To Obtain a Lens Combination With the Specified Focal. Length By Using two Lenses From the Given Set Of Lenses

Aim

To obtain a lens combination with the specified focal length by using two lenses from the given set of lenses.

Apparatus and material

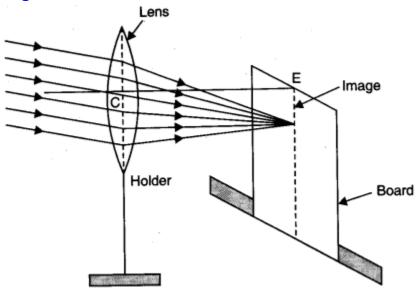
Apparatus. No particular apparatus is needed.

Material. A set of thin convex lenses, one of these is of given focal length (say 15 cm), (we have to select a second lens such that the combination gives a single lens of focal length $f_c = 10$ cm), lens holder with stand, a white painted vertical wooden board with broad stand, half metre scale.

Theory

1. The reciprocal of focal length in metre is called power of lens in diopter (D).

$$P = \frac{1}{f}$$


- 2. With a convex lens, the real image of a distant object is formed at a distance equal to its focal length.
- 3. If f_1 and f_2 be the focal lengths of the two lenses and F be the focal length of the combination.

Then,
$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$$

For lenses of power P_1 and P_2 and combination of power P.

Then,
$$P = P_1 + P_2$$

Diagram

Measurement of focal length of convex lenses.

Procedure

- 1. Keep the white painted vertical wooden board to serve as a screen.
- 2. The convex lens (known focal length f_1 = 15 cm), fixed into a holder stand is put on the left of the screen. There are sunlight illuminated green trees at large distance on the left of the lens.
- 3. The lens is moved towards and away from the screen till a sharp, inverted image of trees is formed on the screen.
- 4. Distance between central lines of the screen and holder stand is measured by a half metre scale.
- 5. The distance gives the focal length of the convex lens about 15 cm.
- 6. Replace first lens by second convex lens of required power and repeat the steps from 2 to 5. This gives the focal length of second convex lens.
- 7. Now bring both lenses in contact and repeat the steps from 2 to 5. This gives the combined focal length.
- 8. Determine the focal length with other given lens. Determine the focal length of about six of the convex lenses.

Calculations

Let
$$F = 10$$
 cm, so that $P = 10$ D $\left(: P(D) = \frac{100}{F(cm)} \right)$

Following combinations will be suitable.

Power		Focal length	
$P_I(D)$	P ₂ (D)	f ₁ (cm)	f ₂ (cm)
2	8	50	12.5
4	6	25	16.7
5	5	20	20

(Note. The ideal values are as sample.)

Verification

The above combinations may be tried and result verified.

Precautions

- 1. Thin lenses should be taken.
- 2. Lenses should have same aperture.

Sources of error

- 1. Lenses may not be thin.
- 2. Lens apertures may not be same.