HOTS (Higher Order Thinking Skills)

Que 1. Draw a circle with the help of a bangle. Take a point outside the circle. Construct the pair of tangents from this point to the circle.

Sol. Steps of Construction:

Step I: Draw a circle with the help of a bangle.

Step II: Let P be the external point from where the tangents are to be drawn to the given circle. Through P, draw a secant PAB to intersect the circle at A and B (say).

Step III: Produce AP to a point C, such that AP = PC, i.e., P is the mid-point of AC.

Step IV: Draw a semicircle with BC as diameter.

Step V: Draw PD \perp CB, intersecting the semicircle at D.

Step VI: With P as centre and PD as radius, draw arcs to intersect the given circle at T and T. **Step VII:** Join PT and PT_1 . Then, PT and PT_1 are the required tangents.

Que 2. Draw a $\triangle ABC$ with side BC = 7 cm, $\angle B = 45^{\circ}$, $\angle A = 105^{\circ}$. Then construct a triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle ABC$.

Sol. Step of Construction: Step I: Construct a $\triangle ABC$ in which BC = 7 cm, $\angle B = 45^\circ, \angle C = 180^\circ - (\angle A + \angle B)$

= $180^{\circ} - (105^{\circ} + 45^{\circ}) = 180^{\circ} - 150^{\circ} = 30^{\circ}$. **Step II:** Below BC, makes an acute angle $\angle CBX$. **Step III:** Along BX, mark off four arcs: B₁, B₂, B₃, and B₄ such that BB₁ = B₁ B₂ = B₂ B₃ = B₃ B₄. **Step IV:** Join B₃ C. **Step V:** From B₄, draw B₄ D||B₃ C, meeting BC produced at D.

Step VI: From D, draw ED||AC, meeting BA produced at E. Then EBD is the required triangle whose sides are $\frac{4}{3}$ times the corresponding sides of $\triangle ABC$.

Justification:

Since, DE||CA. $\therefore \Delta ABC \sim \Delta EDB$ and $\frac{EB}{AB} = \frac{BD}{BC} = \frac{DE}{CA} = \frac{4}{3}$

Hence, We have the new triangle similar to the given triangle.

Whose sides are equal to $\frac{4}{3}$ times the corresponding sides of $\triangle ABC$.

Que 3. Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°.

Sol. Steps of Construction:

Step I: Draw a circle with centre O and radius 5 cm.

Step II: Draw any diameter AOB.

Step III: Draw a radius OC such that $\angle BOC = 60^{\circ}$.

Step IV: At C, we draw CM \perp OC and at A, we draw AN \perp OA.

Step V: Let the two perpendicular intersect each other at P. Then, PA and PC are required tangents.

Justification:

Since OA is the radius, so PA has to be a tangent to the circle. Similarly, PC is also tangent to the circle.

$$\angle APC = 360^{\circ} - (\angle OAP + \angle OCP + \angle AOC)$$

= 360^{\circ} - (90^{\circ} + 90^{\circ} + 120^{\circ}) = 360^{\circ} - 300^{\circ} = 60^{\circ}

Hence, tangents PA and PC are inclined to each other at an angle of 60 °.