^{-1}	(c) y and B/A	(d) x and A
14.	$ML^3T^{-1}Q^{-2}$ is dimension of			[RPET 2000]
	(a) Resistivity	(b) Conductivity	(c) Resistance	(d) None of these
15.	Two quantities A and B have 1997]	different dimensions. Which n	nathematical operation giver	n below is physically meaningful [CPMT
	(a) <i>A/B</i>	(b) $A + B$	(c) $A-B$	(d) None of these
16.	Let $[arepsilon_0]$ denotes the dime	nsional formula of the perm	ittivity of the vacuum and	$[\mu_0]$ that of the permeability of the
	vacuum. If $M = \text{mass}$, $L = \text{leng}$	gth, <i>T</i> = time and <i>l</i> = electric co	urrent, then	
	(a) $[\varepsilon_0] = M^{-1}L^{-3}T^2I$	(b) $[\varepsilon_0] = M^{-1}L^{-3}T^4I^2$	(c) $[\mu_0] = MLT^{-2}I^{-2}$	(d) $[\mu_0] = ML^2T^{-1}I$
17.	The dimension of quantity (L)	(RCV) is		[Roorkee 1994]
	(a) [A]	(b) $[A]^2$	(c) $[A^{-1}]$	(d) None of these
18.	The quantity $X = \frac{\varepsilon_0 LV}{t}$; here	re $arepsilon_0$ is the permittivity of fre	ee space, $\it L$ is length, $\it V$ is	potential difference and t is time. The
	dimensions of X are same as t	hat of		
	(a) Resistance	(b) Charge	(c) Voltage	(d) Current
19.	The unit of permittivity of free	space $arepsilon_0$ is		[MP PET 1993; MP PMT 2003]
	(a) Coulomb/ Newton-metre		(b) Newton-metre ² /Co	oulomb ²
	(c) Coulomb²/(Newton-metro	<i>e</i>) ²	(d)	Coulomb ² /Newton-metre ²
20.	Dimensional formula of capaci	itance is		[CPMT 1978; MP PMT 1979; IIT-JEE 1983]
	(a) $M^{-1}L^{-2}T^4A^2$	(b) $ML^2T^4A^{-2}$	(c) $MLT^{-4}A^2$	(d) $M^{-1}L^{-2}T^{-4}A^{-2}$
21.	The dimensional formula for ir	mpulse is	[EAMCET 1981; CBSE PN	MT 1991; CPMT 1978; AFMC 1998; BCECE 2003]
	(a) MLT^{-2}	(b) MLT^{-1}	(c) ML^2T^{-1}	(d) M^2LT^{-1}
22.	The dimensions of universal gr	ravitational constant are	[MP PMT 1984, 87, 97, 2000	; CBSE PMT 1988, 92, 2004; MP PET 1984, 96, 99;

MNR 1992; DPMT 1984; CPMT 1978, 84, 89, 90, 92, 96; AFMC 1999; NCERT 1975; DPET 1993; AIIMS 2002; RPET 2001;

(b) $M^{-1}L^3T^{-2}$

(b) 1650763.73

(b) mass

(b) $[M^1L^2T^1]$

How many wavelength of Kr^{86} are there in one *metre*

(a) $M^{-2}L^2T^{-2}$

(a) 1553164.13

(a) Time

of β will be

(a) $[M^0L^2T^0]$

Light year is a unit of

(a) 1/RC and R/L

dimensions of frequency is

23.

24.

25.

26.

27.

	the unit of velocity then								
	(a) The new unit of length is	s g metre	(b) The new unit of length	is 1 <i>metre</i>					
	(c) The new unit of length is	; g ² metre	(d) The new unit of time is	$\frac{1}{g}$ second					
28.	The famous Stefan's law of radiation states that the rate of emission of thermal radiation per unit by a black body is proportional								
	to area and fourth power of	its absolute temperature that is $oldsymbol{arphi}$	$Q = \sigma A T^4$ where $A = \text{area}, T =$	= temperature and σ is a universal					
	constant. In the 'energy- leng	gth- time temperature' (E-L-T-K) sy	ystem the dimension of σ is						
	(a) $E^2T^2L^{-2}K^{-2}$	(b) $E^{-1}T^{-2}L^{-2}K^{-1}$	(c) $ET^{-1}L^{-3}K^{-4}$	(d) $ET^{-1}L^{-2}K^{-4}$					
29.	The resistive force acting	g on a body moving with a v	elocity $ {\it V} $ through a fluid $ {\it a} $	at rest is given by $F = C_D V^2 A \rho$					
	where, C_D = coefficient of drag, A = area of cross-section perpendicular to the direction of motion. The								
	dimensions of C_D are								
	(a) ML^3T^{-2}	(b) $M^1L^{-1}7^2$	(c) $M^{-1}L^{-1}T^{-2}$	(d) $M^0L^0T^0$					
30.	The dimensions of (angular m	nomentum)/(magnetic moment) ar	re:						
	(a) $[M^{\beta} L T^{-2} A^2]$	(b) $[MA^{-1} T^{-1}]$	(c) $[ML^2A^{-2}T]$	(d) $[M^2 L^{-3}A7^2]$					
31.	The frequency n of vibrations of uniform string of length / and stretched with a force F is given by $n = \frac{P}{2l} \sqrt{\frac{F}{m}}$ where p is the								
		ibrating string and <i>m</i> is a constant							
	(a) $ML^{-1} T^{-1}$	(b) $ML^{-3} T^{0}$	(c) $ML^{-2} 7^0$	(d) $ML^{-1} 7^0$					
32.	Choose the wrong statement	:(s)							

(c) $ML^{-1}T^{-2}$

(c) 652189.63

(c) Distance

(c) $[M^1L^0T^0]$

L, C and R represent physical quantities inductance, capacitance and resistance respectively. The combination which has the

In the relation $P = \frac{\alpha}{\beta} e^{-\frac{\alpha z}{k\theta}}$, P is pressure, z is distance, k is Boltzmann constant and θ is temperature. The dimensional formula

If the acceleration due to gravity be taken as the unit of acceleration and the velocity generated in a falling body in one second as

(b) $1/\sqrt{RC}$ and $\sqrt{R/L}$ (c) $1/\sqrt{LC}$

Pb. PMT 2002; UPSEAT 1999; BCECE 2003]

[MP PMT 1989; AFMC 1991; CPMT 1991]

[MNR 1985; UPSEAT 2000]

[IIT-JEE 1984]

[IIT-JEE (Screening) 2004]

(d) ML^2T^{-2}

(d) 2348123.73

(d) Energy

(d) C/L

(d) $[M^0L^2T^1]$

			Unit	s, Diffiensions and Measurement 65
	(a) A dimensionally co	orrect equation may be correct	(b) A dimensionally c	orrect equation may be incorrect
	(c) A dimensionally incorrect equation may be incorrect		(d) A dimensionally in	ncorrect equation may be incorrect
33.	A certain body of mass	M moves under the action of a conse	ervative force with potential	energy V given by $V = \frac{Kr}{x^2 + a^2}$ where V
		d a is the amplitude. The units of $\ \emph{K}$ ar		x + u
	(a) Watt	(b) Joule	(c) Joule-metre	(d) None of these.
34.	The Richardson equation	on is given by $I = AT^2 e^{-B/kT}$. The dim	ensional formula for AB^2 is	same as that for
	(a) / <i>T</i> ²	(b) <i>kT</i>	(c) / <i>K</i> ²	(d) <i>IK</i> ² /T
35.	If the units of force, end	ergy and velocity are 10 $\it N$, 100 $\it J$ and 5	ms ⁻¹ , the units of length, m	ass and time will be
	(a) 10 <i>m</i> , 5 <i>kg</i> , 1 <i>s</i>	(b) 10 <i>m</i> , 4 <i>kg</i> , 2 <i>s</i>	(c) 10 <i>m</i> , 4 <i>kg</i> , 0.5 <i>s</i>	(d) 20 <i>m</i> , 5 <i>kg</i> , 2 <i>s</i> .
		Problems based on a	error of measuremen	nt
36.	The period of oscillatio	n of a simple pendulum is given by T	= $2\pi \sqrt{\frac{l}{g}}$ where /is about 10	00 <i>cm</i> and is known to 1 <i>mm</i> accuracy. The
	period is about 2 <i>s</i> . The	time of 100 oscillations is measured by	y a stop watch of least coun	t 0.1 s. The percentage error in g is
	(a) 0.1%	(b) 1%	(c) 0.2%	(d) 0.8%
37.	The percentage errors	in the measurement of mass and spee	ed are 2% and 3% respective	ely. How much will be the maximum error
	in the estimation of the	kinetic energy obtained by measuring	g mass and speed	[NCERT 1990; Orissa JEE 1990]
	(a) 11%	(b) 8%	(c) 5%	(d) 1%
38.	While measuring the ac	cceleration due to gravity by a simple	pendulum, a student makes	a positive error of 1% in the length of the
	pendulum and a negating $g = 4\pi^2 \left(l/T^2 \right)$ will be	ive error of 3% in the value of time p	eriod. His percentage error	in the measurement of g by the relation
	(a) 2%	(b) 4%	(c) 7%	(d) 10%
39.	The random error in the	ne arithmetic mean of 100 observation	s is <i>x</i> , then random error in	the arithmetic mean of 400 observations
	(a) 4 <i>x</i>	(b) $\frac{1}{4}x$	(c) 2 <i>x</i>	(d) $\frac{1}{2}x$
40.	What is the number of	significant figures in 0.310×10 ³		
	(a) 2	(b) 3	(c) 4	(d) 6
41.	Error in the measureme	ent of radius of a sphere is 1%. The erro	or in the calculated value of	its volume is
	(a) 1%	(b) 3%	(c) 5%	(d) 7%

84 Units, Dimensions and Measurement

42.	The mean time period of	of second's pendulum is 2.00 <i>s</i> ar	nd mean absolute error on the time p	period is 0.05 <i>s</i> . To express maximu	m						
	estimate of error, the tin	me period should be written as									
	(a) $(2.00 \pm 0.01) s$	(b) (2.00 +0.025) s	(c) $(2.00 \pm 0.05) s$	(d) $(2.00 \pm 0.10) s$							
43.	A body travels uniformly	y a distance of (13.8 \pm 0.2) m in a t	time (4.0 \pm 0.3) s. The velocity of the b	oody within error limits is							
	(a) $(3.45 \pm 0.2) \text{ ms}^{-1}$	(b) $(3.45 \pm 0.3) \text{ ms}^{-1}$	(c) $(3.45 \pm 0.4) \text{ ms}^{-1}$	(d) $(3.45 \pm 0.5) \text{ ms}^{-1}$							
44.	The percentage error in	the above problem is									
	(a) 7%	(b) 5.95%	(c) 8.95%	(d) 9.85%							
45.	The unit of percentage of	error is									
	(a) Same as that of phy	ysical quantity									
	(b) Different from that	of physical quantity									
	(c) Percentage error is unit less										
	(d) Errors have got their own units which are different from that of physical quantity measured										
46.	The decimal equivalent	of 1/20 upto three significant figu	ures is								
	(a) 0.0500	(b) 0.05000	(c) 0.0050	(d) 5.0×10^{-2}							
47.	If 97.52 is divided by 2.5	54, the correct result in terms of s	ignificant figures is								
	(a) 38.4	(b) 38.3937	(c) 38.394	(d) 38.39							
48.	Accuracy of measureme	ent is determined by									
	(a) Absolute error	(b) Percentage error	(c) Both	(d) None of these							
49.	The radius of a sphere is	s (5.3 \pm 0.1) <i>cm.</i> The percentage e	error in its volume is								
	(a) $\frac{0.1}{5.3} \times 100$	(b) $3 \times \frac{0.1}{5.3} \times 100$	(c) $\frac{0.1 \times 100}{3.53}$	(d) $3 + \frac{0.1}{5.3} \times 100$							
50.	A thin copper wire of le	ngth /metre increases in length b	oy 2% when heated through 10°C. Wh	nat is the percentage increase in are	за						
	when a square copper s	sheet of length / metre is heated t	through 10°C								
	(a) 4%	(b) 8%	(c) 16%	(d) None of the above.							
51.	In the context of accura	cy of measurement and significar	nt figures in expressing results of expe	eriment, which of the following is/a	re						
	correct										
	(1) Out of the two measu	urements 50.14 <i>cm</i> and 0.00025 a	ampere, the first one has greater accur	ıracy							
	(2) If one travels 478 km	n by rail and 397 m . by road, the t	total distance travelled is 478 km.								
	(a) Only (1) is correct	(b) Only (2) is correct	(c) Both are correct	(d) None of them is correct.							

Answer Sheet (Practice problems)

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
b	d	a	С	b	a	с	a	d	с
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
b	a	d	a	a	с	с	d	d	a
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
b	b	b	С	a	a	a	d	d	b
31.	32.	33.	34.	35.	36.	37.	38.	39.	40.
d	с	с	С	b	С	b	С	d	b
41.	42.	43.	44.	45.	46.	47.	48.	49.	50.
b	с	b	С	С	a	a	b	b	a
51.									

51.