15. Circumference of a Circle and Area

Exercise 15.1

1. Question

The radius of a circle is 3.5 cm. Find the circumference and area of the circle.

Answer

Given that radius of the circle = 3.5 cm

We know that circumference of the circle = $2\pi r$

 \Rightarrow Circumference = $2 \times \frac{22}{7} \times 3.5 = 22$ cm

Also, the area of a circle = πr^2

$$\Rightarrow$$
 Area = $\frac{22}{7} \times 3.5 \times 3.5 = 38.5 \text{ cm}^2$

2. Question

The circumference of a wheel is 44 m. find the area of the circle.

Answer

Given that circumference of the circle = 44 m

We know that circumference of the circle = $2\pi r$

$$\Rightarrow 2 \times \frac{22}{7} \times r = 44$$

 \Rightarrow r = 7 m

Also, the area of a circle = πr^2

$$\Rightarrow$$
 Area = $\frac{22}{7} \times 7 \times 7 = 154 \text{ m}^2$

3. Question

The radius of a semicircular plot is 21 m. Find its area and perimeter.

A semicircle is a half of the circle.

Given that radius of the semicircular plot = 21 m

To find the perimeter of the semicircular plot, we need to find the perimeter of the semicircle and add the diameter of the circle to it.

Diameter = $AB = 2 \times radius = 2 \times 21 = 42 m$

We know that circumference of the circle = $2\pi r$

 \Rightarrow Perimeter of semicircle = π r

 \Rightarrow Perimeter of semicircle = $\frac{22}{7} \times 21 = 66$ m

Total perimeter of the semicircular plot = 66 +42 = 108 m

Also, the area of a circle = πr^2

$$\Rightarrow$$
 Area of semicircle = $\pi \frac{r^2}{2}$

$$\Rightarrow \text{Area of semicircular plot} = \frac{22}{7 \times 2} \times 21 \times 21$$

 \Rightarrow Area of semicircular plot = $693m^2$

4. Question

A scooter wheel makes 100 revolutions in covering a distance of 88 m. Find the radius of the wheel.

Answer

Distance travelled by the wheel of the scooter = 88 m in 100 revolutions

Distance travelled in 1 revolution = $\frac{88}{100}$ m = 88 cm

Distance travelled in 1 revolution of a wheel = circumference of the wheel

We know that circumference of the circle = $2\pi r$

$$\Rightarrow 2 \times \frac{22}{7} \times r = 88$$

 \Rightarrow r = 14 cm

5. Question

The area of a circular plate is 154 cm^2 . Find its circumference.

Answer

Given that the area of a circle = 154 cm^2

We know that the area of a circle = πr^2

$$\Rightarrow \frac{22}{7} \times r \times r = 154 \text{ cm}^2$$

 \Rightarrow r = 7 cm

Also, the circumference of the circle = $2\pi r$

$$\Rightarrow$$
 Circumference = $2 \times \frac{22}{7} \times 7 = 44$ cm

6. Question

The circumference of a circle is equal to perimeter of a square. If area of the square is 484 m², then find the area of the circle.

Answer

Given area of the square = 484 m^2

We know that area of the square = $(Side)^2$

$$\Rightarrow$$
 (Side)² = 484

 \Rightarrow side = 22 m

Also, given that circumference of a circle = perimeter of a square

We know that circumference of the circle = $2\pi r$

And the perimeter of a square = $4 \times \text{length of the side}$

 \Rightarrow Perimeter of square = 4×22 = 88 m

 \Rightarrow Circumference of circle = 88 m

$$\Rightarrow 2 \times \frac{22}{7} \times r = 88$$

 \Rightarrow r = 14 m

Also, the area of a circle = πr^2

$$\Rightarrow \text{Area} = \frac{22}{7} \times 14 \times 14 = 616 \text{ m}^2$$

7. Question

The cost of fencing a circular field at the rate of 24 per metre is 5280. The field is to be ploughed at the rate of 0.50 per m^2 . Find the cost of ploughing the field.

Answer

Given that cost of fencing a circular field at the rate of Rs 24 per meter = Rs 5280

Fencing takes place at the circumference of the circular field.

So, the circumference of the field = $\frac{5280}{24}$ = 220 m

We know that circumference of the circle = $2\pi r$

$$\Rightarrow 2 \times \frac{22}{7} \times r = 220$$

 \Rightarrow r = 35 m (radius of the field)

Also, the area of a circle = πr^2

 \Rightarrow Area of the field = $\frac{22}{7} \times 35 \times 35 = 3850 \text{ m}^2$

The field is to be ploughed at the rate of 0.50 per m^2 .

Cost of ploughing the field = 3850×0.50 = Rs 1925

8. Question

The radius of a circular grass field is 35 m. There is a 7 m wide path all around it. Find the area of the path.

Given: Radius of the smaller circle AB = 35 m

Also, CD = 7 m

 \Rightarrow Radius of the larger circle AC = AD + CD = 35 + 7 = 42 m

Area of the path = Area of the larger circle – area of the smaller circle

 \therefore The area of a circle = πr^2

$$\Rightarrow$$
 Area of the path = $\pi R^2 - \pi r^2$

- \Rightarrow Area of the path = $\frac{22}{7}(R^2 r^2)$
- \Rightarrow Area of the path = $\frac{22}{7}(42^2 35^2)$

Using $(a+b)(a-b) = a^2 - b^2$

⇒ Area of the path =
$$\frac{22}{7}(42-35)(42+35)$$

$$\Rightarrow$$
 Area of the path = $\frac{22}{7}(7)(77)$

 \Rightarrow Area of the path = 22× 77 = 1694 m²

9. Question

The area enclosed between two concentric circles is:

D. None of these

Answer

Let the radius of the smaller circle be r and radius of the larger circle be R.

The area enclosed between two concentric circles = Area of the larger circle – area of the smaller circle

: The area of a circle = πr^2

 \Rightarrow Required area = $\pi R^2 - \pi r^2$

 \Rightarrow Required area = π (R² - r²)

Using $(a+b)(a-b) = a^2 - b^2$

 \Rightarrow Required area = π (R+r)(R-r)

10. Question

The radii of two concentric circles are 4 cm and 3 cm respectively. The area enclosed by the two circles is:

A. 22 cm² B. 12 cm²

 $C. 32 \text{ cm}^2$

D. 18 cm²

The radius of the smaller circle AB = 3 cm

And radius of the larger circle AC = 4 cm

The area enclosed between two concentric circles = Area of the larger circle – area of the smaller circle

 \therefore The area of a circle = πr^2

 \Rightarrow Required area = $\pi R^2 - \pi r^2$

 \Rightarrow Required area = π (R² - r²)

Using $(a+b)(a-b) = a^2 - b^2$

$$\Rightarrow$$
 Required area = π (R+r)(R-r)

 $\Rightarrow \text{ Required area} = \frac{22}{7} \times (4+3)(4-3) = 22 \text{ cm}^2$

Exercise 15.2

1. Question

In a circle of radius 7 cm, an arc subtends an angle of 60° at the centre. Find the length of the arc.

Answer

Given: Radius of the circle = 7 cm and angle subtended by the arc = 60°

We know that the length of the arc = $\frac{\theta}{360^{\circ}} \times (2\pi r)$

 \Rightarrow Length of the arc = $\frac{60^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 7 = 7.3$ cm

2. Question

A sector of a circle of radius 10.5 cm contains an angle of 45°. Find the area of the minor sector. $\left(\pi = \frac{22}{7}\right)$

Answer

Given: Radius of the circle = 10.5 cm and angle subtended by the arc = 45°

We know that the area of the minor sector = $\frac{\theta}{360^{\circ}} \times (\pi r^2)$

 \Rightarrow Area of the minor sector = $\frac{45^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 10.5 \times 10.5$

 \Rightarrow Area of the minor sector = 43.3125 cm²

3. Question

The length of an arc of a circle of radius 7 cm is 12 cm. Find the area of the minor sector.

Answer

Given: Radius of the circle = 7 cm and length of an arc = 12 cm

We know that the length of the arc = $\frac{\theta}{360^{\circ}} \times (2\pi r)$

$$\Rightarrow \frac{\theta}{360^{\circ}} \times 2 \times \frac{22}{7} \times 7 = 12$$
$$\Rightarrow \theta = \frac{12 \times 360^{\circ}}{44} = 98.18^{\circ}$$

We know that the area of the minor sector = $\frac{\theta}{360^{\circ}} \times (\pi r^2)$

 $\Rightarrow \text{Area of the minor sector} = \frac{98.18^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7 \times 7$

 \Rightarrow Area of the minor sector = 42cm²

4. Question

In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre. Find:

- (i) The length of the arc.
- (ii) Area of the sector formed by the arc.
- (iii) Area of the segment formed by the corresponding chord.

Given: Radius of the circle = 21 cm and angle subtended by the arc = 60°

- (i) We know that the length of the arc = $\frac{\theta}{360^{\circ}} \times (2\pi r)$
- $\Rightarrow \text{Length of BDC} = \frac{60^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 21 = 22 \text{cm}$

(ii) We know that the area of the minor sector = $\frac{\theta}{360^{\circ}} \times (\pi r^2)$

$$\Rightarrow \text{Area of ABDC} = \frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 21 \times 21$$

 \Rightarrow Area of ABDC = 231cm²

(iii) Area of the segment BDC = area of sector ABDC – area of triangle ABC In Δ ABC,

 $\angle A = 60^{\circ}$, AB = AC = 21 cm {radius of the circle}

 $\Rightarrow \angle ABC = \angle ACB$ {angles opposite to equal sides are equal}

By the angle sum property of the triangle,

$$\angle ABC + \angle ACB + \angle A = 180^{\circ}$$

$$\Rightarrow 2 \angle ABC = 180^{\circ} - 60^{\circ}$$

$$\Rightarrow \angle ABC = 60^{\circ}$$

Hence, $\triangle ABC$ is an equilateral triangle.

Area of a equilateral triangle = $\frac{\sqrt{3}}{4}a^2$, where a is the side of it.

Area of
$$\triangle ABC = \frac{\sqrt{3}}{4}(21)^2$$

 \Rightarrow Area of \triangle ABC = 190.95cm²

 \therefore Area of the segment BDC = area of sector ABDC – area of triangle ABC

 \Rightarrow Area of the segment BDC = 231 – 190.95

 \Rightarrow Area of the segment BDC = 40.05cm²

5. Question

The length of the minute hand of a clock is 10.5 cm. Find area of the sector formed by the minute hand in 10 minutes. $\left(\pi = \frac{22}{7}\right)$

Answer

Let us consider clock as a circle with radius 10.5 cm.

Also, the 60 minutes of the clock constitute the 360° angle of the circle.

So, the angle formed by the minute hand in 10 minutes = $\frac{10}{60} \times 360^\circ = 60^\circ$

We know that the area of the minor sector = $\frac{\theta}{360^{\circ}} \times (\pi r^2)$

 \Rightarrow Area of the minor sector = $\frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 10.5 \times 10.5$

 \Rightarrow Area of the minor sector = 57.75cm²

6. Question

A chord of a circle of radius 3.5 cm subtends an angle of 90° at the centre. Find the area of the minor segment of the circle. $\left(\pi = \frac{22}{7}\right)$

Answer

Given: Radius of the circle = 3.5 cm and angle subtended by the arc = 90° Area of the segment BDC = area of sector ABDC – area of triangle ABC

We know that the area of the minor sector = $\frac{\theta}{360^{\circ}} \times (\pi r^2)$

$$\Rightarrow \text{Area of ABDC} = \frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 3.5 \times 3.5$$

$$\Rightarrow$$
 Area of ABDC = 9.625 cm²

In ΔABC,

 $\angle A = 90^{\circ}$, AB = AC = 3.5 cm {radius of the circle}

: ΔABC is a right angled triangle.

Area of $\triangle ABC = \frac{1}{2} \times base \times height$

$$\Rightarrow$$
 Area of \triangle ABC = $\frac{1}{2} \times 3.5 \times 3.5$

- \Rightarrow Area of \triangle ABC = 6.125cm²
- \therefore Area of the segment BDC = area of sector ABDC area of triangle ABC

$$\Rightarrow$$
 Area of the segment BDC = 9.625 - 6.125

 \Rightarrow Area of the segment BDC = 3.5 cm²

7. Question

Find the area of a quadrant of a circle whose circumference is 22 cm.

Answer

Given that circumference of the circle = 22 cm

We know that circumference of the circle = $2\pi r$

$$\Rightarrow 2 \times \frac{22}{7} \times r = 22$$

⇒ r = 3.5cm

Quadrant of a circle is the one fourth part of a circle.

Also, the area of a circle = πr^2

 $\Rightarrow \text{Area} = \frac{22}{7} \times 3.5 \times 3.5 = 38.5 \text{ cm}^2$

Area of a quadrant = $\frac{38.5}{4}$ = 9.625cm²

8. Question

The hour hand of a clock is 5 cm long. Find the area of the sector formed by the hour hand in 7 minutes.

Answer

Let us consider clock as a circle with radius 5 cm.

Also, the hour hand of the clock makes 360° when takes 12 hours.

So let us convert 7 minutes to degrees.

There are 12×60 minutes in 12 hours.

So, the angle formed by the hour in 7 minutes = $\frac{7}{12 \times 60} \times 360^\circ = 3.49^\circ$

We know that the area of the minor sector = $\frac{\theta}{360^{\circ}} \times (\pi r^2)$

$$\Rightarrow$$
 Area of the minor sector $=\frac{3.49^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 5 \times 5$

 \Rightarrow Area of the minor sector = 0.7638cm²

9. Question

In figure, ABCD is a rectangle. The side AB = 10 cm and BC = 7 cm. From each vertex of the rectangle, are of radii 3.5 cm are drawn. Find the shaded region.

Answer

Given: AB = 10 cm, BC = 7 cm, Radius of the quadrants = 3.5 cm

In the given figure, the four quadrants together form a circle of radius 3.5 cm

 \therefore Area of the shaded region = Area of the rectangle – Area of the circle formed by the 4 quadrants

Area of rectangle = Length × breadth = $10 \times 7 = 70 \text{ cm}^2$

Area of a circle = πr^2

$$\Rightarrow \text{Area} = \frac{22}{7} \times 3.5 \times 3.5 = 38.5 \text{ cm}^2$$

Area of the shaded region = $70 - 38.5 = 31.5 \text{ cm}^2$

Exercise 15.3

1. Question

Find the circumference of the incircle of a square of side 14 cm

Let ABCD be the square with side 14 cm.

$$\Rightarrow$$
 BC = 14 cm

Let the circle centered at E be the incircle of the ABCD.

 \Rightarrow Radius of the circle = 7 cm

Given that radius of the circle = 7 cm

We know that circumference of the circle = $2\pi r$

 \Rightarrow Circumference = $2 \times \frac{22}{7} \times 7 = 44$ cm

2. Question

Difference between the circumference and radius of a circle is 74 cm. Find the area of the circle.

Answer

Given that difference between the circumference of the circle and radius of it = 74 cm

We know that circumference of the circle = $2\pi r$

$$\Rightarrow 2\pi r - r = 74$$

$$\Rightarrow 2 \times \frac{22}{7}r - r = 74$$

$$\Rightarrow r(2 \times \frac{22}{7} - 1) = 74$$

$$\Rightarrow r \times \frac{37}{7}$$

$$\Rightarrow r = \frac{74 \times 7}{37} = 14 \text{ cm}$$

Area of a circle = πr^2

$$\Rightarrow$$
 Area = $\frac{22}{7} \times 14 \times 14 = 616 \text{ cm}^2$

3. Question

In the given figure, O is the centre of the circle. $\angle AOB = 90^{\circ}$ and OA = 3 cm. Find the area of the shaded region.

Answer

Given: Radius of the circle = 3 cm and angle subtended by the arc = 90°

Area of the segment ARB = area of sector OARB – area of triangle OAB

We know that the area of the minor sector = $\frac{\theta}{360^{\circ}} \times (\pi r^2)$

$$\Rightarrow \text{Area of ABDC} = \frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 3 \times 3$$

$$\Rightarrow$$
 Area of ABDC = 7.071428cm²

In ∆ABC,

 $\angle A = 90^\circ$, AB = AC = 3 cm {radius of the circle}

: ΔABC is a right angled triangle.

Area of $\triangle ABC = \frac{1}{2} \times base \times height$

$$\Rightarrow \text{Area of } \Delta \text{ABC} = \frac{1}{2} \times 3 \times 3$$

- \Rightarrow Area of \triangle ABC = 4.5cm²
- : Area of the segment BDC = area of sector ABDC area of triangle ABC
- \Rightarrow Area of the segment BDC = 7.071428 4.5

 \Rightarrow Area of the segment BDC = 2.57 cm²

4. Question

The circumference of a circle is equal to the perimeter of a square. Find the ratio of their areas.

Given the circumference of a circle is equal to the perimeter of a square. We know that circumference of the circle = $2\pi r$ and the perimeter of a square = $4 \times \text{length of the side.}$

$$\Rightarrow 2\pi r = 4 \times side$$

$$\Rightarrow \frac{r}{side} = \frac{2}{\pi} \dots (i)$$

We know that area of the square = $(Side)^2$

Also, the area of a circle = πr^2

- \Rightarrow Ratio of their areas = $\frac{\pi r^2}{side^2}$
- \Rightarrow Ratio of their areas $= \pi \times \left(\frac{2}{\pi}\right)^2$
- \Rightarrow Ratio of their areas $=\frac{4}{\pi}$
- \Rightarrow Ratio of their areas = $\frac{4 \times 7}{22} = \frac{14}{11}$

5. Question

The radius of a circular park is 3.5 m. A 1.4 m wide footpath is made all round the circular park. Find the area of the footpath.

Also, CD = 1.4 m

 \Rightarrow Radius of the larger circle AC = AD + CD = 3.5 + 1.4 = 4.9 m

Area of the path = Area of the larger circle – area of the smaller circle

∴The area of a circle = πr^2 ⇒ Area of the path = $\pi R^2 - \pi r^2$ ⇒ Area of the path = $\frac{22}{7}(R^2 - r^2)$ ⇒ Area of the path = $\frac{22}{7}(4.9^2 - 3.5^2)$ Using (a+b)(a-b) = $a^2 - b^2$ ⇒ Area of the path = $\frac{22}{7}(4.9 - 3.5)(4.9 + 3.5)$ ⇒ Area of the path = $\frac{22}{7}(1.4)(8.4)$

 \Rightarrow Area of the path = 36.96 m²

6. Question

Find the area of the largest square that can be drawn inside a circle of radius 8 cm.

Answer

Given: Radius of the circle = 8 cm

Diameter of the circle = 16 cm

For the largest square inscribed in it i.e. BCDE,

Diagonal of the square = diameter of the circle

$$\Rightarrow$$
 BD = 16 cm

Area of a square = $\frac{\text{Diagonal}^2}{2}$

 \Rightarrow Area of BCDE = $\frac{16 \times 16}{2}$ = 128 cm²

7. Question

In the given figure, ABMC is a quadrant of a circle of radius 14 cm and a semicircle is drawn with BC as diameter. Find the area of the shaded region.

Answer

Given: ABMC is a quadrant of radius 14 cm.

In ΔABC,

 $\angle A = 90^{\circ}$, AB = AC = 14 cm

By Pythagoras theorem,

$$BC^2 = AB^2 + AC^2$$

$$\Rightarrow$$
 BC² = 2× 14×14

$$\Rightarrow$$
 BC = 14 $\sqrt{2}$ cm

Now, Area of $\triangle ABC = \frac{1}{2} \times base \times height$

$$\Rightarrow$$
 Area of \triangle ABC $=\frac{1}{2} \times 14 \times 14$

$$\Rightarrow$$
 Area of \triangle ABC = 98cm²

We know that the area of the minor sector = $\frac{\theta}{360^{\circ}} \times (\pi r^2)$

 $\Rightarrow \text{Area of ABMC} = \frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 14 \times 14$

 \Rightarrow Area of ABMC = 154cm²

So, area of ABMC = area of \triangle ABC + area of BCM

 \Rightarrow Area of BCM = area of ABMC - area of \triangle ABC

 \Rightarrow Area of BCM = 154 - 98 = 56 cm²

Also, we have a semicircle made at BC in the figure.

Diameter of the semicircle = BC = $14\sqrt{2}$ cm

 \Rightarrow Radius of the semicircle = $7\sqrt{2}$ cm

Area of semicircle = $\pi \frac{r^2}{2}$

 \Rightarrow Area of semicircular plot = $\frac{22}{7 \times 2} \times 7\sqrt{2} \times 7\sqrt{2}$

 \Rightarrow Area of semicircular plot = 154 cm²

Area of the shaded region = Area of the semicircle - Area of BCM

 \Rightarrow Area of the shaded region = 154 - 56 = 98 cm²

8. Question

In the given figure, AB is a diameter, AC = 6 cm, BC = 8 cm. Find the shaded region.

Answer

Given:

In ∆ABC,

AC = 6 cm, BC = 8 cm

Also, $\angle C = 90^{\circ}$ because angle subtended by the diameter is 90° and AB is the diameter.

By Pythagoras theorem,

BA² = CB² + AC² ⇒ BC² = 36 + 64 ⇒ BC = 10 cm Area of ∆ABC = $\frac{1}{2}$ × base × height ⇒ Area of ∆ABC = $\frac{1}{2}$ × 6 × 8 ⇒ Area of ∆ABC = 24 cm² Radius of the circle = 5 cm Area of a circle = πr^2

$$\Rightarrow$$
 Area = $\frac{22}{7} \times 5 \times 5 = 78.57 \text{cm}^2$

Area of the shaded region = Area of circle – Area of the triangle

 \Rightarrow Area of the shaded region = 78.57 - 24 = 54.57 cm²

9. Question

Find the area of the shaded design in the figure, where ABCD is a square of side 10 cm and semicircles are drawn with each side of the square as diameter (use π = 3.14).

Answer

Given side of the square ABCD = 10 cm

Area of the square = side × side

 \Rightarrow Area of ABCD = 10 × 10 = 100 cm²

Also given that semicircles are drawn with each side of the square as diameter

Diameter = 10 cm

Radius = 5 cm

Let us mark the four unshaded areas as I, II, III and IV.

Area of I + Area III

= Area of square - Area of two semi-circles

$$= 100 - 2 \times \frac{1}{2} \pi \times 25 = 100 - 3.14 \times 25$$

 $= 21.5 \text{ cm}^2$

Similarly, Area of II + Area of IV = 21.5 cm^2

So, area of shaded region = ar of ABCD - ar (I + II + III + IV)

 $= (100 - 2 \times 21.5) \text{ cm}^2$

= 100 - 43

 $= 57 \text{ cm}^2$

10. Question

In the given figure, radius of the semicircle is 7 cm. Find the area of the circle drawn inside the semicircle.

Answer

In the given figure the radius of the semicircle = 7 cm

The diameter of the circle inscribed in the semicircle = 7 cm

 \Rightarrow Radius of the circle = 3.5 cm

Area of a circle = πr^2

$$\Rightarrow$$
 Area = $\frac{22}{7} \times 3.5 \times 3.5 = 38.5 \text{ cm}^2$

11. Question

If the sum of circumferences of two circles of radii R_1 and R_2 is equal to the circumference of a circle of radius R, then which of the following choices is correct?

A.
$$R_1 + R_2 = R$$

B. $R_1 + R_2 > R$

C.
$$R_1 + R_2 < R$$

D. Nothing can be said with certainty.

Answer

Given: The sum of circumferences of two circles of radii R_1 and R_2 is equal to the circumference of a circle of radius R.

We know that circumference of the circle = $2\pi r$

$$\Rightarrow 2\pi R_1 + 2\pi R_2 = 2\pi R$$

$$\Rightarrow 2\pi (R_1 + R_2) = R$$

$$\Rightarrow$$
 R₁+R₂ = R

12. Question

The circumference of the incircle of a square of side 14 cm is—

A. 22 cm

- B. 44 cm
- C. 33 cm
- D. 55 cm

Answer

Let ABCD be the square with side 14 cm.

$$\Rightarrow$$
 BC = 14 cm

Let the circle centered at E be the incircle of the ABCD.

BC = diameter of the circle = 14 cm

 \Rightarrow Radius of the circle = 7 cm

Given that radius of the circle = 7 cm

We know that circumference of the circle = $2\pi r$

$$\Rightarrow$$
 Circumference = $2 \times \frac{22}{7} \times 7 = 44$ cm