CBSE Test Paper 02 CH-1 Number Systems

- 1. The value of $0.\overline{23} + 0.\overline{22}$ is
 - a. $0.\overline{45}$
 - b. $0.4\overline{5}$
 - c. $0.\overline{44}$
 - d. $0.4\overline{4}$

2. The rational number not lying between $\frac{3}{5}$ and $\frac{2}{3}$ is

- a. $\frac{50}{75}$
- b. $\frac{46}{75}$
- c. $\frac{47}{75}$
- d. $\frac{49}{75}$
- 3. The value of $(32)^{rac{1}{5}}+(-7)^0+(64)^{rac{1}{2}}$ is
 - a. 10
 - b. 0
 - c. 11
 - d. 1
- 4. The $\frac{p}{q}$ form of the number 0.8 is
 - a. 1
 - b. $\frac{1}{8}$

c.
$$\frac{8}{10}$$

d.
$$\frac{8}{100}$$

- 5. Between any two rational numbers there
 - a. is no irrational number
 - b. is no rational number
 - c. are many rational numbers
 - d. are exactly two rational numbers
- 6. Fill in the blanks:

The value of $0.\overline{23} + 0.\overline{22}$ is _____.

7. Fill in the blanks:

0.83458456764 is _____.

- 8. Find the product of $\left(\sqrt{\frac{3}{5}} + \sqrt{\frac{5}{2}}\right)$ and $(\sqrt{5} + \sqrt{2})$.
- 9. Prove that $\frac{2\sqrt{7}}{7\sqrt{7}}$ is a rational number.
- 10. You know that $\frac{1}{7} = 0.142857...$ Can you predict what the decimal expansions of $\frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}$ are, without actually doing the long division? If so, how? [Hint: Study the remainders while finding the value of $\frac{1}{7}$ carefully.]
- 11. Prove that $\sqrt{3}$ + 2 is irrational.
- 12. Find five rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$.
- 13. Visualize 2.4646 on the number line using successive magnification.
- 14. Simplify the following by rationalizing the denominator: $\frac{4+\sqrt{5}}{4-\sqrt{5}} + \frac{4-\sqrt{5}}{4+\sqrt{5}}$
- 15. Express $0.6+0.\overline{7}+0.\overline{47}$ in the form $rac{p}{q}$, where p and q are integers and q
 eq 0.

CBSE Test Paper 02 CH-1 Number Systems

Solution

1. (a) $0.\overline{45}$

Explanation: $0.\overline{23} = 0.232323....$ $0.\overline{22} = 0.222222....$ $0.\overline{23} + 0.\overline{23} = 0.45454545...$ $= 0.\overline{45}$ 2. (a) $\frac{50}{75}$ Explanation: $\frac{3}{5}and\frac{2}{3}$ 1 cm = 75So, $\frac{3}{5} \times \frac{15}{15}$ and $\frac{2}{3} \times \frac{25}{25}$

- So, $\frac{3}{5} \times \frac{15}{15}$ and $\frac{2}{3} \times \frac{25}{\times 25}$ i.e $\frac{45}{75}$ and $\frac{50}{75}$ So, $\frac{46}{75}, \frac{47}{75}, \frac{48}{75}, \frac{49}{75}$
- 3. (c) 11

Explanation:

=2+1+8

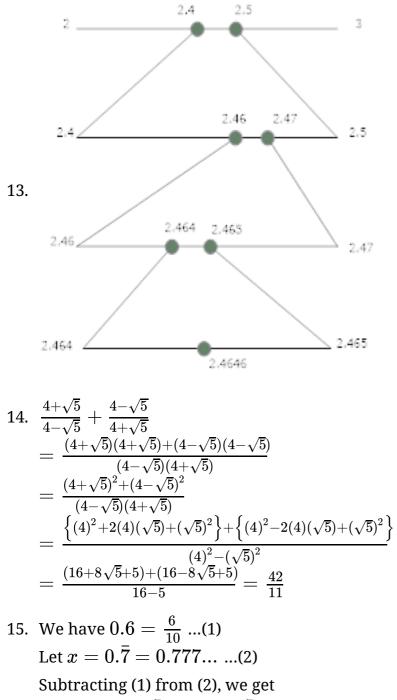
- =11
- 4. (c) $\frac{8}{10}$ Explanation: $\frac{8}{10}$ Or, $\frac{4}{5}$
- 5. (c) are many rational numbers

Explanation: Between any two rational number there are many rational number,

Example — 4 and 8

We have 5,6,7,7.5,,,,,, and many more

- 6. $0.\overline{45}$
- 7. an irrational number


$$8. \left(\sqrt{\frac{3}{5}} + \sqrt{\frac{5}{2}}\right) \left(\sqrt{5} + \sqrt{2}\right)$$

$$= \frac{\sqrt{3}}{\sqrt{5}} \times \sqrt{5} + \frac{\sqrt{3}}{\sqrt{5}} \times \sqrt{2} + \frac{\sqrt{5}}{\sqrt{2}} \times \sqrt{5} + \frac{\sqrt{5}}{\sqrt{2}} \times \sqrt{2} \\ = \sqrt{3} + \frac{\sqrt{6}}{\sqrt{5}} + \frac{5}{\sqrt{2}} + \sqrt{5}$$

- 9. We can cancel $\sqrt{7}$ in the numerator and denominator, as $\sqrt{7}$ is the common number in numerator as well as denominator, to get $\frac{2}{7}$ Therefore, we conclude that $\frac{2\sqrt{7}}{7\sqrt{7}}$ is a rational number.
- 10. We are given that $\frac{1}{7} = 0.\overline{142857}$ or $\frac{1}{7} = 0.142857...$. We need to find the values of $\frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}$ and $\frac{6}{7}$, without performing long division. We know that, $\frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}$ and $\frac{6}{7}$ can be rewritten as $2 \times \frac{1}{7}, 3 \times \frac{1}{7}, 4 \times \frac{1}{7}, 5 \times \frac{1}{7}$ and $6 \times \frac{1}{7}$ On substituting value of $\frac{1}{7}$ as 0.142857.... We get $2 \times \frac{1}{7} = 2 \times 0.142857...$ = 0.285714 $3 \times \frac{1}{7} = 3 \times 0.142857...$ = 0.428571 $4 \times \frac{1}{7} = 4 \times 0.142857...$ = 0.571428 $5 \times \frac{1}{7} = 5 \times 0.142857...$ = 0.714285 $6 \times \frac{1}{7} = 6 \times 0.142857...$ = 0.857142
- 11. $\sqrt{3}$ is irrational and 2 is rational.
 - $\therefore \sqrt{3}$ + 2 is irrational.

(: The sum of a rational number and an irrational number is irrational)

12. $\frac{3}{5} = \frac{30}{50}$, $\frac{4}{5} = \frac{40}{50}$. \therefore five rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$ are $\frac{31}{50}$, $\frac{32}{50}$, $\frac{33}{50}$, $\frac{34}{50}$, $\frac{35}{50}$

Subtracting (1) from (2), we get

$$9x = 7 \Rightarrow x = \frac{7}{9} \text{ or } 0.\overline{7} = \frac{7}{9}$$

Now, let $y = 0.4\overline{7} = 0.4777...$
 $\therefore 10y = 4.\overline{7}...(3)$ And $100y = 47.\overline{7}...(4)$
Subtracting (3) from (4), we get
 $90y = 43 \Rightarrow y = \frac{43}{90}$
 $\therefore 0.4\overline{7} = \frac{43}{90}$
Now, $0.6 + 0.\overline{7} + 0.4\overline{7} = \frac{6}{10} + \frac{7}{9} + \frac{43}{90} = \frac{54+70+43}{90} = \frac{167}{90}$
So, $\frac{167}{90}$ is of the form $\frac{p}{q}$ and $q \neq 0$.