HOTS (Higher Order Thinking Skills)

Que 1. If a point O lies between two points P and R such that PO = OR then prove that PO = $\frac{1}{2}$ PR.

Sol. Proof: From Fig. 5.9,

PO + OR = PR ...(i)
PO = OR (Given) ...(ii)
PO + PO = PR [Using (ii) in (i)]
2PO = PR Fig. 5.9
PO =
$$\frac{1}{2}$$
 PR

Que 2. Prove that every line segment has one and only one mid-point.

Sol. Proof: Let us prove this statement by contradiction method. Let us assume that the line segment PT has two midpoints R and S.

\rightarrow DD $_{-}^{1}$ DT		P	R	S	Т
$\rightarrow FK = \frac{-}{2}FI$			Fig.	5.10	
$PS = \frac{1}{2}PT$	(∵ R and S are mid-point				
according to assu	mption)				

$$\Rightarrow$$
 PR = PS

But this is possible only if R and S coincide.

Que 3. Does Euclid's fifth postulate imply the existence of parallel lines? Explain.

Sol. If straight line *l* falls on two straight lines m and n such that the sum of interior angles on same side of *l* is 180° , then by Euclid's 5th postulates the lines will not meet on this side of *l*.

Also, the sum of interior angles on other side of l will be 180⁰, they will not meet on the other side also.

 $\Rightarrow m and n never meet \Rightarrow m and n are parallel.$