CONCRETE

1. Modulus of elasticity of concrete

$$E_c = 5000\sqrt{f_{ck}}$$

where f_{ck} = characteristic strength of concrete

2. Tensile strength of concrete in flexure

$$f_{ckt} = 0.7\sqrt{f_{ck}}$$

Characteristic strength of concrete is the value of strength of concrete below which not more than 5% of test results are expected to fail.

3. Permissible value of strength in concrete

Grade	Direct tensile strength (f _{ckt})	Compression		Bondstress (τ_{bd})	
Grade		Direct (σ_{cc})	Bending (σ_{cbc})	WSM	LSM
M15	2	4	5	0.6	1
M20	2.8	5	7	0.8	1.2
M25	3.2	6	8.5	0.9	1.4
M30	3.6	8	10.0	1.0	1.5
M35	4.0	9	11.5	1.1	1.7
M40	4.4	10	13.0	1.2	1.9

- τ_{bd} given in table is only for plain mild steel bar in tension.
- τ_{bd} value should be increased by 60% for deformed bars both in LSM and WSM.
- For bars in compression the value should be increased by 25%.
- Stee
 - 1. Young's modulus of all type of steel is 2×10^5 N/mm².
- Type of steel
 - Mild steel → Fe 250
 Here, 250 is the characteristic strength of mild steel bars.
 Also, f_v = 250 N/mm²

- 2. TMT bars Fe 415 Fe 500
- 3. Permissible stresses in steel

Table. Permissible Stresses in Steel Reinforcement

(Clauses B-2.2, B-2.2.1, B-2.3 and B-4.2)

SI.	Type of Stress in Steel Reinforcement	Permissible stresses in N/mm²			
	E PROPERTE	Mild steel bars conforming to grade 1 of IS 432 (part-1)	steel conforming to IS 432	igh yield strength deformed bars conforming to IS 1786 (Grade Fe 415)	
(1) (i)	(2) Tension (σ_{xt} or σ_{xv})	(3)	(4)	(5)	
	(a) Up to and including 20 mm	140	half the guaranteed yield stress subject to a maximum of 190	230	
	(b) Over 20 mm	130		230	
(ii) (iii)	Compression in column Compression in bars in a beam or slab when the	130 130 190 The calculated compressive stress in the surrounding concrete multiplied by 1.5 times the modular ratio or σ_{xx}			
(iv)	compressive resistance of the concrete is taken into account	whichever is lov			
	(a) Up to and including	140	Half the guaranteed yield stress subject	190	
	(b) Over 20 mm	130	to a maximum of 190	190	

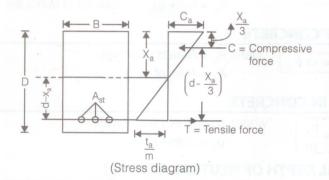
- For high yield strength deformed bars of Grade Fe 500 the permissible stress in direct tension and flexural tension shall be 0.55,f_y. The permissible stresses for shear and compression reinforcement shall be as for Grade Fe 415.
- 2. For welded wire fabric conforming to IS 1566, the permissible value in tension σ_{vt} , is 230 N/mm².

- (ii) when $X_a > X_c \rightarrow \text{It is a over reinforced section.}$
- (iii) when $X_a < X_c \rightarrow It$ is a under reinforced section.

MOMENT OF RESISTANCE (M,)

(i) For balanced section $(X_a = X_c)$

$$M_r = BX_a \cdot \frac{\sigma_{cbc}}{2} \left(d - \frac{X_a}{3} \right)$$



and
$$M_r = \sigma_{st} \cdot A_{st} \left(d - \frac{X_a}{3} \right)$$
, $\left(d - \frac{X_a}{3} \right) = \text{Lever Arm}$

(ii) For under reinforced section $(X_a < X_c)$

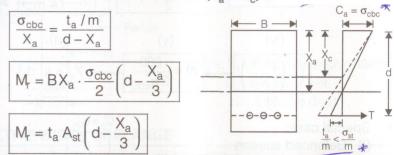
$$M_r = B X_a \cdot \frac{C_a}{2} \left(d - \frac{X_a}{3} \right) , \quad M_r = \sigma_{st} \cdot A_{st} \left(d - \frac{X_a}{3} \right)$$

Here, $C_a < \sigma_{cbc}$ $C_a <$

Here,

$$C_a = \frac{\sigma_{st} \cdot X_a}{m(d - X_a)}$$

(iii) For over-reinforcement section $(X_a > X_c)$

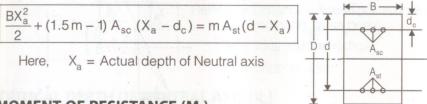


DOUBLY REINFORCED SECTION

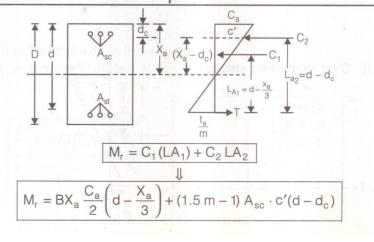
CRITICAL DEPTH OF NEUTRAL AXIS, (X,

$$X_c = \frac{mc}{t + mc} \cdot d$$

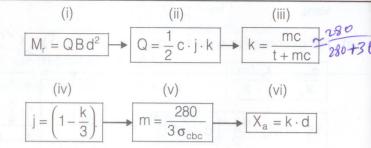
ACTUAL DEPTH OF NEUTRAL AXIS, (X₂)



MOMENT OF RESISTANCE (M,)



DESIGN STEPS

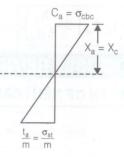


- Special case:
 - (i) Balanced section

$$X_a = X_c$$

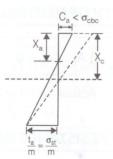
$$\sigma_a = \sigma_{cbc}$$

$$t_a = \sigma_{st}$$



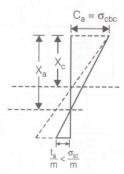
(ii) Under reinforced section

$$X_a < X_c$$
 $C_a < \sigma_{cbc}$
 $t_a = \sigma_{st}$

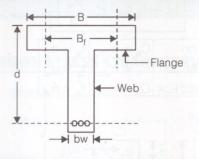


(iii) Over reinforced section

$$\begin{aligned} &\mathsf{X}_{\mathsf{a}} > \mathsf{X}_{\mathsf{c}} \\ &\mathsf{C}_{\mathsf{a}} = \sigma_{\mathsf{cbc}} \\ &\mathsf{t}_{\mathsf{a}} < \sigma_{\mathsf{st}} \end{aligned}$$



T-BEAM



where, $B_f = Effective$ width of flange

b_w = Width of web

d = Effective depth

EFFECTIVE WIDTH OF FLANGE

(a) For beam casted monolithic with slab

$$B_f = Minimum \begin{cases} \left(\frac{l_0}{6} + b_w + 6d_f\right) \\ or \\ b_w + \frac{l_1}{2} + \frac{l_2}{2} \end{cases}$$

(b) For Isolated T-beam

$$B_{f} = \frac{l_{0}}{\left(\frac{l_{0}}{B} + 4\right)} + b_{w}$$

Here, l_0 = Distance between points of zero moments in the beam

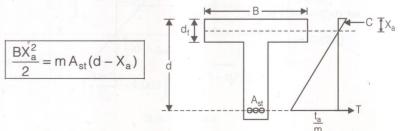
B = Total width of flange

 $b_w = Width of web$

CRITICAL DEPTH OF NEUTRAL AXIS (X,)

$$X_c = \left(\frac{mc}{t + mc}\right)d$$

- · When Neutral axis is in flange area
 - (i) Actual depth of Neutral axis

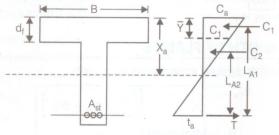


Here, $X_a = Actual depth of Neutral axis$

(ii) Moment of resistance (M_r)

$$M_r = BX_a \cdot \frac{C_a}{2} \left(d - \frac{X_a}{3} \right)$$
, $M_r = t_a A_{st} \left(d - \frac{X_a}{3} \right)$

When Neutral axis is in web area



(Stress diagram)

(i) For actual depth of neutral axis

$$B_f d_f \cdot \left(X_a - \frac{d_f}{2} \right) = m A_{st} (d - X_a)$$
 By neglecting web area

$$B_f d_f \cdot \left(X_a - \frac{d_f}{2} \right) + bw \frac{(X_a - d_f)^2}{2} = m A_{st} (d - X_a)$$
 By considering web area

(ii) Moment of resistance (M_r)

$$M_{r} = B_{f} \cdot d_{f} \left(\frac{C_{a} + C_{1}}{2}\right) \left[d - \left(\frac{C_{a} + 2C_{1}}{C_{a} + C_{1}}\right) \frac{d_{f}}{3}\right] + b_{w} \left(X_{a} - d_{f}\right) \cdot \frac{C_{1}}{2} \left[d - d_{f} - \frac{\left(X_{a} - d_{f}\right)}{3}\right] + \left(\frac{C_{1}}{2}\right) \left[d - d_{f} - \frac{\left(X_{1} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{1} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{1} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac{C_{2}}{2}\right) \left[d - d_{f} - \frac{\left(X_{2} - d_{f}\right)}{3}\right] + \left(\frac$$