DIFFERENT GAUGES

Gauge	Distance between rails	
Broad gauge	1.676 m	
Meter gauge	1.0 m = uasen	
Narrow gauge	0.762 m	
Light gauge (feather track)	0.610 m	
Standard gauge (used in delhi metro)	1.435 m	

SAFE SPEED ON CURVES BASED ON MARTINS FORMULA

- (a) For Transition Curve
 - (i) For B.G & M.G. $V = 4.35\sqrt{R-67}$ where, V is in kmph.
 - (ii) For N.G $V = 3.65\sqrt{R-6}$ for V is km/hr.
- (b) For Non-Transition Curve $V = 0.80 \times \text{speed calculated in (a)}$
- (c) For High Speed Trains $V = 4.58\sqrt{R}$

SAFE SPEED BASED ON SUPER ELEVATION

- (a) For Transition curves
 - (i) For B.G $v = 0.27\sqrt{(c_a + c_d)R}$
 - (ii) For M.G $v = 0.347\sqrt{(c_a + c_d)R}$

The above two formula based on the assumption

that $G = 1750 \, \text{mm}$ for B.G

 $G = 1057 \, \text{mm} \, \text{for N.G}$

and $e = \frac{Gv^2}{127R}$ where, e = super elevation.

(iii) For N.G
$$v = 3.65\sqrt{R - 6}$$

where.

v = Speed in km/hr

R = Radius of curve in 'mm'

ca = Actual cant in 'mm'

c_d = Cant deficiency in 'mm'.

SPEED FROM THE LENGTH OF TRANSITION CURVE

(a) For speed upto 100 km/hr.

$$V_{\text{max.}} = \frac{134 \,\text{L}}{c_{\text{a}}}$$
 or $\frac{134 \,\text{L}}{c_{\text{d}}}$ (min. of two is adopted)

where, L= Length of transition curve based on rate of change of cant as 38 mm/sec. for speed upto 100 km/hr & 55 mm/sec for speed upto 100 km/hr & 55 mm/sec for high speeds.

c_a = Actual cant in 'mm'.

c_d = Cant deficiency in 'mm'.

(b) For high speed trains (speed > 100 km/hr)

Either,

$$V_{\text{max}} = \frac{198 \text{ L}}{c_{\text{a}}} \text{ or } \frac{198 \text{ L}}{c_{\text{d}}}$$

Minimum of the two is adopted.

RADIUS & DEGREE OF CURVE

$$D = \frac{1720}{R}$$
If one chain length = 30 m.

If one chain length = 20 m.

$$=\frac{1150}{R}$$
 where, $R = Radius$

D = Degree of curve =
$$\begin{bmatrix} 10^{\circ} \rightarrow B.G \\ 16^{\circ} \rightarrow M.G \\ 40^{\circ} \rightarrow N.G \end{bmatrix}$$

VERSINE OF CURVE (V)

$$V = \frac{L^2}{8R}$$

GRADE COMPENSATION

For B.G \rightarrow 0.04% per degree of curve

 $M.G \rightarrow 0.03\%$ per degree of curve

 $M.G \rightarrow 0.02\%$ per degree of curve

SUPER ELEVATION (CANT) (e)

$$e = \frac{GV^2}{127R}$$

where, e = Super elevation in meter

V = Speed in km/hr., R = Radius in meter

G = Gauge distance between the centre of rails.

EQUILIBRIUM CANT (e')

$$e' = \frac{GV_{av}^2}{127R}$$

where, $V_{av} = Average$ speed or equilibrium speed.

EQUILIBRIUM SPEED OR AVERAGE SPEED (Vav)

(a) When maximum Sanctioned Speed > 50 km/hr.

$$V_{av} = minimum \begin{cases} \frac{3}{4} \times V_{max} \\ Safe speed by \\ martins formula \end{cases}$$

(b) When Sanctioned speed < 50 km/hr

V _{av} = minimum <	V _{max} Safe speed by	
	martins formula	

(c) Weighted Average Method

$$V_{av} = \frac{n_1 v_1 + n_2 v_2 + ...}{n_1 + n_2 + ...}$$

where, n_1 , n_2 , n_3 ... etc. are number of trains running at speeds v_1 , v_2 , v_3 ... etc.

MAXIMUM VALUE OF CANT (e_{max})

	B.G. Track			
1	<120 kmph	>120 kmph	M.G.	N.G.
e _{max} (actual)	16.5 cm	18.5 cm	10.0 cm	7.6 cm

CANT DEFICIENCY (D)

Cant deficiency = $x_1 - x_A$

where.

 $x_A = Actual cant provided as per$

average speed

x₁ = Cant required for a higher speed train.

where, e_{th} = Theoretical cant

 $e_{act} = Actual cant$

D = Cant deficiency

	B.G. Track		M.G.	N.G.
	<100 kmph	>100 kmph	M.G.	sa (vi)
D _{max}	7.60 cm	10.0 cm	5.10 cm	3.80 cm

TRANSITION CURVE (CUBIC PARABOLA)

Equation of transition curve;

(a) Shift (S)

$$S = \frac{L^2}{24R}$$

where, S = Shift in 'm'

L = Length of transition curve in 'm'

R = Radius of circular curve in 'm'.

(b) Length of Transition Curve: According to Indian Railway.

$$L = \text{max} \cdot \begin{cases} 0.073 \ \text{C}_{\text{a}} \cdot \text{V}_{\text{max}} \\ 0.073 \ \text{C}_{\text{d}} \cdot \text{V}_{\text{max}} \\ 7.20 \ \text{C}_{\text{a}} . \end{cases}$$

where.

L = Length of transition curve in 'm'.

V_{max} = Maximum permissible speed in km/hr.

C_a = Actual cant on curve in 'cm'.

 C_d = Cant deficiency in 'cm'.

Another Approach

L = Maximum of (I), (II), (III) and (IV).

where, (i) As per railway code, $L = 4.4\sqrt{R}$ where L & R in 'm'.

- (ii) At the rate of change of super elevation of 1 in 360.
- (iii) Rate of change of cant deficiency, say 2.5 cm is not exceeded.
- (iv) Based on rate of change of radial acceleration with radial acceleration of 0.3048 m/s².

$$L = \frac{3.28V^3}{R}$$
 where V is in m/s.

EXTRA LATERAL CLEARANCE ON CURVES

(a) Over throw or extra clearance needed of centre

$$= \frac{C^2}{8R}$$

(b) End throw or extra clearance needed at end

where,

L= End to end length of bogie

C = Centre to centre distance of two bogie.

R = Radius of curve.

Lean

(c) Lean (L)

 $L = \frac{h \cdot e}{G}$

where, h = Height of vehicle e = Super elevation G = Gauge.

(d) Total Extra Lateral Clearance Needed Outside the Curve

$$E_1 = \text{end throw} = \frac{L^2 - C^2}{8R}$$

(e) Total Extra Lateral Clearance Inside the Curve

$$E_2 = \text{Overthrow} + \text{Lean} + \text{Sway}$$
 $E_2 = \frac{c^2}{8R} + \frac{\text{he}}{G} + \frac{1}{4} \cdot \frac{\text{he}}{G}$

where, R = Radius of curve in 'mm'.

L = End to end length of bugie = 21340 mm for B.G

= 19510 mm for M.G

AB = Rigid wheel base

h = Height of bougie = 4025 mm for B.G = 3355 mm for M.G

c = Bogie centres distance = 1475 mm for B.G = 13715 mm for M.G

e = Super elevation in mm

G = 1.676 m for B.G = 1.0 m for M.G

EXTRA CLEARANCE ON PLATFORMS

(a) For platforms situated inside of curve

$$= E_2 - 41 \text{ mm}.$$

(b) For platforms situated outside the curve

$$= E_1 - 25 \text{ mm}.$$

GAUGE WIDENING ON CURVES

$$w_e = \frac{13(B+L)^2}{R}$$

where,

B = Rigid wheel base in meters.

= 6 m for B.G.

 $= 4.88 \, \text{m} \, \text{for M.G}$

R = Radius of curve in m.

L = Lap of flange in 'm'. = $0.02\sqrt{h^2 + Dh}$

h = Depth of wheel flange below rails in cm.

D = Diameter of wheel in cm.

w_e = Gauge widening in cm.