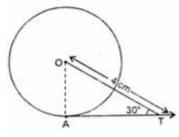
CBSE Test Paper 03 Chapter 10 Circle

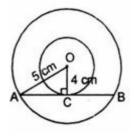
1. In the given figure, the pair of tangents A to a circle with centre O are perpendicular to each other and length of each tangent is 5 cm, then the radius of the circle is : (1)



- a. 2.5 cm
- b. 5 cm
- c. 7.5 cm
- d. 10 cm
- 2. In the given figure, AT is a tangent to the circle with centre O such that OT = 4 cm and $\angle OTA = 30^{\circ}$. Then AT is equal to: (1)

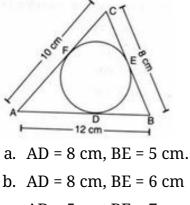


- a. 2 cm
- b. $2\sqrt{3}$ cm
- c. 4 cm
- d. $4\sqrt{3}$ cm
- 3. If radii of two concentric circles are 4 cm and 5 cm, then the length of the chord of one circle which is tangent to the other circle is: **(1)**

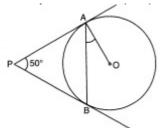


a. 9 cm

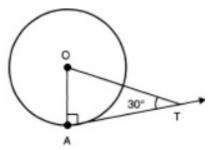
- b. 3 cm
- c. 1 cm
- d. 6 cm
- 4. A circle is inscribed in $\triangle ABC$ having sides 8 cm, 10 cm and 12 cm as shown in the figure. Then the measure of AD and BE are... (1)



- c. AD = 5 cm, BE = 7 cm
- d. AD = 7 cm, BE = 5 cm
- 5. PQ is a tangent drawn from a point P to a circle with centre O and QOR is a diameter of the circle such $\angle POR = 120^{\circ}$, then $\angle OPQ$ is (1)
 - a. 60°
 - b. 35°
 - c. 30°
 - d. 45°
- 6. At which point a tangent is perpendicular to the radius? (1)
- 7. In fig., PA and PB are tangents to the circle with centre O such that $\angle APB = 50^{\circ}$. Write the measure of $\angle OAB$ (1)



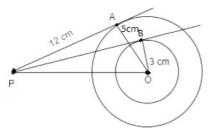
8. In given figure, if AT is a tangent to the circle with centre O, such that OT = 4 cm and $\angle OTA = 30^{\circ}$, then find the length of AT (in cm). **(1)**



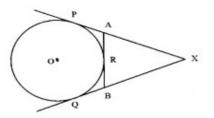
9. In figure, if O is the centre of a circle, PQ is a chord and the tangent PR at P makes an angle of 50° with PQ. Find \angle POQ. **(1)**



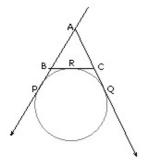
10. Two concentric circles with centre O are of radii 5 cm and 3 cm.From an external point P, two tangents PA and PB are drawn to these circles, respectively. If PA = 12 cm, then find the length of PB (1)



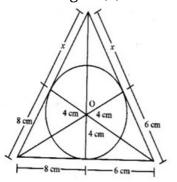
- A quadrilateral ABCD is drawn to circumscribe a circle. Prove that AB + CD = AD +
 BC. (2)
- 12. In given Fig. XP and XQ are tangents from X to the circle with centre O. R is a point on the circle. Prove that XA + AR = XB + BR. (2)



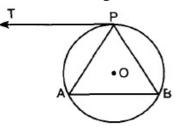
13. In the given figure, find the perimeter of ABC, if AP = 10 cm. (2)



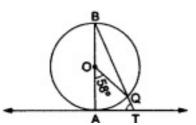
- 14. Prove that parallelogram circumscribing a circle is a rhombus. (3)
- 15. The radius of the incircle of a triangle is 4 cm and the segment into which one side is divided by the point of contact are 6 cm and 8 cm. Determine the other two sides of the triangle. **(3)**



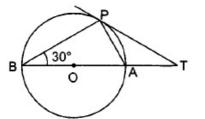
16. A tangent PT is drawn parallel to a chord AB as shown in figure. Prove that APB is an isosceles triangle. (3)



- 17. A chord PQ of a circle is parallel to the tangent drawn at a point R of the circle. Prove that R bisects the arc PRQ. **(3)**
- 18. In the given figure, AB is the diameter of a circle with centre O and AT is a tangent. If $\angle AOQ = 58^{\circ}$, find $\angle ATQ$. (4)



19. In figure, O is the centre of the circle and TP is the tangent to the circle from an external point T. If \angle PBT = 30°, prove that BA : AT = 2:1. **(4)**

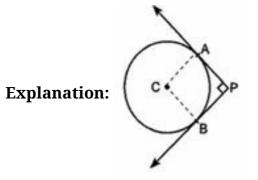


20. If from an external point B of a circle with centre 'O', two tangents BC, BD are drawn such that \angle DBC = 120°, prove that BC + BD = BO, i.e., BO = 2BC. (4)

CBSE Test Paper 03 Chapter 10 Circle

Solution

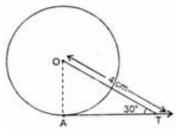
1. b. 5 cm



Construction: Joined OA and OB. Here $OA \perp AP$ and $OB \perp BP$ and $PA \perp PB$ Also AP = PBTherefore, APBO is a square. $\Rightarrow AP = OA = OB = 5$ cm

2. b. $2\sqrt{3}$ cm

Explanation: Construction: Joined OA.



Since OA is perpendicular to AT, then

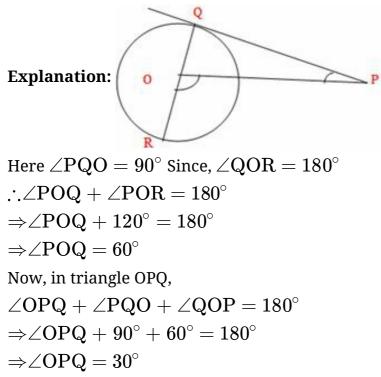
 $\angle \text{OAT} = 90^{\circ}$ In right angled triangle OAT $\cos 30^{\circ} = \frac{\text{AT}}{\text{OT}} \Rightarrow$ $\frac{\sqrt{3}}{2} = \frac{\text{AT}}{4} \Rightarrow \text{AT} = 2\sqrt{3} \text{ cm}$

3. d. 6 cm

Explanation: Here OC is perpendicular to AB. Then OC bisects AB i.e., AC = BC Now, in triangle OAC, $OA^2 = AC^2 + OC^2$ $\Rightarrow (5)^{2} = AC^{2} + (4)^{2} \Rightarrow AC^{2} = 25 - 16$ $\Rightarrow AC = 3 \text{ Therefore, length of tangent AB} = AC + BC = 3 + 3 = 6 \text{ cm}$ d. AD = 7 cm, BE = 5 cm **Explanation:** Let AD = x and BE = y $\therefore BD = 12 - x \Rightarrow BE = y$ But BD = BE (Tangents to a circle from an external point B) $\Rightarrow y = 12 - x \Rightarrow x + y = 12 \dots \dots (i)$ Also, AF = x and CF = 10 - x and CE = 8 - y $\therefore 10 - x = 8 - y$ $x - y = 2 \dots (ii)$ On solving eq. (i) and (ii), we get x = 7 and y = 5Therefore AD = 7 cm and BE = 5 cm

5. c. 30°

4.



6. A line which intersects a circle at any one point is called the tangent. The tangent at any point of a circle is perpendicular to the radius through the all point of contact.

- 7. Here, $\angle APB = 50^{\circ}$ $\angle PAB = \angle PBA = \frac{180^{\circ} - 50^{\circ}}{2} = 65^{\circ}$ $\angle OAB = 90^{\circ} - \angle PAB$ $= 90^{\circ} - 65^{\circ} = 25^{\circ}$
- 8. In given figure, AT is a tangent to the circle with centre O, such that OT = 4 cm and

 \angle OTA = 30[°], then we have to find the length of AT (in cm). $\cos \theta = \frac{\text{Base}}{\text{Hypotenuse}}$

$$egin{array}{l} rac{AT}{OT} = \cos 30^\circ \ dots \ \mathrm{AT} = \ \mathrm{OT} \ \cos 30^\circ \ dots \ \mathrm{AT} = \ \mathrm{OT} \ \cos 30^\circ \ dots \ \mathrm{or}, \ AT = 4 imes rac{\sqrt{3}}{2} \ = 2\sqrt{3} \mathrm{cm} \end{array}$$

- 9. OP \perp PR [: Tangent and radius are \perp to each other at the point of contact] $\angle OPQ = 90 - 50 = 40$ OP = OQ [By isosceles triangle's property] $\angle OPQ = \angle OQP = 40$ In $\triangle OPQ$, $\Rightarrow \angle O + \angle P + \angle Q = 180^{\circ}$ $\Rightarrow \angle O + 40 + 40 = 180$ $\angle O = 180 - 80 = 100$
- 10. Two concentric circles with centre O are of radii 5 cm and 3 cm. From an external point P, two tangents PA and PB are drawn to these circles, respectively. If PA = 12 cm, then we have to find the length of PB.

We know that radius is perpendicular to the tangent at the point of contact therefore, $AO \perp AP$.

Now, in right-angled triangle PAO, $\angle PAO = 90^{\circ}$ $OP^2 = (PA)^2 + (AO)^2$ [by Pythagoras theorem] $\Rightarrow OP = \sqrt{(PA)^2 + (AO)^2}$ $\Rightarrow OP = \sqrt{169} = 13 \ cm$ Similarly, in right-angled triangle PBO, $\angle PBO = 90^{\circ}$ $PO^2 = (PB)^2 + (OB)^2$ [by Pythagoras theorem] $\Rightarrow PB = \sqrt{(OP)^2 - (OB)^2}$

$$A \Rightarrow PB = \sqrt{(13)^2 - (3)^2} = \sqrt{160} = 4\sqrt{10} \,\, cm$$
 [\because radius, OB = 3 cm, given]

11.

: AP, AS are tangents from a point A (Outside the circle) to the circle.

 $\therefore AP = AS$ Similarly BP = BQ CQ = CRDR = DS Now AB + CD = AP + PB + CR + RD = AS + BQ + CQ + DS = (AS + DS) + (BQ + CQ) = AD + BC AB + CD = AD + BC

12. Since the lengths of tangents from an exterior point to a circle are equal.

 $\therefore XP = XQ \dots (i)$ AP = AR \ldots (ii) BQ = BR \ldots (iii) Now Xp = XQ i.e. XA + AP = XB + BQ \Rightarrow XA + AR = XB + bR Hence proved.

13. \therefore BC touches the circle at R

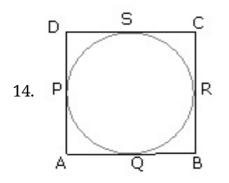
Tangents drawn from external point to the circle are equal.

$$\therefore AP = AQ, BR = BP$$
And CR = CQ
$$\therefore Perimeter of \triangle ABC = AB + BC + AC$$

$$= AB + (BR + RC) + AC$$

$$= AB + BP + CQ + AC$$

$$= AP + AQ = 2AP = 2 \times 10 = 20 \text{ cm}$$



Given ABCD is a parallelogram in which all the sides touch a given circle To prove:- ABCD is a rhombus

Proof:-

:: ABCD is a parallelogram

: AB = DC and AD = BC

Again AP, AQ are tangents to the circle from the point A

```
\therefore AP = AQ

Similarly, BR = BQ

CR = CS

DP = DS

\therefore (AP + DP) + (BR + CR) = AQ + DS + BQ + CS = (AQ + BQ) + (CS + DS)
\Rightarrow AD + BC = AB + DC
\Rightarrow BC + BC = AB + AB [\therefore AB = DC, AD = BC]
\Rightarrow 2BC = 2AB
\Rightarrow BC = AB
Hence, parallelogram ABCD is a rhombus
```

15. Equate the areas of the triangle formed by using the formula $\sqrt{s(s-a)(s-b)(s-c)} \text{ and also found by dividing it into three triangles.}$ Let the length of tangent from third vertex = x. Then the sides of triangle are 14, x + 6, x + 8 $\therefore s = \frac{14+x+6+x+8}{2} = \frac{28+2x}{2} = 14 + x$ $\therefore \sqrt{(14+x)(14+x-x-6)(14+x-x-8)(14+x-14)}$ $= \frac{1}{2} \times 4 \times 14 + \frac{1}{2} \times 4 \times (x+6) + \frac{1}{2} \times 4(x+8)$ $\Rightarrow \sqrt{(14+x) \times 8 \times 6 \times x} = 2(14+x+6+8)$ $\Rightarrow \sqrt{42x+3x^2} = 14 + x$ $\Rightarrow 42x + 3x^2 = (14+x)^2$

$$\Rightarrow 42x + 3x^{2} = 196 + x^{2} + 28x$$

$$\Rightarrow 2x^{2} + 14x - 196 = 0$$

$$\Rightarrow x^{2} + 7x - 98 = 0$$

$$\Rightarrow x^{2} + 14x - 7x - 98 = 0$$

$$\Rightarrow x(x + 14) - 7(x + 14) = 0$$

$$\Rightarrow (x + 14) (x - 7) = 0$$

$$\Rightarrow x - 7 = 0$$

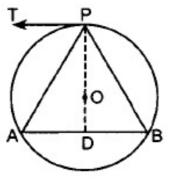
Or x + 14 = 0

$$\Rightarrow x = 7$$

Or x = -14 extraneous

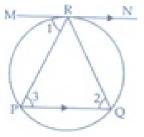
: The remaining two sides of the triangle are (x + 6) cm and (x - 8)cm,

i.e., (7 + 6)cm or 13 cm and 15 cm.



Construction: Join PO and produce it to D. Proof: Here, $OP \perp TP$ $\angle OPT = 90^{\circ}$ Also, $TP \parallel AB$ $\therefore \angle TPD + \angle ADP = 180^{\circ}$ $\Rightarrow \angle ADP = 90^{\circ}$ OD bisects AB [Perpendicular from the centre bisects the chord] In $\triangle ADP$ and $\triangle BDP$ AD = BD $\angle ADP = \angle BDP$ [Each 90°] PD = PD $\therefore \triangle ADP \cong \triangle BDP$ [SAS] $\angle PAB = \angle PBA$ [C.P.C.T.]

- $\therefore \triangle$ PAB is isosceles triangle.
- 17. Given: In a circle a chord PQ and a tangent MRN at R such that QP || MRN



To prove: R bisects the arc PRQ.

Construction: Join RP and RQ.

Proof: Chord RP subtends $\angle 1$ with tangent MN and $\angle 2$ in alternates segment of circle so $\angle 1 = \angle 2$.

MRN || PQ

 $\therefore \angle 1 = \angle 3$ [Alternate interior angles]

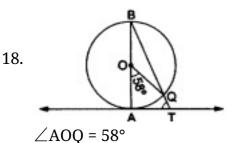
 $\Rightarrow \angle 2 = \angle 3$

 \Rightarrow PR = RQ [Sides opp. to equal \angle s in \triangle RPQ]

: Equal chords subtend equal arcs in a circle so

arc PR = arc RQ

or R bisect the arc PRQ. Hence, proved.

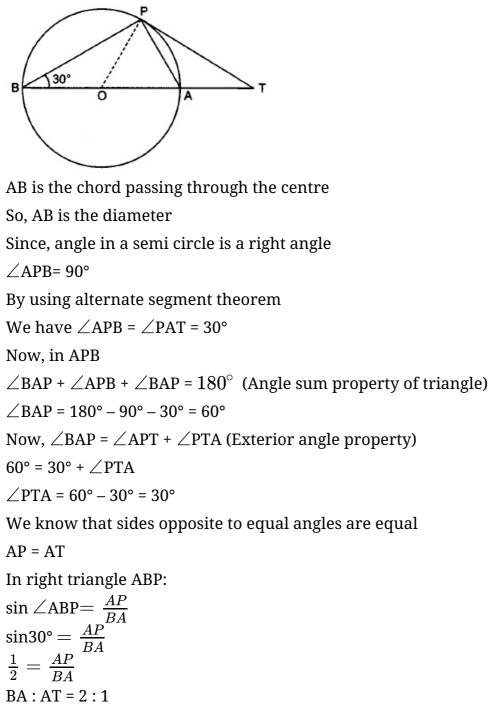


 $\Rightarrow \ \angle ABQ = \frac{1}{2} \angle AOQ = 29^{\circ}$ [.: the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle] $\Rightarrow \ \angle ABT = 29^{\circ}$

Now, AT is a tangent at A and OA is the radius through the point of contact A.

$$\therefore OA \perp AT$$
, i.e,
 $\angle OAT = 90^{\circ}$
 $\Rightarrow \angle BAT = 90^{\circ}.$
in \triangle BAT,
we have

- $egin{aligned} & \angle BAT + \angle ABT + \angle ATB = 180^\circ \ & \Rightarrow 90^\circ + 29^\circ + \angle ATB = 180^\circ \ & \angle ATB = 61^\circ. \ & \therefore \quad \angle ATQ = \angle ATB = 61^\circ. \end{aligned}$
- 19. According to the question,



20. According to the question, we are a given that from an external point B of a circle with centre 'O', two tangents BC, BD are drawn such that \angle DBC = 120°, we have to

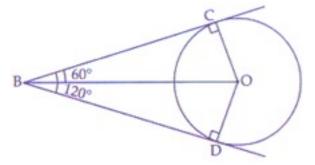
prove that BC + BD = BO, i.e., BO = 2BC.

Given: A circle with centre O.

Tangents BC and BD are drawn from an external point B such that \angle DBC = 120°

To prove: BC + BD = BO, i.e., BO = 2BC

Construction: Join OB, OC and OD.



Proof: In \triangle OBC and \triangle OBD, we have

OB = OB [Common]

OC = OD [Radi of same circle]

BC = BD [Tangents from an external point are equal in length] ...(i)

$$\therefore \triangle OBC \cong \triangle OBD [By SSS criterion of congruence]$$

$$\Rightarrow \angle OBC = \angle OBD (CPCT)$$

$$\therefore \angle OBC = \frac{1}{2} \angle DBC = \frac{1}{2} \times 120^{\circ} [\because \angle CBD = 120^{\circ} \text{ given}]$$

$$\Rightarrow \angle OBC = 60^{\circ}$$

OC and BC are radius and tangent respectively at contact point C.

Hence, $\angle OCB = 90^{\circ}$ Now, in right angle $\triangle OCB$, $\angle OBC = 60^{\circ}$ $\therefore \cos 60^{\circ} = \frac{BC}{BO}$ $\Rightarrow \frac{1}{2} = \frac{BC}{BO}$ $\Rightarrow OB = 2BC$ $\Rightarrow OB = BC + BC$ $\Rightarrow OB = BC + BD$ [$\therefore BC = BD$ from (i)] Hence, proved.