

Chapter **16** f Metals

General Principles of Extraction of Metals

All the materials found in the earth are composed of elements. There are about 112 elements known which constitute the entire matter on the earth. Therefore, the elements are regarded as the building blocks of the universe. These are distributed in all the three main parts of the earth; atmosphere and lithosphere. Among these, lithosphere constitutes the main source of most of the elements. The elements have been broadly divided into metals and non-metals on the basis of their physical and chemical properties.

Occurrence of Metals

Element which have low chemical reactivity generally occur **native** or **free** or **metallic** state. e.g. *Au*,*Pt*, noble gas etc. Element which are chemically reactive, generally occur in the **combined state**. e.g. halogens, chalcogens etc. The natural materials in which the metals occur in the earth are called **minerals**. The mineral from which the metal is conveniently and economically extracted is called an **ore**. All the ores are minerals but all minerals cannot be ores. Ores may be divided into four groups,

(1) Metallic core (siderophile) of the earth crust contains (*Mn, Fe, Co, Ni, Cu, Ru, Rb, Pd, Ag, Re, Os, Ir, Pt, Au*). Entire composition of metals in earth crust may be given as,

Al (8.3%); *Ca*(3.6%); *Na* (2.8%); *K* (2.6%); *Mg* (2.1%); *Ti* (0.4%); *Mn* (0.1%); *Fe* (5.1%) other metals (0.1%).

(i) *Native ores* : These ores contain metals in free state, e.g., silver, gold, platinum, mercury, copper, etc. These are found usually associated with rock or alluvial materials like clay, sand, etc. sometimes lumps

of pure metals are also found. These are termed **nuggets**. Iron is found in free state as meteroites which also have 20 to 30% nickel.

(ii) **Sulphurised and arsenical ores :** These ores consist of sulphides and arsenides in simple and complex forms of metals. Important ores of this group are

Metal	Name of the ore	Composition
Pb	Galena	PbS
Zn	Zinc blende	ZnS
Hg	Cinnabar	HgS
Ag	Argentite or silver	Ag_2S
	glance Pyrargyrite or	$3Ag_2S.Sb_2S_3$
	ruby silver	
Fe	Iron pyrites	FeS_2
Ni	Kupfer nickel	NiAs
Си	Copper pyrites	$CuFeS_2$
	Chalcocite or Copper glance	Cu ₂ S

(iii) **Oxidised ores :** In these ores, metals are present as their oxides or oxysalts such as carbonates, nitrates, sulphates, phosphates, silicates, etc.

Important ores of this group are listed below,

Oxides	
Haematite	Fe ₂ O ₃
Magnetite	Fe_3O_4
Limonite	Fe ₂ O ₃ .3H ₂ O
Bauxite	$Al_2O_3.2H_2O$
Corundum	Al_2O_3
Diaspore	$Al_2O_3.H_2O$
Chromite	FeO.Cr ₂ O ₃
	ſ

Chromeochre	Cr_2O_3
Tinstone (Cassiterite)	SnO_2
Chrysoberyl	BeO.Al ₂ O ₃
Cuprite (Ruby copper)	Cu ₂ O
Pyrolusite	MnO ₂
Zincite	ZnO
Rutile	TiO ₂
Ilmenite	FeO.TiO₂ Ĵ
Carbonates	
Magnesite	MgCO₃
Lime stone	CaCO ₃
Dolomite	CaCO ₃ .MgCO ₃
Calamine	ZnCO ₃
Malachite	CuCO ₃ .Cu(OH) ₂
Azurite	Cu(OH)₂.2CuCO∮
Cerussite	PbCO ₃
Siderite	FeCO ₃
Nitrates	
Chile saltpetre	NaNO3
Salt petre	KNO3
Sulphates	
Epsom salt M	gSO4.7H2O
Barytes Ba	aSO_4
Gypsum Ca	$aSO_4.2H_2O$
Glauber's salt Na	a ₂ SO ₄ .10H ₂ O
Anglesite Ph	OSO_4
Kainite Ko	Cl.MgSO ₄ .3H ₂ O
Schonite K ₂	SO ₄ .MgSO ₄ .6H ₂ O
Polyhalite K ₂	$SO_4.MgSO_4.CaSO_4.2H_2O$
Phosphates and Silicates	
Lepidolite (an ore of lithium)	$(Li, Na, K)_2 Al_2(SiO_3)_3$ $(F,OH)_2$
Petalite (an ore of	$LiAl(Si_2O_5)_2$
lithium)	
Triphylite (an ore of lithium)	$(Li, Na)_3 PO_4, (Fe, Mn)_3$ $(PO_4)_2$
Beryl (an ore of berylium)	3BeO. Al ₂ O ₃ .6SiO ₂
Willemite	Zn_2SiO_4
China clay	$Al_2O_3.2SiO_2.2H_2O$
Chlor-apatite	$3Ca_3(PO_4)_2.CaCl_2$
Mica	$K_2O.3Al_2O_3.6SiO_2.2H_2O$
Fluor-apatite	$3Ca_3(PO_4)_2.CaF_2$
Felspar	KAlSi ₃ O ₈
Talc	$Mg_2(Si_2O_5).Mg(OH)_2$
Asbestos	$CaMg_3.(SiO_3)_4$

(iv) Halide ores : Metal	llic halides are very few in	
nautre. Chlorides are most co	mmon. For example.	
Common salt <i>NaCl</i> ;	Horn silver AgCl	
Carnallite KCl. MgCl ₂ .6H	V_2O	
The important fluoride	ores are	
Fluorspar CaF_2 ;	Cryolite Na ₃ AlF ₆	
Metals in Biology		

Metals are also found in living organisms, e.g.,

(1) Magnesium is found in chlorophyll.

(2) Potassium is present in plant roots.

(3) Manganese, Iron and copper are present in chloroplast. (4) Zinc is present in eyes of cats and cows.

(5) Iron is present in haemoglobin.

- (6) Calcium is present in bones.
- (7) Vanadium is present in cucumbers.(8) Chromium is present in prown.

Extraction of Metals: Metallurgy

The extraction of a pure metal from its ore is called **metallurgy.** In order to extract the metal from ores, several physical and chemical methods are used. The method used depending upon chemical properties and nature of the ore from which it is to be extracted. It involves four main steps,

(1) Crushing and grinding of the ore.

(2) Concentration or dressing of the ore.

(3) Reduction to free metal.

(4) Purification or refining of the metal.

(1) **Crushing and grinding of the ore :** Those ores occur in nature as huge lumps. They are broken to small pieces with the help of *crushers or grinders*. These pieces are then reduced to fine powder with the help of a **ball mill or stamp mill**. This process is called **pulverisation**.

(2) **Concentration or dressing of the ore :** The ore are usually obtained from the ground and therefore contained large amount of unwanted impurities, e.g., earthing particles, rocky matter, sand, limestone etc. These impurities are known collectively as **gangue** or **matrix**. It is essential to separate the large bulk of these impurities from the ore to avoid bulk handling and in subsequent fuel costs. The removal of these impurities from the ores is known as **concentration**. The concentration is done by physical as well as chemical methods.

Physical Methods (i) *Gravity Separation or levigation*: This process of concentration is based on the difference in the specific gravity of the ore and gangue.

The sieved ore is either subjected to dry centrifugal separation or is placed in big shallow tanks in which a strong current of water blows. Heavy ore particles settle down to the bottom of the tanks while lighter gangue particles are carried away by the current of water. The process removes most of the soluble and insoluble impurities. For this purpose wilfley table and hydraulic classifier are widely used. The method is particularly suitable for heavy oxide and carbonate ores like *Cassiterite* (*SnO*₂) and haematite.

(ii) **Froth floatation process :** In some cases for example, sulphides ores of copper, zinc and lead concentration is brought by this method. In this method advantage is taken of the preferential wetting of the ore by an oil. The finely ground ore is taken in a tank containing water and 1% of pine oil or terpentine oil. A strong current of air is blown through the suspension, producing a heavy froth or foam on the surface. The metal sulphide is wetted by the oil but the gangues is not and the sulphide-oil mixture is carried to the surface by films of oil The froth is skimmed off, the gangue settles down on the bottom or remains underneath the froth. By this floatation method it is possible to concentrate over 90% of a sulphite ore to 1/10 of its original bulk.

Fig. 16.2. Froth floatation process

(ii) Activators and Depressants : During the floatation process of some ores, these substances are added which activate or depress the floatation property of the minerals and thus help in the separation of

minerals present in the ore. For instance, galena (PbS) is usually associated with sphalerite (ZnS)and pyrites (FeS_2) . Concentration of galena carried out is bv passing potassium ethyl

xanthate (**Collector**) along with sodium cynamide and alkali (**depressants**) where by the floatation property of ZnS and FeS_2 is depressed. Mainly *PbS* passes into the froth when air current in flown in, which is collected. After *PbS* is removed with the froth, same $CuSO_4$ (**activator**) is added and air is blown. The floatation property of ZnS is increased which is now removed with the froth. The slurry is acidified and process is repeated when FeS_2 passed into the froth and is collected.

(iii) *Electromagnetic separation* : If the mineral and not gangue is attracted by a magnet, it can be concentrated by magnetic separation. For example **chromite** ore, *FeCr*₂O₄ being magnetic can be separated from non-magnetic silicons impurities by this method. Sometimes two minerals occur together, in which one happens to be magnetic. By magnetic separation method the nonmagnetic minerals is separated from the magnetic mineral. For example tin-stone or cassiterite, SnO₂ (non-magnetic) containing wolfram, FeWO₄ (magnetic) is separated by this method. In this method a thin layer of finely ground ore is spread over a rubber belt carried over a pulley in a magnetic field. The gangue particles or the particles of non-magnetic mineral fall off as the belt becomes vertical, and the magnetic particles collect.

Chemical methods (i) **Calcination :** In this process the concentrated ore is heated in a suitable furnace generally in reveratory furnace much below its **melting point** in absence of air. As a result of which the ore dries up and moisture and volatile impurities are driven off and carbonates are converted into oxides and the ore becomes porous. For example,

 $\begin{aligned} Al_2O_3.2H_2O &\rightarrow Al_2O_3 + 2H_2O \\ 2Fe_2O_3.3H_2O &\rightarrow 2Fe_2O_3 + 6H_2O \\ ZnCO_3 &\rightarrow ZnO + CO_2 \ ; \ CaCO_3 &\rightarrow CaO + CO_2 \\ CuCO_3.Cu(OH)_2 &\rightarrow 2CuO + CO_2 + H_2O \end{aligned}$

(ii) **Roasting**: The process of heating the ores strongly in presence of air with or without certain substances, below its melting point is termed as roasting. It differs from calcination in the respect that heating is done in presence of air and at a higher temperature. In this process the **impurities of sulphur and arsenic** etc. are volatilized away as oxides and the ore is converted into oxide. For example zinc oxide is formed by the oxidation of zinc blende,

$$2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$$

(iii) *Leaching* : It involves the treatment of the ore with a suitable reagent as to make it soluble while impurities remain insoluble. The ore is recovered from the solution by suitable chemical method. For example, the chief ore of aluminium, bauxite ($Al_2O_3.2H_2O$) contains varying amounts of ferric oxides, titanium oxide and silica. Since alumina is amphoteric, it can be separated

from the other two oxides. Finely powdered bauxite is digested with caustic soda solution at $150-170^{\circ}C$ under pressure for some hours. Alumina dissolves forming soluble sodium aluminate.

 Al_2O_3 . $2H_2O + 2NaOH \rightarrow 2NaAlO_2 + 3H_2O$

The impurities remain unaffected and separated as insoluble red mud which is filtered off. The filtrate is diluted and some freshly precipitated aluminium hydroxide is added when $Al(OH)_3$ is precipitated as follows,

 $NaAlO_2 + 2H_2O \rightarrow NaOH + Al(OH)_3$

The precipitated hydroxide is filtered off and calcified to get highly pure aluminium oxide (alumina).

$$2Al(OH)_3 \xrightarrow{\text{calcination}} Al_2O_3 + 3H_2O_3$$

Gold and silver are also extracted from their native ores by Leaching (Mac-Arthur forest cyanide process).

(3) **Reduction to free metal :** Some of the methods commonly used to get free metal from the concentrated ore are given below,

(i) *Smelting*: The process of extracting a metal in the state of fusion is called *smelting*. In this process the ore is mixed with carbon, obtained after the above reactions and heated in suitable furnace. A suitable *flux* is added during the operation to convert the non-fusible gangue to fusible slag. The metallic oxide is reduced by carbon and the metal may be obtained in the molten state or as vapours which are condensed. Metals like tin, zinc or lead are obtained by this process.

$$SnO_2 + 2C \rightarrow Sn + 2CO$$
; $ZnO + C \rightarrow Zn + CO$
 $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

Flux and slag : Flux is a substance that is added during smelting to convert infusible silicons or earthy impurities into fusible material known as slag. **Impurities + Flux = Slag**. The slag is immiscible with the metal and has a low melting point and density. The slag floats on the metal and protects it from oxidation. It is removed from the furnance through the slag hole. If the impurities in the ore are acidic (SiO_2) in nature, a basic flux e.g., *CaO*, *MgO*, *FeO* etc. are added; and if the impurities are basic (*CaO*, *FeO*, etc.) then on acidic flux (SiO_2) is used. The gangue or matrix present in the ore is refractory or non-fusible in nature but it reacts with the flux forming fusible slag which does not mix with the molten metal and forms the upper layer. Slag are usually silicates.

$$\begin{array}{cccc} CaO &+ SiO_2 &\rightarrow CaSiO_3 \\ Flux & Impurities & Slag \end{array} ; \begin{array}{cccc} SiO_2 &+ FeO \rightarrow FeSiO_3 \\ Impurities & Slag \end{array}$$

(ii) **Reduction by Aluminium** (Gold-schmidt alumino thermic process) : The process of reduction is used in the case of those oxides which can not be easily reduced by carbon. In this process, metallic oxides ore

are mixed with aluminium powder commonly called as thermite and placed in a steel crucible lined inside with a refractory material and ignited by magnesium ribon. By the use of this process a number of metals such as chromium and manganese are obtained on a commercial scale in highly pure state.

$$Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr$$
; $2MnO_2 + 4Al \rightarrow 2Al_2O_3 + 3Mn$

Large amount of heat energy is released during reduction, which fuses both the alumina and the metal.

(iii) **Self reduction process :** This process is also called autoreduction process or air reduction process. The sulphide ores of less electropositive metals like **Hg**, **Pb**, **Cu** etc., are heated in air as to convert part of the ore into oxide or sulphate which then reacts with the remaining sulphide ore to give the metal and sulphur dioxide. No external reducing agent is used in this process.

(iv) *Electrolytic reduction process* : This process is used in the extraction of the alkali and alkaline earth metals, zinc and aluminium. The material from which a metal to be obtained is first smelted by heating and then electrolysed. Sometimes, some other salt is mixed to lower the melting point of the substance taken. For example,

$$NaCl$$
 $Na^+ + Cl^-$

At anode (Oxidation) : $Cl^{-} \xrightarrow{-e^{-}} Cl$; $Cl + Cl \rightarrow Cl_{2}$,

At cathode (Reduction) :

 $Na^+ + e^- \rightarrow Na$

(v) **Precipitation or metal displacement method** (Hydrometallurgy) : This method is used for extraction of metals such as **cadmium, copper, gold and silver**. A metal having higher electrode potential is added into the solution of a metal of lower electrode potential with the result that the latter is displaced or precipitated.

$$CuSO_{4} + Fe \rightarrow Cu + FeSO_{4};$$

$$CdSO_{4} + Zn \rightarrow Cd + ZnSO_{4}$$

$$2K[Ag(CN)_{2}] + Zn \rightarrow 2Ag + K_{2}[Zn(CN)_{4}]$$

$$2K[Au(CN)_{2}] + Zn \rightarrow 2Au + K_{2}[Zn(CN)_{4}]$$

(vi) *Amalgamation process*: This method is used for the extraction of noble metals like **gold**, **silver**, etc., from the native ores. the finely powdered ore is brought in contact with mercury which combines with the particles of the metal present in the ore and form amalgam. The metal recovered from the amalgam by subjecting it to distillation, where the mercury distills over leaving behind the metal.

(4) **Purification or refining of metals :** Metals obtained as above are usually impure and need purification. Some of the methods used in the refining of metals are given below,

(i) **By poling**: The molten metals is stirred with green wood poles. Wood at the high temperature of the molten metals form hydrocarbons like methane which being about the reduction of any oxide present in the metal e.g., copper oxide present in **the blister copper**. In the case of the tin the impurities are oxidised and float on the molten metal as scum which is removed.

(ii) **By cupellation** : In this method the impure metal is heated in a blast of air when impurities are oxidised and blown away. For example, when impure silver is heated in air, lead present in it is oxidised to litharge (*PbO*) and blown away leaving a shining of silver.

(iii) **By liquation**: This process is used for refining easily fusible metals like lead and tin. The impure metal is heated on the slopy hearth of a reverberatory furnace. The metal melts and flows down leaving the impurities.

(iv) **By distillation** : Some metals have very low melting point and soon vaporize on behind heating, while the associated impurities remains in the solid state. **Zinc, mercury and arsenic** are purified by this method. Vacum distillation gives very pure product and is used in the refining of the metals of IA and IIA Groups.

(v) **By fractional distillation** : This process is applied for the separation of **cadmium** from **zinc**. In the metallurgy of zinc, the metal is invariably associated with cadmium. The impure zinc is mixed with powdered coke and heated when the first portion of the condensate contain cadmium while zinc is obtained in the subsequent portions.

(vi) **By thermal dissociation** : In this process the metal is first converted into some compound which is then decomposed into pure metal by heating. For example, impure **nickel** is heated with carbon monoxide at $60^{\circ}C$ to form nickel carbonyl $Ni(CO)_4$ which is then decomposed at higher temperature, 150-180°C to give very pure nickel. Sometimes iron is also purified by this method.

(vii) **By Electrolytic refining**: Most of the metals such as **copper**, **silver**, **gold**, **zinc**, **nickel**, and **chromium** are refined electrolytically. The impure metal is made the anode and a thin sheet of the pure metal the cathode in a suitable electrolytic bath. On passing current the metal from the anode passes in the solution and pure metal from the electrolyte is

S N deposited on the cathode. The electrolyte used in the bath is usually a complex salt of the metal to enable the smooth deposition of pure metal on the cathode.

(viii) Special methods

(a) *Mond's process* : Nickel is purified by this method. Impure nickel is treated with carbon monoxide at $60-80^{\circ}C$ when volatile compound, nickel carbonyl, is formed. **Nickel carbonyl** decomposes at $180^{\circ}C$ to form pure nickel and carbon monoxide which can again be used.

(b) Van Arkel process : This methods is generally applied for obtaining ultrapure metals. The impure metal is converted into a volatile compound while the impurities are not affected. The volatile compound is then decomposed electrically to get the pure metal. *Ti*, *Zr*, *Hf*, *Si* etc., have been refined by this method.

(c) Zone refining or fractional crystallisation : Elements such as **Si, Ge, Ga,** etc., which are used as semiconductors are refined by this method. Highly pure metals are obtained. The method is based on the difference in solubility of impurities in molten and solid state of the metals. A movable heater is fitted around a rod of the metal. The heater is slowly moved across the rod. The metal melts at the point of heating and as the heater moves on from one end of the rod to the other end, the pure metal crystallises while the impurities pass on the adjacent melted zone.

			5	
Metal		Main Occurrence		Main method of Extraction
odium	Common Sal	t, NaCl		Electrolysis of fused $NaCl$ with $CaCl_2$
lagnesium	Carnallite,	KCl.MgCl ₂ .6H ₂ O	Magnesite	Electrolysis of fused M_gCl_2 with KCl
	1118003			

 Table 16.1 Summary of the Extraction of Metals

Calcium	Lime stone, $CaCO_3$ Gypsum, $CaSO_4.2H_2O$	Electrolysis of fused $CaCl_2$ and CaF_2
Aluminium	Bauxite, $Al_2O_3.2H_2O$	Electrolysis of Al_2O_3 in molten Na_3AlF_6 (cryolite)
Copper	Copper pyrites, <i>CuFeS</i> ₂ Cuprite, <i>Cu</i> ₂ <i>O</i>	Partial oxidation of sulphide ore
		$(2Cu_2O + Cu_2S \longrightarrow 6Cu + SO_2)$
Silver	Argentite, Ag_2S Native silver	Hydrometallurgy
		$Ag_2S + 4NaCN \longrightarrow 2NaAg (CN)_2 + Na_2S$
		$2NaAg (CN)_2 + Zn \longrightarrow Na_2Zn (CN)_4 + 2Ag$
Zinc	Zinc Blende, <i>ZnS</i> Calamine, <i>ZnCO</i> ₃	Reduction of ZnO with carbon or electrolysis of
		$ZnSO_4$ $ZnO + C \longrightarrow Zn + CO$
Lead	Galena, PbS	Reduction of <i>PbO</i> with carbon
		$PbO + C \longrightarrow Pb + CO$
Tin	Cassiterite, SnO ₂	Reduction of SnO_2 with carbon
		$SnO_2 + 2C \longrightarrow Sn + 2CO$
Iron	Haematite, Fe_2O_3 Magnetite, Fe_3O_4	Reduction of oxide with carbon monoxide
		$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$
Chromium	Chromite, <i>FeO</i> . <i>Cr</i> ₂ <i>O</i> ₃	Reduction of Cr_2O_3 with Al
		$Cr_2O_3 + 2Al \rightarrow 2Cr + Al_2O_3$
Nickel	Millerite, NiS	Reduction of <i>NiO</i> with <i>CO</i>
		$NiO + 5CO \longrightarrow Ni(CO)_4 + CO_2; Ni(CO)_4 \longrightarrow Ni + 4CO$
Mercury	Cinnabar, HgS	Direct reduction of <i>HgS</i> by heat alone
		$HgS + O_2 \longrightarrow Hg + SO_2$

Main types of metallurgical processes

Different metallurgical processes can be broadly divided into three main types

(1) **Pyrometallurgy :** Extraction is done using heat energy. The metals like Cu, Fe, Zn, Pb, Sn, Ni, Cr, Hg etc. Which are found in the nature in the form of oxides, carbonates, sulphides are extracted by this process.

(2) **Hydrometallurgy :** Extraction of metals involving aqueous solution is known as hydrometallurgy. Silver, gold etc are extracted by this process.

(3) **Electrometallurgy** : Extraction of highly reactive metals such as Na, K, Ca, Mg, Al etc. by carrying electrolysis of one of the suitable compound in fused or molten state.

Furnaces

In the extraction of metal different types of furnaces are used. Each furnace has its own

cup and cone arrangement at the top. At the upper part of the furnace there is a hole for the escape of the waste gases of the furnace. There are two outlets in the hearth of the furnace, one for tapping the molten metal and the other above it for the slag. The waste gases are heated and a hot air blast under pressure is blown into the furnace by means of bellows or fans through water cooled nozzles ortuyers. The temperature of the furnace varies from **250°C**. to **1500°C**. Thus the charge descends slowly into zone of increasing temperatures. The blast furnace is used for the extraction of metal like **copper and iron**.

characteristics. Some principal furnaces have been

cylindrical furnace, about 100 feet high with a diameter

of 15-28 feet. It is made of steel sheets lined inside

with fire-proof bricks. The charge is added through a

(1) Blast furnace : It is a special type of tall

described below,

are unsuitable where higher temperatures are needed. One commonly used electric furnace is **Heroult's furnace** shown in fig. It consists of a steel shell lined

inside with dolomite or magnesite. It is provided with movable water jacketed electrodes suspended from the roof or from the sides. Heat is generated by striking an arc between the electrodes, thereby, a temperature of over **3000**°C may be reached. The charge melts and the impurities e.g., *Si, Mn, P* and *S* etc. present in the ore combine with the basic lining to form slag, which is free from sulphur or gas bubbles. **Steel** of very fine quality is prepared by this method. Electric furnaces are largely used where,

(i) Cheap power supply is available. (ii) High temperature are required. (iii) Pure product are required.

As such they find wide applicability in a number of industries such as metallurgy, ceramices plastics chemical and also in the research laboratories. These furnaces are easily operated and involve the problem of the storage of fuel and disposal of fuel waste.

(4) **Muffle Furnace :** In this furnace the material to be heated does not come in the contact with the fuel or flames. A muffle is a chamber made of refractory material and is surrounded by flames and hot gases on all sides. The products of combustion are removed through a door provided in the furnace. Muffle furnace is used for the extraction of **zinc**, preparation of red lead, Pb_3O_4 and for testing the purity of precious metals like **silver** and **gold**. In an electric muffle furnace the chamber aresult of by resistance coils.

Fig. 16.7. Muffle furnace

(5) **Bessemer Converter :** A Bassemer converter is a pear-shaped 10 or more feet high, open at the top, lined with a refractory material such as silica or magnesia which also acts as a flux. The converter is mounted on trunnions, so that it can be tilted to collect the products formed. There is an arrangement of introducing a hot blast of air from a number of small openings in the bottom of the furnace. The converter is used mostly for manufacturing of **copper of steel from**

(2) **Reverberatory Furnace :** In this furnace fuel burns in a separate part and does not mix with the charge. The furnace may be divided into 3 parts,

(i) *Fire Grate* : It is on one side where the fuel burns.

(ii) *Flue or Chimney* : It is on the other side of the fire grate. The waste gases escape through it.

(iii) *Hearth* : It is the middle part of the furnace where the charge is heated with the flames and hot gases.

The material to be heated is placed on the hearth or bed of the furnace and is heated by the hot gases or flames produced by the burning of fuel. The waste gases escape out of the chimney. Since the fuel does not come in contact with the charge, the furnace is very suitable for calcination and roasting and is employed for both oxidising and reducing purposes. For oxidation, the material is heated by the current of hot air while for reduction the material is mixed with coke and heated. The furnace find wide application in the extractive metallurgy.

(3) **Electric Furnace :** The fuel burnt furnaces described in this chapter produce temperature in the range of $1000-1500^{\circ}C$. Although these furnaces have the great utility in the extraction of metals yet these

pig iron. Passing a current of hot air into the molten metal taken in the converter, the impurities are oxidised and escaped as gases or from slag. The Bessemer process is rapid one and does not take more than 15 minutes in the production of one bath.

(6) **Regenerative Furnace :** These are furnaces in which the heat of the gases escaping out from the chimney is utilized. Most of the furnaces particularly blast furnaces are fitted up with regenerated system which means an economy of the fuel. A flowing column of air is heated by the hot flue gases, it is then brought back to the fire and returned to the furnace. This furnace is largely used in the production of **steel**.

Refractory materials

The materials which can withstand very high temperatures without melting or becoming soft are known as refractory materials. These are not affected by slags formed during the extraction of metals. These are used in the form of bricks for the internal linings of furnaces. Refractory materials used are of three types,

(1) **Acid refractories :** Silica, quartz, silicious sand stones, etc., are the examples.

(2) **Basic refractories :** Lime, dolomite, magnesite, etc., are the examples.

(3) **Neutral refractories :** Graphite, chromite, bone ash, etc., are the examples.

Silica $(92\% SiO_2, 2.7\% Al_2O_3)$ and quartz, can tolerate temperatures upto about 1750°*C*, bauxite upto 1800°*C*, alumina upto 2000°*C* and magnesite, chromite, etc., upto 2200°*C*. Some carbides such as silicon carbide is used as refractory for special purposes.

Alloys

A metallic product containing two or more metals or sometimes one of the ingredients a nonmetal provided that the mixture is homogenous and possesses metallic properties, is known as an alloy. Alloys are usually prepared by melting two or more metals together in the proportions and then allowing the melting to solidify. If one of the metals is mercury the alloy is known as **amalgam**.

Alloys are prepared with a view to impart some desirable properties which the individual metals do not possess. These are,

(1) **Change in the chemical reactivity :** Sodium acts vigorously with water, but *Na-Hg* amalgam reacts slowly to suit the requirement of a number of chemical reactions.

(2) **Hardness :** Silver, gold and soft metals but become hard when alloyed with copper.

(3) **Melting Points :** Melting points of an alloy may be higher or lower than any of its components. Wood-metal, which is an alloy of *Bi*, *Pb*, *Sn* and *Cd* fuses at $60.5^{\circ}C$, while none of these metals fuses at this low temperature.

(4) **Change of colour :** Aluminium bronze is an alloy of aluminium and copper. It is of golden, yellow colour and is used in making decoration articles, jewellery and coins while the colour of aluminium is white and that of copper is red.

(5) **Corrosion resistance :** Iron gets corroded soon whereas stainless Steel, an alloy of iron and chromium, resists corrosion.

(6) **Casting :** An alloy of lead and antimony is known as *type metal* is used for casting type required in printing works.

Alloy	Percentage		y Percentage		Important Properties	Uses		
Aluminium	Al	95%	95% Light, strong alloy with golden Coins, utensils, jewellary picture fram					
bronze	Си	5%	lustre, resistant to corrosion	etc.				
Magnalium	Al	95%	Light, tough and strong	Light instruments, balance beam,				
	Mg	5%		pressure cookers etc.				
Duralumin	Al	95%	Light, tough, ductile, resistant	Making aeroplanes automobile parts				
	Си	4%	to corrosive action	pressure cookers etc.				
	Mg	0.5%						
	Mn	0.5%						

Table 16.2 Alloys of Al

Table 16.3 Alloys of Ag				
Alloy	Percentage composition	Uses		
Coinage silver	Ag = 90, Cu = 10	For making silver coins.		
Silver solder	Ag = 63, Cu = 30, Zn = 7	For soldering and joining metals		
Dental alloy	Ag = 33, Hg = 52, Sn = 12.5, Cu = 2.0, Zn = 0.5	For filling teeth		

General Principles	of	Extraction	of	Metals	661
---------------------------	----	------------	----	--------	-----

Silver	Ag = 40, Pd = 60	Potentiometers	and	winding	of	some
palladium		special instrume	ents.			

Table 16.4 Alloys of Pb and Sn				
Alloy	Percentage Composition	Uses		
Solder	Pb = 50, Sn = 50	For soldering.		
Pewter	Pb = 20, Sn = 80	In making cups, mugs and other utensils.		
Type metal	<i>Pb</i> = 70, <i>Sb</i> = 20 and <i>Sn</i> = 10	For making printing type.		
Rose metal	Pb = 22, Sn = 28, Bi = 50	For making electric fuses.		
Britannia metals	Sn = 90, Sb = 8, Cu = 2	For making table wares.		

Table 16.5 Alloys of Copper

Alloy	Percentage Composition	Uses
Brass	Cu = 80, Zn = 20	For making utensils, condenser tubes, wires parts of machinery etc.
Bronze or Copper bronze	Cu = 80, Zn = 10, Sn = 10	For making cooking utensils, statues, coins etc.
Aluminium bronze	Al = 95, Cu = 5	Coins, picture frames, cheap jewellery
Gun metal	Cu = 90, Sn = 10	For making gun barrels.
Bell metal	Cu = 90, Sn = 20	For making bells, gongs etc.
Constantan	Cu = 60, Ni = 40	For electrical apparatus
German silver	Cu = 60, Zn = 20, Ni = 20	For making silver wire, resistance wires etc.
Monel metal	<i>Cu</i> = 30, <i>Ni</i> = 67, <i>Fe</i> and <i>Mn</i> = 3	For making acid pumps and acid containers.
Phosphor bronze	Cu = 95, Sn = 4.8, P = 0.2	For making springs, electrical equipment
Gold-copper alloy	Au = 90, Cu = 10	For making gold coins, jewellery, watch cases, spectacle rims etc.

Table 16.6 Alloys of Iron

Name	Percentage	Properties	Uses
Stainless	Fe = 73%, Cr = 18%,	Resists corrosion	For making utensils, cutlery and
steel	Ni = 8% and carbon		ornamental pieces.
Manganese	Fe = 86%, Mn = 13% and	Very hard, resistant to	For Making rock drills, safes etc.
steel	carbon	wear and tear.	
Tungsten	Fe = 94%, W = 5% and	Retains hardness even	For making high speed cutting tools.
steel	carbon	at high temperatures	
Invar	Fe = 64%, Ni = 36%	Practically no	For making watches, meter scales,
		coefficient of	pendulum rods etc.
		expansion.	

Nickel steel	Fe = 98-96%, Ni = 2-4%	Resistant to corrosion, hard and elastic.	For making wire cables, gears, drive shafts etc.
Permalloy	<i>Fe</i> = 21%, <i>Ni</i> = 78% and carbon	Strongly magnetised by electric current, loses magnetism when current is cut off.	For making electromagnets, ocean cables etc.
Chrome steel	Fe = 98-96%, Cr = 2-4%	High tensile strength	For making axles, ball bearings and cutting tools such as files.
Alnico	Fe = 60%, Al =12%, Ni = 20%, Co = 8%	Highly magnetic	For making permanent magnents.

662 General Principles of Extraction of Metals

2

3.

4.

5.

6.

7.

8.

9.

- Pitch blende is the source of Ra, U and Th.
- Nitrate is least likely to be found in mineral.
- \swarrow Oxygen is the most abundant element (45.2%)
- \swarrow Aluminium is the most abundant metal (8.3%)
- Silicon is the second most common element in the universe (27.2%)

∠ First five element comprise al most 92% by weight

∠ First ten elements make up over 99.5% of the earth crust.

- ✓ Other very abundant element are nitrogen (78%) of the atmosphere) and hydrogen which occurs as water in the ocean.
- Diamond consist only carbon.
- A Removal of unwanted earthy and silicious impurity from the ore is called ore dressing or concentration.
- *K Refractory materials* : These are the substances which can withstand very high temperature without melting or becoming soft.
- ∠ Noble metal like Au, Aq etc. are obtained by cyanide or amalgamation process.
- Active metal like Li, Na, K (alkalimetal) Cs, Mq, Sr, Ba (alkaline earth metal) etc are obtained by the electrolysis of their chloride, oxides or hvdroxide.
- 🗷 Heavy metal like Cu, Zn, Fe, Pb, Sn etc are obtained by roasting and smelting process.
- separation is employed for 🛋 Gravity the concentration of oxide ores.
- ✓ Slag is used in road making as well as in the manufacture of cement and fertilizers.

Ordinary Thinking

Objective Questions

Occurrence

- The most abundant element on earth crust is 1. [MP PMT 1972, 80, 84; DPMT 1986] (a) Hydrogen
 - (b) Oxygen (c) Silicon (d) Carbon

- Naturally occurring substances from which a metal can be profitably (or economically) extracted are called [CPMT 1982; MP PET 1996] (a) Minerals (b) Ores (c) Gangue (d) Salts Titanium containing mineral found in our country is [NCERT 1984: RPET 1999] (a) Bauxite (b) Dolomite (c) Chalcopyrites (d) Elmanite Silicon is main constituent of [DPMT 1985] (a) Allovs (b) Rocks (c) Animals (d) Vegetables Ore pitch blende is main source of [DPMT 1985; RPET 1999] (a) *Ra* (b) *Ce* (c) Th (d) Mg Which of ore is metalloid [MP PMT 1987] (a) *As* (b) *Na* (c) Au (d) *Fe* A mineral is called an ore if [MP PMT 1990] (a) Metal present in mineral is precious (b) Metal can be extracted from it (c) Metal can be extracted profitably from it (d) Metal cannot be extracted from it The highest quantity present in the atmosphere is of [NCERT 1971, 79; CPMT 1972] (a) Oxygen (b) Hydrogen (c) Nitrogen (d) Ozone Which of the following statement is correct (a) Bauxite is an ore of aluminium (b) Magnetite is an ore of manganese (c) Haematite is an ore of mercury (d) Pyrites is an ore of phosphorus Carnellite is a mineral of 10. [CBSE PMT 1988; DPMT 1983; AMU 1999] (a) *Ca* (b) *Na* (c) Mg (d) Zn 11. The salt which is least likely to be found in minerals is [DPMT 1984]
 - (a) Chloride (b) Sulphate (c) Sulphide (d) Nitrate
- Metal which can be extracted from all the three 12. dolomite, magnesite and carnallite is[MP PET 1985]
 - (a) Na (b) *K* (d) Ca
 - (c) Mg

Cinnabar is an ore of 13.

- [DPMT 1982, 84; CBSE PMT 1991; MNR 1986;
- CPMT 1973, 76, 78, 79, 86, 89, 94; UPSEAT 1999]
- (a) *Hg* (b) *Cu*

662 General Principles of Extraction of Metals (c) *Pb* (d) Zn Metallurgy is the process of 14. [MP PET 2001] (a) Concentrating the ore (b) Roasting the ore (c) Extracting the metal from the ore (d) Adding carbon to the ore in blast furnace What is believed to be the second most common 15. element in the universe [MP PET 2000] (a) Helium (b) Hydrogen (c) Nitrogen (d) Silicon Which of the following substances consists of only 16. one element [MP PET 1999, 2000] (a) Marble (b) Sand (c) Diamond (d) Glass Which of the following minerals is not an ore of 17. aluminum (a) Bauxite (b) Gypsum (c) Cryolite (d) Corundum An example of halide ore is 18. [MP PMT 1993] (a) Galena (b) Bauxite (c) Cinnabar (d) Cryolite Which of the following is not an ore 19. [IIT 1982] (a) Bauxite (b) Malachite (c) Zinc blende (d) Pig iron "Chile saltpetre" is an ore of 20. [CPMT 1982] (a) Iodine (b) Sodium (c) Bromine (d) Magnesium 21. Which of the following metal is not found in free state (a) Na (b) Au (d) *Pb* (c) Ag 22. Which of the following ore is used for industrial extraction of aluminium in India [MP PET 1989] (a) Corundum (b) Keolin (c) Cryolite (d) Bauxite Bauxite is an oxide ore of 23. [BHU 1979; AFMC 1980; Kurukshetra CEE 1998; RPET 1999; CPMT 1976, 2001, 02] (a) Barium (b) Boron (c) Bismuth (d) Aluminium 24. Cryolite is [AMU 1983] (a) Magnesium silicate (b) Sodium borofluoride (c) Sodium aluminium fluoride (d) Magnesium silicate 25. Composition of bauxite is (a) Al_2O_3 (b) $Al_2O_3.H_2O$ (c) $Al_2O_3 \cdot 2H_2O$ (d) $Al_2O_3.3H_2O$ Main ore of aluminium is 26. [CPMT 1989, 91, 2001; RPMT 1997; RPET 1999] [CPMT 2002, MP PMT 1999]

(a) Bauxite (b) Corundum
---------------	-------------

-		
	(c) Cryolite	(d) Magnetite
27.	Corundum is	[CPMT 1975, 76; DPMT 1983]
	(a) SrO_2	(b) Al_2O_3
	(c) <i>CaCl</i> ₂	(d) Cu_2Cl_2
28.	Which is not a mineral	of aluminium
	[BHU 197 4	l, 79; MNR 1984; DPMT 2002]
	(a) Anhydrite	(b) Bauxite
	(c) Corundum	(d) Diaspore
29.	Which of the following	g mineral does not contain
	Al	
		[IIT (Screening) 1992]
	(a) Cryolite	(b) Mica
	(c) Feldspar	(d) Fluorspar
30.	An important oxide ore	of iron is
	[MP PET/PMT 1998; MP	PET 1990; MP PMT 1994, 96]
	(a) Haematite	(b) Siderite
~ 4	(c) Pyrites	(d) Malachite
31.	which ore is used for th	
	(a) Cryolite	(b) Bauvite
	(c) Haematite	(d) Chalcopyrites
32	Formula of magnetite i	(u) enaleopyrites
520	(a) $Fe_0 O_0$	$(b) FeS_{a}$
	(a) $F_{2}O_{3}$	(d) E_{2}
	(c) $FeCO_3$	(u) Fe_3O_4
33.	Which of the following	1s ferrous alloy
	(a) Invar	(b) Solder
	(c) Magnalium	(d) Type metal
34.	Which of the followin	g ores does not represent
	the ore of iron	[CPMT 1989; AIIMS 2002]
	(a) Haematite	(b) Magnetite
	(c) Cassiterite	(d) Limonite
35.	The formula of haemat	ite is [MNR 1994]
	(a) Fe_3O_4	(b) Fe_2O_3
	(c) $FeCO_3$	(d) FeS ₂
36.	Which metal is not silv	ery white
	(a) <i>Ni</i>	(b) <i>Cu</i>
	(c) <i>Na</i>	(d) <i>Sn</i>
37.	Azurite is an ore of	
	(a) <i>Ag</i>	(b) <i>Cu</i>
	(c) <i>Pt</i>	(d) <i>Au</i>
38.	Copper can be extracted	d from
	[NCE]	RT 1973; IIT 1978; J & K 2005]
	(a) Kupfernickel	(b) Dolomite
	(c) Galena	(d) Malachite
39.	which of the following	ore is called malachite
	(a) $Cu_{2}S$	(b) $C_{\mu}CO_{\alpha}C_{\mu}(OH)_{\alpha}$
	$(a) Cu_2 S$	(d) $C_{\mu}C_{0}$
	$(U) \cup U_2 \cup U_2 \cup U_3 $	$(u) \cup (u) \cup (u)$

40.	Argentite is a mineral of	f
	[CPN	MT 1978; MP PMT/PET 1988]
	(a) Copper	(b) Silver
	(c) Platinum	(d) Gold
41.	Which one of the follow	ing is an ore of silver
	$(\mathbf{p}) \text{Argontite}$	(b) Stibuito
	(a) Algentite	(d) Pauvita
42	(c) Haemanie	(u) Bauxite
42.	[BHIJ 1980, 85: CPMT 199	0: MNR 1005: UPSEAT 1000]
	(a) $ZnSO$.	(b) ZnO
	(c) $Z_{n}(NQ)$	
	(c) $2m(100_3)_2$	(u) 2 <i>n</i> co ₃
43.	Important ore of zinc is	[CPMT 1973, 78, 80]
	(a) Calamine	(b) Cryolite
	(C) GIUSILE	(d) Malacinte
44.	which of the following s	
	(a) Silver glance mainly	contains silver sulphide
	(b) Gold is found in nati	ve state
	(c) Zinc blende mainly o	contain zinc chloride
	(d) Copper pyrites also	contain Fe_2S_3
45.	Commercially important	t ore of lead from which it
	is extracted is [DP	MT 1982, 96; MP PMT 2000]
	(a) Siderite	(b) Haematite
	(c) Galena	(d) None of these
46.	Which of the following i	s not an ore of lead[MP PMT 19
	(a) Galena	(b) Anglesite
	(c) Calamine	(d) Cerrusite
47.	Galena is	
	(a) PbO	(b) $PbCO_3$
	(c) PbS	(d) $PbCl_2$
48.	An example of an oxide	ore is [MP PET 1996]
	(a) Bauxite	(b) Malachite
	(c) Zinc blende	(d) Felspar
49.	Cryolite is an ore of	006. BHII 2002. DBMT 1006]
	(a) Iron	(b) Silver
	(c) Zinc	(d) Aluminium
50.	Cassiterite is an ore of [CBSE PMT 1999; DPMT 1996]
-	(a) <i>Mn</i>	(b) <i>Ni</i>
	(c) <i>Sb</i>	(d) <i>Sn</i>
51.	Which one of the follow	ving is the most abundant
	element in the universe	[NDA 1999]
	(a) Nitrogen	(b) Hydrogen
	(c) Oxygen	(d) Silicon
52.	Among the following	statements, the incorrect
	one is	
	(a) Colomina and did	[IIT 1997]
	(a) Calalilline and sideri	te are carbonates
	(b) Aigentite and cuprit	e are oxides
	(c) Zinc biende and pyri	tes are sulphides

(d) Malachite and azurite are ores of copper

53.	Which one of the follow	ring ores is a chloride
	(a) Horn silver	(b) Zincite
	(c) Bauvite	(d) Felspar
54	Aluminium is most abu	ndant in earth crust vet it
	is obtained from bauxit	e because [CPMT 1997]
	(a) Bauxite is available	in larger quantity
	(b) Of easy extraction of	of aluminium from it
	(c) Bauxite contains ma	aximum aluminium
	(d) Bauxite is less impu	ire
55.	An ore of potassium is	[JIPMER 2001]
	(a) Bauxite	(b) Solomite
	(c) Carnallite	(d) Cryolite
6.	The molecular formula	of cryolite is
		[AFMC 1999; MP PET 2002]
	(a) Fe_3O_4	(b) Na_3AlF_6
	(c) $Na_2Al_2O_2$	(d) All of these
.7	All ores are minerals	while all minerals are not
	ores because	while an innerals are not
		[Orissa JEE 2002]
	(a) The metal can't b	e extracted economically
	from all the minera	ls
	(b) Minerals are comple	ex compounds
	(c) The minerals are ob	tained from mines
_	(d) All of these are corr	ect
8]	Corundum is an ore of	[Kerala (Med.) 2002]
	(a) Copper	(b) Boron
~	(C) Aluminium	(a) Soaium
9.	(a) A minoral cannot be	an oro
	(a) A niner ar cannot be a r	nineral
	(c) All minerals are ore	s
	(d) All ores are mineral	s
0.	Which ore contains both	h iron and copper?
2.		[IIT-JEE (Screening) 2005]
	(a) Cuprite	(b) Chalcocite
	(c) Chalcopyrite	(d) Malachite
1.	Formula of Felspar is	[MHCET 2004]
	(a) $K_2O.Al_2O_3.6SiO_2$	
	(b) $K_2O_3.Al_2O_3.6Si_2.O_2.2H$	H_2O
	(c) $Al_2O_3.2SiO_2.2H_2O$	
	(d) $3M_{gO,4}SiO_{2}H_{2}O$	
2	Chile saltnetre is	[MD DET 2004]
-2.	(a) $NaNO_{a}$	(b) <i>KNO</i> .
	(a) Na = 0	(d) Na S O
_	(c) Na_2SO_4	(u) $Iva_2S_2O_3$
3.	Which of the follow	ving is not an ore of
	magnesium	[CDMT 2004: DCE 2004]
	(a) Magnesite	(b) Dolomite
	(c) Gypsum	(d) Carnalite
		is not a min anal of image 2

64. Which of the following is not a mineral of iron ? [Kerala PMT 2004]

	664 General Princ	ciples of Extraction of Meta	ls		
	(a) Magnetite	(b) Siderite		(c) Chloride ores (d) Amalgams	
	(c) Smithsonite	(d) Limonite	3.	A process used for the concentration of ore j	s
	(e) Haematite			- [MP PMT 1990; MP PET]	2003]
5.	The ore carnalite is repr	esented by structure:		(a) Froth floatation (b) Roasting	
-	[EAMCET 1987; N	IP PET 1986, 04; AFMC 2000		(c) Electrolysis (d) Bessemerizatio	n
		Pb. PMT 2004]	4.	Magnetic separation is used for incr	easing
	(a) $Na_2Al_2O_3$	(b) Na_3AlF_6	1.	concentration of the following [MP PE]	Г 1990]
	(c) $KCl.MgCl_26H_2O$	(d) Fe_3O_4		(a) Horn silver (b) Calcite	
5.	Which of the following	metal is sometimes found		(c) Haematite (d) Magnesite	
	native in nature [C	PMT 1973, 75; MP PET 1999]	5.	The substance added in water in the	froth
	(a) <i>Al</i>	(b) <i>Cu</i>	0	floatation process is	
	(c) <i>Fe</i>	(d) <i>Mg</i>		[EAMCE]	[1980]
	The most abundant met	al in the earth crust is		(a) Soap powder (b) Pine oil	
-	[BHU 1979, 81; MP]	PMT 1997; CPMT 1988, 2001;		(c) Coconut oil (d) None of the abo	ove
		CBSE PMT 2000]	6.	For which ore of the metal, froth floa	atation
	(a) <i>Na</i>	(b) <i>Mg</i>		method is used for concentration [MP PM]	Г 2001]
	(c) <i>Al</i>	(d) <i>Fe</i>		(a) Horn silver (b) Bauxite	
	Indicate the mineral	from which copper is		(c) Cinnabar (d) Haematite	
	manufactured		7.	Cvanide process is used in the extraction of	DCE 2002
		[NCERT 1973]		(a) Au (b) Aa	
	(a) Galena	(b) Cuprite		(c) both (a) and (b) (d) Cu	
	(c) Sphalerite	(d) Chalcopyrite	Q	Cossiterite is concentrated by	F 100 91
•	The principal ores of	silver are argentite, horn	0.	(a) Louigation	[1990]
	silver and pyrargyrite.	Their formula respectively		(a) Electromegnetic concretion	
	are			(b) Electromagnetic separation	
	(a) Ag_2S , $AgCl$ and $AgSb$	<i>S</i> ₂		(c) Floatation	
	(b) $AgCl, AgSbS_2$ and Ag	$_{2}S$		(d) Liquifaction	
	(c) $AaShS \cdot Aa \cdot S$ and A	- oCl	9.	Froth floatation process for the concentrat	tion of
		,		of INCEPT 10841	cation
	(d) $AgCl, Ag_2S$ and $AgSb$			(a) Adaption (b) Abcomption	
).	The most important ore	of tin is [AFMC 2005]		(a) Adsorption (b) Adsorption	
	(a) Cassiterite	(b) Cryolite		(c) Coagulation (d) Sedimentation	
	(c) Cerussite	(d) None of these	10.	Iron ore is concentrated by [MP PM'	Т 1991]
•	Important ore of Mg is	[BCECE 2005]		(a) Froth floatation (b) Electrolysis	
	(a) Gypsum	(b) Carnalite		(c) Roasting (d) Magnetic treat	ment
	(c) Magnatide	(d) Carnolite	11.	An ore of tin containing <i>FeCrO</i> ₄ is concern	trated
•	Which of the following i	s a carbonate ore[AIIMS 2005]	by	
	(a) Pyrolusite	(b) Malachite		[SCR.	A 1991]
	(c) Diaspore	(d) Cassiterite		(a) Magnetic separation (b) Froth floatation	ı
				(c) Electrostatic method (d) Gravity separat	ion
	Concent	ration	12.	One of the following metals forms a v	olatile
-				compound and this property is taken advanta	age for
	Sulphide ores are gener	ally concentrated by		its extraction. This metal is	U
		2. FAMCET 1080. MNR 1081.		[NCER]	Г 1984]
	[CFM11 1900, 0	DPMT 1082: KCFT 10021		(a) Iron (b) Nickel	
	(a) Froth floatation prov	ress (h)Magnetic separation		(c) Cobalt (d) Tungsten	
	(c) Gravity constant	(d) By hand nicking	12	Bauxite ore is concentrated by	
	Eroth floatation	(a) by hand picking	13.	[MD DET 1004. KCET 1000. UDSEAT	[2001]
	concentration of	cess is used for the		(a) Froth flotation	2001]
I	[NCERT 1084. CPMT 1082 9	87: MP PMT 1080. RHII 1007.		(a) Floatnamagnatic concerning	
I	EAMCET 1082. AMII 10	84: DPMT 1080: AFMC 2000.		(b) Electromagnetic separation	
	MNR 1981: KCET 2000.	WP PET 2001: Ph. PMT 20021		(c) Chemical separation	
				(d) Hydraulic separation	

(a) Oxide ores (b) Sulphide ores

14. In extraction of copper, we use

		Ge	eneral	Principles of Extraction	n of Metals 665
		[CPMT 1980; MP PMT 1986]		(c) They are chemically	inert
	(a) Cu_2S	(b) Pyrites		(d) They do not require	replacement
	(c) Silver argentocyan	aide (d) $CuFeS_2$	2.	Main function of roastin	ng is [MP PET/PMT 1988]
15.	Which metal is most d	ifficult to be extracted from		(a) To remove volatile s	substances
	its oxide			(b) Oxidation	
	(a) <i>Cs</i>	(b) <i>Ag</i>		(c) Reduction	
	(c) <i>Zn</i>	(d) <i>Mg</i>	_	(d) Slag formation	
16.	Copper pyrites are con	centrated by	3.	Roasting is generally do	one in case of the following
	[MNR 1995; UPSEAT 19	999; AMU 1999; MP PMT 2003]		(a) Ovide orec	(b) Silicate ores
	(a) Electromagnetic m	ethod (b) Gravity method		(a) Oxide ores	(d) Carbonate ores
	(c) Froth floatation pr	ocess (d)All the above metho	ds 🖌	Heating of pyrites in a	ir for oxidation of sulphur
17.	In the metallurgy of zi	nc, flux is not used because	4.	is called	in for oxidation of surpline
	(a) Zinc ore has no im	purities		[CPMT 1973, 75, 78	3, 79, 94; DPMT 1982, 84, 86;
	(b) Zinc is volatile hence easily separated				MP PMT 2000, 01, 02]
	(c) Zinc reacts with flux			(a) Roasting	(b) Calcination
	(d) Flux is volatile			(c) Smelting	(d) Slagging
18.	Ores like magnetite o	r tungstates in tin ores are	5۰	Which is not basic flux	[CPMT 1986]
	concentrated by			(a) <i>CaCO</i> ₃	(b) Lime
	(a) Froth floatation	(b) Magnetic separation		(c) SiO_2	(d) <i>CaO</i>
	(c) Gravity separation	(d) Electrostatic	6.	A substance which rea	acts with gangue to form
sepa	ration			fusible material is calle	d
19.	Froth-floatation me	thod is successful in		[MP PMT 1	990; Kurukshetra CEE 1998]
	(a) The number of the life	from ores because		(a) Flux	(b) Catalyst
	(a) The pure ore is high	oil cresvlic acid etc		(c) Ore	(d) Slag
	(b) The pure ore is soluble in water containing additives like pine oil, cresvlic acid etc.		7.	When lime stone is he	ated strongly, it gives off
				CO_2 . In metallurgy this	process is known as[MP PE
	(c) The impurities are	soluble in water containing		(a) Calcination	(b) Roasting
	additives like pine	oil, cresylic acid etc.		(c) Smelting	(d) Ore dressing
	(d) The pure ore is no	ot as easily wetted by water	8.	Electric furnaces are lin	ed with magnesia because
	as by pine oil, cres	ylic acid etc		(a) It is not affected by acids	
20.	An ore like zinc blende	is concentrated by		(b) It gives oxygen on h	eating
		[MP PMT 1997]		(c) It melts at very high	i temperature
	(a) Froth floatation	(b) Magnetic separation		(d) It has no effect of el	ectricity
	(c) Leaching	(d) wasning with water	9.	Purpose of smelting of a	an ore is
21.	use of the difference	in density between ore and	[M	P PMT 1990, 2001; Kuruks	hetra CEE 1998; RPMT 2000]
	impurities is called	in density between one and		(a) To oxidise it	
	•	[Pune CET 1998]		(b) To reduce it	
	(a) Levigation	(b) Leaching		(c) To remove vaporisa	ble impurities
	(c) Magnetic separation	on (d) Liquifaction		(d) To obtain an alloy	
22.	Which of the following	g ore is best concentrated by	10.	Smelting is done in	[DPMT 1979]
	froth-flotation method	[AIEEE 2004]		(a) Blast furnace	(b) Muffle furnace
	(a) Galena	(b) Cassiterite		(c) Open-hearth furnac	e (d) Electric furnace
	(c) Magnetite	(d) Malachite	11.	In order to bring initia	al chemical change in the
_				melting point is known	as
	Roasting &	Calcination		(a) Reduction	(b) Smelting
1	Refractory materials	are generally used in		(c) Calcination	(d) Roasting
	furnaces because	are generally used III	12.	Matte contains mainly	[KCET 2000]
			-	······································	

[MNR 1980; MP PMT 1986]

- (a) They possess great structural strength
- (b) They can withstand high temperature

> (a) Cu_2S and FeS(b) CuS and Fe_2S_3 (d) Cu_2S

(c) *Fe*

	666 General Principles of Extraction of Meta	ls			
13.	The substance which is mixed with the ore for		(b) Smelting of sulphide	e ores	
	removal of impurities is termed as		(c) Conversion of chlori	de to sulphate	
	[MP PMT 1985, 87, 90; CPMT 1996; JIPMER 2002]		(d) Getting magnetic magnetic	aterials	
	(a) Slag (b) Gangue	24.	In metallurgy, flux is a	substance used	to convert
	(c) Flux (d) Catalyst			[EA	MCET 1988]
14.	The cheap and having high melting point		(a) Infusible impurities	to fusible mate	rial
	compound used in furnace is [CPMT 1975]		(b) Soluble impurities t	o insoluble imp	urities
	(a) <i>PbO</i> (b) <i>CaO</i>		(c) Fusible impurities to	o infusible impu	irities
	(c) H_{gO} (d) ZnO		(d) Mineral into silicate	:	
5.	Which of the following substance can be used for	25.	In the manufacture of	iron lime ston	e added to
	drying gases [EAMCET 1978; MP PET 1999]		the blast furnace, the ca	lcium ion ends	in the form
	(a) $CaCO_3$ (b) Na_2CO_3		of		
	(c) $NaHCO_3$ (d) CaO		[MP PMT 1	989; CPMT 1989;	KCET 1993;
6.	Which one of the furnaces among the following		(a) flag	(h) Cangua	Binar 1995]
	can produce the highest temperature		(a) stag	(d) Carco	
	(a) Muffle furnace (b) Blast furnace	_			
	(c) Reverberatory furnace (d) Electric furnace	26.	Flux added in the extrac	tion of iron is	
7.	The process of heating the ore strongly in excess		(a) Silica	(b) Felspar	
	of air so that the volatile impurities are removed		(c) Limestone	(d) Flint	
	and the ore is changed to oxide is known as [AMU 198	529CI	AThe990 Elting of iron in	the blast furna	ce involves
	(a) Calcination (b) Roasting		(a) Ovidation	(h) Doduction	
0	(c) From modalion (d) Leaching		(a) Oxidation	(d) Reduction	
5.	is	- 0	(c) Decomposition	(d) Sublimatio	on
	[AMU 1984]	28.	function of lime stone is	as[CPMT 1988;	matite, the MP PET 1991, 9
	(a) To remove moisture		(a) A reducing agent	(b) Flux	
	(b) To decompose carbonate		(c) Slag	(d) Gangue	
	(d) To achieve all the above	29.	The slag obtained durin from copper pyrites is c	g the extraction omposed mainl	n of copper y of
9.	Calcination is the process of heating the ore [CPMT 19	82]	[MNR 1993; MP	PMT 1997; UPSE	, AT 2000, 01;
	(a) In a blast furnace (b) In absence of air			IIT-JEE Scre	ening 2001]
	(c) In presence of air (d) None of these		(a) $CaSiO_3$	(b) FeSiO ₃	
о.	Smelting is termed to the process in which		(c) CuSiO.	(d) SiO.	
	[MP PMT 1987]				
	(a) The ore is heated in the absence of air	30.	Complex is formed in th	e extraction of	MP PET 1989]
	(b) Ore is cold		(a) <i>Na</i>	(b) <i>Cu</i>	
	(c) The ore is heated in the presence of air		(c) Ag	(d) <i>Fe</i>	
	(d) Ore is melted	31.	Which of the followin	ıg metal is ex	tracted by
1.	The metallurgical process in which a metal is		amalgamation process		
	obtained in a fused state is called[IIT 1978; MP PET 19	97]	(a) Tin	(b) Silver	
	(a) Smelting (b) Roasting		(c) Copper	(d) Zinc	
	(c) Calcination (d) Froth floatation	32.	The reaction $2ZnS+3$	$O_2 \rightarrow 2ZnO + 2SC$	D_2 in the
2.	Which of the following processes involves		metallurgical process of	zinc is called[N	AP PET 1994]
	Silleluing		(a) Calcination	(b) Cupellatio	n
	[NCERI 1903]		(c) Smelting	(d) Roasting	
	(a) $2iCO_3 \rightarrow 2iO \mp CO_2$	33.	Calcination is used in m	etallurgy for re	moval of
	(D) $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$			ſ	AFMC 1995]
	(c) $2PbS + 3O_2 \rightarrow 2PbO + 2SO_2$		(a) Water and sulphide	(b) Water and	CO_2
	(d) $Al_2O_3.2H_2O \to Al_2O_3 + 2H_2O$		(c) CO_2 and H_2S	(d) H_2O and	H_2S
3.	Reverberatory furnace is employed in the	34.	Which of the following	is slag [CPMT 1994]
	metallurgical process mainly for [MP PMT 1994] (a) Reduction of oxide ores		(a) <i>CaO</i>	(b) <i>CaSO</i> ₄	

		Ge	eneral Principles of Extraction of Metals 667				
	(c) CaSiO ₃	(d) <i>SiO</i> ₂	41.	Which of the follow roasting during met	ring ores is subjected to		
35.	The impurties as metallurgy are co	sociated with minerals used in llectively called [MP PMT 1995; RPM	/IT 1999	getting the metal oxide	(h) Zinc blondo		
	(a) Slag	(b) Flux		(a) Malachite	(d) Limonite		
	(c) Gangue	(d) Ore	12	A metal obtained di	rectly by roasting of its		
36.	When a metal is the gangue associ	to be extracted from its ore, if ated with the ore is silica, then[MI	9 PET 19	sulphide ore is 96]	[Pune CFT 1008]		
	(a) An acidic flux	is needed		(a) <i>Cu</i>	(b) <i>Pb</i>		
	(b) A basic flux is	needed		(c) Hg	(d) Zn		
	(c) Both acidic an	d basic flux are needed	13.	In blast furnace, the hi	ghest temperature is in		
	(d) Neither of the	em is needed	43.		[KCET 1998]		
37.	Which statement	is correct		(a) Reduction zone	(b) Slag zone		
	 (a) Gangues are carefully chosen to combine with the slag present in the ore to produce easily fusible flux to carry away the impurities (b) Slags are carefully chosen to combine with the flux present in the ore to produce easily fusible gangue to carry away the impurities (c) Gangues are carefully chosen to combine with the flux present in the ore to produce easily fusible ganges are carefully chosen to combine with the flux present in the ore to produce easily fusible ganges are carefully chosen to combine with the flux present in the ore to produce easily fusible ganges are carefully chosen to combine with the flux present in the ore to produce easily fusible ganges are carefully chosen to combine with the flux present in the ore to produce easily fusible ganges are carefully chosen to combine with the flux present in the ore to produce easily fusible ganges are carefully chosen to combine with the flux present in the ore to produce easily fusible ganges are carefully chosen to combine with the flux present in the ore to produce easily fusible ganges are carefully chosen to combine with the flux present in the ore to produce easily fusible ganges are carefully chosen to combine with the flux present in the ore to produce easily fusible ganges are carefully chosen to combine with the flux present in the ore to produce easily fusible ganges are carefully chosen to combine with the flux present in the ore to produce easily fusible ganges are carefully chosen to combine with the flux present in the ore to produce easily fusible ganges are carefully chosen to combine with the flux present in the ore to produce easily fusible ganges are carefully chosen to combine with the flux present in the ore to produce easily flux present in the ore to produce easily flux present in the ore to produce easily flux present e			(c) Fusion zone	(d) Combustion zone		
			44.	The process of roasting the	g of an ore is carried out in		
					[BHU 1999]		
				(a) Absence of air	(b) Presence of air		
				(c) Limited supply of a	ur (d) None of these		
			45.	Flux is used to remove	[AIIMS 1999]		
				(a) Acidic impurities	(b) Basic impurities		
		cally away the inputties	46	(c) All impurities from	lores (d) Both (a) and (b)		
	the gangue present in the ore to produce easily fusible slag to carry away the		40.	During extraction of F_{0}	(b) $E_{\alpha}SiQ$		
				(a) <i>Teo</i>	(b) $Testo_3$		
	impurities			(c) $MgSiO_3$	(d) $CaSiO_3$		
38.	Roasting of copper pyrites ores is for the following purposes(a) To burn off sulphur, arsenic, antimony etc. as oxides and convert all the iron and copper to their oxides		47.	The final step for the copper pyrite in Besser reaction	extraction of copper from mere converter involves the		
				rouotion	[CPMT 2000]		
				(a) $4Cu_2O + FeS \rightarrow 8Cu -$	$+FeSO_4$		
	their oxides			(b) $Cu_2S + 2Cu_2O \rightarrow 6Cu$	$a + SO_2$		
	and burn off	sulphur so that enough of it		(c) $2Cu_2O + FeS \rightarrow 4Cu +$	$+Fe+SO_2$		
	(c) To burn off s	ulphur partially to leave enough		(d) $Cu_2S + 2FeO \rightarrow 2Cu + 2FeO \rightarrow 2FeO \rightarrow 2Cu + 2FeO \rightarrow 2FeO \rightarrow$	$+2FeCO+SO_2$		
	to combine w convert all the	ith arsenic, antimony etc. and to e iron and copper to oxides	48.	Flux is used to remove (a) Silica	[KCET (Med.) 2000; PCET 2004]		
	(d) To melt arse	nic and antimony sulphides etc.		(b) Metal oxide			
	and remove t	hem by liquation and to burn off		(c) All impurities from	ores		
	sulphur parti	ally to leave enough to combine		(d) Silica and undesira	ble metal oxide		
	with copper a	nd iron	49.	Roasting is done in	[AFMC 2001]		
39.	In the modern bla of a mixture of	ast furnaces, the charge consists		(a) Blast furnace(c) Electric furnace	(d) None of these		
	(a) Calcined iron	oxides + lime + anthracite coal	50.	Which of the followin	g fluxes is used to remove		
	(b) Calcined iron	oxides + limestone + coke		(a) Silica	(b) Lime stone		
	(c) Hydrated iron	oxides + dolomite + coke		(c) Sodium chloride	(d) Sodium carbonate		
10	(d) Iron pyrites +	lime +bituminous coal	51.	Refractory metals are	e used in construction of		
101	(a) Only volatilis	ation of volatile impurities		(a) They can withstand	l high temperature		
	(b) Only volatilis	ation of volatile impurities and		(b) They are chemicall	y inert		
	decomposition	n of the ore		(c) Their melting point	t is high		
	(c) Volatilisation	of volatile impurities and		(d) None of these	č		
	decomposition	n and oxidation of the ore	52.	CN^{-} solution used in ex	xtraction of which metal		
	(d) Oxidation and	1 reduction of the ore and slag	0				

	668 General Princ	ciples of Extraction of Meta	als		
	(a) <i>Ag</i>	(b) <i>Ti</i>		(c) To make reduction	easier
	(c) Zn	(d) <i>Sn</i>		(d) To precipitate slag	
	In a line kiln, to get	higher yield of CO_2 , the	4.	Alumino-thermic pro	ocess is used for th
	measure that can be tak	en is [KCET 2003]		extraction of metals, w	vhose oxides are
	(a) To remove <i>CaO</i>			(a) Fusible	
	(b) To add more $CaCO_2$			(b) Not easily reduced	by carbon
	(c) To maintain high ter	marature		(c) Not easily reduced	by hydrogen
	(c) To maintain high ter (d) To pump out CO	inperature		(d) Strongly basic	
			5۰	In blast furnace iron of	xide is reduced by
•	Which metal is used	as a reducing agent in		(a) Silica	(h) CO
	smenting	[MD BET 2002]		(a) Silica	(d) Lime stone
	(a) ((b) 41	6	Furnaces are lined wit	h calcium oxide because
	(a) \mathcal{C}	(d) None of these	0.	(a) It gives off oxygen	on heating
	Inner laver of blast furn	ace is made of IMP PMT 1000		(h) It gives strong ligh	t on heating
•	(a) Graphite bricks	(b) Silica bricks		(c) It is refractory and	l basic
	(c) Fire- clay bricks	(d) Basic bricks		(d) It is not affected by	v acids
	Blast furnace is employ	ed in the smelting of oxide	7.	The substance used i	in the thermite process of
	ore with coke and flux i	n the metallurgy of		reducing metal ores is	[MP PET 1993; CPMT 2000, 0
	(a) Iron	(b) Copper		(a) Aluminium	(b) Thorium
	(c) Lead	(d) All the above		(c) Heated Pt gauge	(d) Carbon
	How is limestone used i	n Fe extraction[Orissa JEE 20	04 § •	The electrolytic metho	od of reduction is employe
	(a) Oxidation of Fe ore	(b) Reduction of <i>Fe</i> ore		for the preparation of	metals that
	(c) Formation of slag	(d) Purification of Fe		[MP PMT 1991; NCERT	1984; CPMT 1988; KCET 2002
m	led			(a) Are weakly electro	positive
•	Heating mixture of Cu_2	O and Cu_2S will give		(b) Are moderately ele	ectropositive
		[AIEEE 2005]		(c) Are strongly electr	opositive
	(a) $Cu + SO_2$	(b) $Cu + SO_3$	-	(d) Form oxides	
	(c) $CuO + CuS$	(d) Cu_2SO_3	9.	by carbon reduction pr	g metals cannot be extracte
	Heating of ore in pro	esence of air to remove		(a) <i>Ph</i>	(b) <i>Al</i>
	sulphur impurities is ca	lled [AFMC 2005]		(c) Hg	(d) Zn
	(a) Calcination	(b) Roasting	10	Carbon reduction n	process is used for th
	(c) Smelting	(d) None of these	10.	extraction of	100000 15 ubcu 101 til
	The important step in	the extraction of metal		(a) <i>Hg</i>	(b) <i>Zn</i>
	from carbonate ore is			(c) <i>Cr</i>	(d) Fe
	(a) Calcination	(b) Roasting	11.	Among the following	groups of oxides. the grou
	(c) Electro-reduction	(d) Cupellation		containing oxides th	at cannot be reduced b
				carbon to give the resp	pective metals is[NCERT 198
	Reduction to	free Metal		(a) Cu_2O, K_2O	(b) Fe_2O_3 , ZnO
				(c) CaO, K_2O	(d) PbO, Fe_3O_4
	Electrometallurgical pro	ocess is used to extract	12.	Which one of the follo	wing metals is extracted h
	[MNR 1985, 89; U	PSEAT 2000; MP PMT 2001]	12,	thermal reduction proc	cess? [EAMCET 1986
	(a) <i>Fe</i>	(b) <i>Pb</i>		(a) Copper	(b) Iron
	(c) <i>Na</i>	(d) Ag		(c) Aluminium	(d) Magnesium
	General method for the oxide ore is	e extraction of metal from	13.	Chemical reduction is	not suitable for converting [MP PET 1994
		[CPMT 1983; MP PET 2002]		(a) Bauxite into alumi	nium (b)Cuprite into copp
	(a) Carbon reduction	(b) Reduction by		(c) Haematite into iro	n (d) Zinc oxide into zinc
n	inium		14.	In alumino-thermite	process, aluminium is use
	(c) Reduction by hydrog	gen (d)Electrolytic reductio	n	as	
	Function of the flux add	ed during smelting is		[IIT 198	83; DPMT 1980; MP PMT 1987
	(a) To make ore porous			MP PET/PMT 198	8; NCERT 1983; UPSEAT 2003
	(b) To remove gangue			(a) Oxidising agent	(b) Flux

	(c) Reducing agent	(d) Solder		(a) Redu
15.	Which metal is extracted	by electrolytic reduction		(c) Self-
	methou	[CPMT 1084 · MP PFT 1007]	25.	High pu
	(a) <i>Cu</i>	(b) <i>Al</i>		(a) Carb
	(c) <i>Fe</i>	(d) Ag	- 6	(c) Elec
6.	Alumina		26.	the redu
	(a) Is a good conductor o	of electricity		(a) Carb
	(b) Is a bad conductor of	electricity		(c) Carb
	(c) Melts at $200^{\circ}C$		27.	In order
	(d) Is an electrovalent co	ompound	-/.	furnace
7.	Aluminium is prepared in	n large quantities by [KCET 1991, 92]		The pur
	(a) Heating cryolite in a	limited quantity of air		(a) To e
	(b) Reducing aluminium	oxide with coke		(b) To b
	(c) Reducing aluminium	oxide with sodium	them	
	(d) Electrolysing alumin	nium oxide dissolved in		(c) To ii
Q	Iused electrolyte			(d) To r
۶.	(a) $Al(OH)$	(b) <i>AICI</i>		hydr
	(a) AIN	(d) Al O	28.	Alumini
		$(d) Al_2 O_3$		electroly
).	Which one of the following	llowing is used in the	10591	cruolite
	(a) $AI O$	(b) $Al(OH)$	1970]	(a) <i>Na</i> .
	(a) $M_2 O_3$	(d) Al (SQ)		(h) AIE
	(c) $AlCl_3$	(d) $Al_2(SO_4)_3$		(b) AlF_3
э.	Which technique is use	d in the manufacture of		(c) Al_2C
	(a) Reduction with magn			(d) KCl.
	(b) Reduction with coke		29.	Electron
	(c) Electrolytic reduction	n		(a) Trar
	(d) Reduction with iron			(b) Mos
1.	Which of the following p	processes does not involve		(c) Nob
	a catalyst			(d) Soft
		[KCET 1991]	30.	The me
	(a) Haber's process	(b) Thermite process	5.	salt is
_	(c) Ostwald process	(d) Contact process		
2.	(a) When their evides on	nt he reduced by carbon]	(a) Iron
	(a) When their oxides ca	in t be reduced by carbon		(c) Sodi
	thermal decomposition	on	31.	Alumino
	(c) When their sulphide oxides by roasting	s can't be converted into		of
	(d) When their melting p	ooints are very high		(a) <i>Pb</i>
3.	Iron is obtained on a larg	ge scale from Fe_2O_3 by		(c) <i>Al</i>
	[CPMT 19	73, 78, 79; Orissa JEE 2005]	32.	Which n
	(a) Reduction with Al		-	
	(b) Reduction with CO			(a) <i>Cu</i>
	(c) Reduction with H_2			(c) Cr
	(d) Reduction with sodiu	ım	32	To obta
4.	After partial roasting, t	he sulphide of copper is	23.	the met
	reduced by	- ••		(a) Alum
		[MP PMT 1993]		(a) Aluli

uction by carbon (b) Electrolysis -reduction (d) Cyanide process

- rity copper metal is obtained by[MP PMT 1991] on reduction (b) Hydrogen reduction
 - trolytic reduction (d)Thermite reduction
- netallurgical extraction of zinc from ZnO cing agent used is [MP PET 1994] (b) Sulphur dioxide on monoxide
 - on dioxide (d) Nitric oxide
- to refine "blister copper" it is melted in a and is stirred with green logs of wood. pose is

[MP PET 1996]

- xpel the dissolved gases in blister copper
- oring the impurities to surface and oxidize
 - ncrease the carbon content of copper
 - reduce the metallic oxide impurities with rocarbon gases liberated from the wood
- um is produced on a large scale by ysis of alumina, dissolved in fused cryolite little fluorspar. These two electrolytes, and *fluorspar* are respectively

 - AlF_6 and CaF_2
 - and KF
 - C_6 and KCl
 - $MgCl_2.6H_2O$ and MgF_2
- netallurgy is used for
 - sition metals
 - t reactive metals
 - le metals
 - metals
- tal extracted by electrolysis of its fused

[MP PET/PMT 1998]

- (b) Lead
- um (d) Copper
- -thermic process is used for metallurgy

[CPMT 1996]

- (b) Ag
- (d) None of these
- netal can't be obtained from electrolysis

[CPMT 1997; RPET 1999]

- (b) Mg
- (d) Ni
- in chromium from chromic oxide (Cr_2O_3) , hod used is [JIPMER 2001]
 - nino-thermic process
 - (b) Electrolytic reduction

- (c) Carbon reduction
- (d) Carbon monoxide reduction
- **34.** The substance used in the thermite process of reducing metal ores is

[CPMT 2000; KCET 2001; UPSEAT 2001]

- (a) Aluminium
- (b) Thorium
- (c) Heated platinum gauze
- (d) Carbon
- **35.** Heating with carbon in absence of air is known as **[DCE 2002]**

(a) Reduction	(b) Carbon-reduction
(c) Smelting	(d) Roasting

Refining of crude metal

1. In electrolytic refining of metals, electrolysis of an aqueous solution of its complex salt is done with impure metal as anode and an strip of pure metal as cathode. This method cannot be used for the refining of the metal

[MD DMT 1000]

	(a) Silver	(b) Copper
	(c) Aluminium	(d) Zinc
2.	Which method of pur the equation	ification is represented by
	$\begin{array}{c} Ti + 2I_2 \xrightarrow{500 K} TiI_4 \xrightarrow{1} \\ Impure \end{array}$	$\xrightarrow{575 K} Ti + 2I_2 \qquad [AIIMS 1983]$ Pure
	(a) Cupellation	(b) Poling
	(c) Van Arkel	(d) Zone refining
3.	Cupellation process is	used in the metallugry of
	[CPMT 1983; MI	? PET 1994; MP PMT 2000, 02]
	(a) Copper	(b) Silver
	(c) Aluminium	(d) Iron
4.	Metals are	[MADT Bihar 1983]
	(a) Electropositive	(b) Electronegative
	(c) Acceptor of electro	ons (d) None of these
5٠	The cyanide process is	used for obtaining
	[D	PMT 1982; CPMT 1976, 84, 90;
	MNR 1995; M	P PET/PMT 1998; AIEEE 2002]
	(a) <i>Na</i>	(b) <i>Ag</i>
	(c) <i>Cu</i>	(d) <i>Zn</i>
6.	In electrolytic refining is used to make	g, the impure metal is made [MP PET 2003]
	(a) Cathode	(b) Anode
	(c) Electrolytic bath	(d) None of these
7.	Of the following, wh electrolysis of the aqu	ich cannot be obtained by eous solution of their salts[117
	(a) <i>Ag</i>	(b) M_g and Al

(c) *Cu* (d) *Cr*

Van Arkel method of purification of metals 8 involves converting the metal to a [BHU 1990] (a) Volatile stable compound (b) Volatile unstable compound (c) Non volatile stable compound (d) None of the above Zone refining is a method to obtain 9. [KCET 1993] (a) Very high temperature (b) Ultra pure Al (c) Ultra pure metals (d) Ultra pure oxides Which one of the following is manufactured by 10. the electrolysis of fused sodium chloride[CPMT 1979, 83, 9 (a) NaOH (b) NaClO (c) Na (d) $NaClO_3$ A metal which is refined by poling is [RPET 2000] 11. (a) Sodium (b) Blister copper (c) Zinc (d) Silver Silver from argentiferrous 12. obtained lead containing lead impurity is purified by [CPMT 1981; MP PMT 1990; EAMCET 1998] (a) Distillation (b) Froth floatation (c) Cupellation (d) Treatment of KCN If the impurity in a metal has a greater affinity 13. for oxygen and is more easily oxidised than the metal, then the purification of metal may be carried out by [MP PMT 1997] (a) Poling (b) Zone refining (c) Electrolytic refining (d) Cupellation Electric refining is used for refining of[DPMT 1996] 14. (a) Lead (b) Copper (c) Iron (d) Sodium Zone refining is used for the purification of [Pune CET 1998 15. (a) *Cu* (b) Au (c) *Ge* (d) Ag Mond's process is used for preparing [MNR 1983] 16. (a) *Ni* (b) H_2SO_4 (c) NH_3 (d) HNO_3 (e) $NaHCO_3$ Gold is extracted by hydrometallurgical process 17. based on its property [KCET 2005] (a) Of being electropositive (b) Of being less reactive (c) To form complexes which are water soluble (d) To form salts which are water soluble

 1. Black Jack is an ore of
 [PCET 2004]

 (a) Cr
 (b) Sn

_	(c) Zn ((d) Ni	(a)	If both ass	ertion and reason are true and the			
2.	froth floatation process is	s used for concentration	(b)	If both assertion and reason are true but reason is				
	[MNR 1987; II]	T 1989; UPSEAT 2000, 02]		not the corr	ect explanation of the assertion.			
	(a) Chalcopyrite (1	b) Bauxite	(c)	If assertion	is true but reason is false.			
	(c) Haematite (d	d) Calamine	(d)	If the assert	ion and reason both are false.			
3.	The process of ore dressing	g is carried out to	(e)	If assertion	is faise but reason is true.			
	1	[MP PMT 1994]	1.	Assertion :	$Al(OH)_{a}$ is amphoteric in nature			
	(a) Remove the siliceous n	naterials		Doncon .	Al Q and Q H hands can be			
	(b) Add flux to the mineral	1		Reason :	AI = O and $O = H$ bonds can be broken with equal case in $AI(OH)$ [IIT 10			
	(c) Convert the ore to oxid	le	_	A	Lease is found in the face state in			
	(d) Remove the poisonous	impurities	2.	Assertion :	from is found in the free state in			
Į.	Wolframite ore is separate	ed from tinstone ore by		llature				
	the process of	-	[]	BHU 2004]	Iron is highly reactive element			
	(a) Roasting (1	b) Electromagnetic	2	Accortion :	Tion is used and compon is not used			
	(c) Smelting (c	d) Calcination	3.	Assertion .	in the recovery of A_{φ} from the			
j.	Which process of reduct	tion of mineral to the			$ complex [A_{\alpha}(CN)]^{-} $			
	metal is suited for the ex	traction of copper from			$Complex \left[Ag(CN)_2\right].$			
	its ores with low copper co	ontent		Reason :	Zinc is a powerful reducing agent			
	(a) Metal displacement (b) Auto reduction		A	than copper.			
bo	(c) Chemical reduction (d	a) Electrolytic	4.	Assertion :	Coke and flux are used in smelting.			
	Ph and Sn are extracted fro	om their chief ore by		Reason :	The phenomenon in which ore is mixed with suitable flux and coke is			
	PD and Sh are extracted in	[IIT_IFE Screening 2004]			heated to fusion is known as			
	(a) Carbon reduction and	self reduction			smelting.			
	(b) Self reduction and carb	oon reduction	5.	Assertion :	Leaching is a process of reduction.			
	(c) Electrolysis and self re	eduction	0	Reason :	Leaching involves treatment of the			
	(d) Self reduction and elec	trolysis			ore with a suitable reagent so as to			
7	Zone refining is a techni	que used primarily for			make it soluble while impurities			
	which one of the following	process			remains insoluble.			
	(a) Alloying (1	b) Tempering	6.	Assertion :	Ethyl xanthate is used as a collector			
	(c) Sintering (e	d) Purification			in froth floatation process .			
3.	Method used for obtaini	ng highly pure silicon		Reason :	Collectors depress the floatation			
	used as a semiconductor m	naterial is [CBSE PMT 1994]			the one and thus help in the			
	(a) Oxidation (1	b) Electrochemical			separation of different minerals			
	(c) Crystallization (c	d) Zone refining			present in the same ore.			
9.	Which is correct	[MADT Bihar 1995]	7.	Assertion :	Levigation is used for the separation			
	(a) Galelia : Mg_2CO_3		,		of oxide ores from impurities.			
	(b) Cassiterite : $CaCO_3 Mge$	CO_3		Reason :	Ore particles are removed by			
	(c) Dolomite : SnO_2				washing in a current of water.			
	(d) Magnesite : $MgCO_3$		8.	Assertion :	In Hall and Heroult's process, Al is			
0.	'Lapis-Lazuli' is a blue co	oloured precious stone.			extracted by electrolysis of a fused			
	It is mineral of the class				mixture of alumina, cryolite and			
	[NCERT 1980; A	IIMS 1980; BHU 1978, 80]		Dee	nuorspar.			
	(a) Sourium-arumino silica	(d) Druggion blue		Reason :	Addition of cryolite and fluorspar			
	(c) basic copper carbollate	(u) riussiali biue			increases the conductivity of the			
_					electrolyte.			
			9.	Assertion :	A_{gNO} is called lunar caustic.			
	Assertion &	x Keason	<i>.</i>					
				100000	in contract with orgenic method (aligned			

For ANMS Aspirants

In contact with organic matter (skin, Reason : cloth paper, etc.) $AgNO_3$ is reduced to metallic silver.

General Principles of Extraction of Metals 671

Read the assertion and reason carefully to mark the correct option out of the options given below :

10.	Assertion :	Wolframite impurities are separated from cassiterite by electromagnetic separation.					
	Reason :	Cassiterite being magnetic is attracted by the magnet and forms a separate heap.					
11.	Assertion :	Lead, tin and bismuth are purified by liquation method.					
	Reason :	Lead, tin and bismuth have low m.p. as compared to impurities.					
12.	Assertion :	Gold is recovered from its solution containing aurocynaide complex by adding zinc dust.					
	Reason : gold.	Zinc is more electropositive than					

Answers

Occurrence

6 7 8 9 10 а а с b а 11 12 d d 13 14 b 15 d С 16 d 17 b 18 d 19 b 20 d 21 22 b 23 24 а b а 25 а 26 с 27 d 28 b 29 b 30 с 31 b 32 d 33 34 35 b С С 37 36 b d 38 39 b 40 С c 41 42 44 b 43 d b 45 d С 46 d 47 b 48 d 49 50 b а 51 54 а 52 а 53 а d 55 С 56 d 57 58 59 С а b 60 а

Reduction to free Metal

1	с	2	а	3	b	4	b	5	b
6	c	7	а	8	c	9	b	10	d
11	c	12	b	13	а	14	c	15	b
16	b	17	d	18	d	19	а	20	c
21	b	22	а	23	b	24	С	25	C
26	а	27	d	28	а	29	b	30	c
31	d	32	b	33	а	34	а	35	b

Refining of crude Metal

1	d	2	с	3	b	4	a	5	b
6	b	7	b	8	а	9	С	10	C
11	b	12	c	13	d	14	b	15	c
16	a	17	C						

Critical Thinking Questions										
1	с	2	a	3	а	4	b	5	b	
6	b	7	d	8	d	9	d	10	a	
Assertion & Reason										
	_		_		_		_		_	_
1	с	2	е	3	а	4	b	5	с	
c		7	•	0	•	0	h	10	•	

Answers and Solutions	_				
	A	Answers	and	Soluti	ons

12

а

11

а

b 2 b 3 d 4 b 5 ac 1 7 8 9 6 а с а 10 С С 11 d 12 13 15 С а 14 С d 17 16 с b 18 d 19 d 20 b 21 22 d 23 d 24 25 а С C 27 28 29 d 30 26 а b а а 32 d 33 34 35 31 С а С b 36 b 37 b 38 d 39 b 40 b 41 42 43 44 45 d а а С C 46 С 47 с 48 а 49 d 50 d 51 52 53 54 55 b b а с а 56 b 57 58 с 59 d 60 с а 63 65 61 62 64 а а С С С 66 b 67 68 d 69 а 70 С а 71 b 72 b Concentration

1	a	2	b	3	а	4	с	5	b
6	с	7	С	8	b	9	а	10	d
11	а	12	b	13	С	14	d	15	С
16	С	17	b	18	b	19	d	20	а
21	а	22	a						

Roasting & Calcination									
1	b	2	а	3	c	4	a	5	C

Occurrence

1.	(b)	Element	% abundance by weight
		0	46.6
		Si	27.7
		Al	8.3
		Fe	5.1
		Ca	3.6
6.	(a)	$As \rightarrow Metalloid$	Na, Au, $Fe \rightarrow Metals$

- 8. (c) $N_2 = 78\%$; $O_2 = 21\%$
- 9. (a) Bauxite $Al_2O_3.2H_2O$

17.

- **10.** (c) Carnellite $KCl.MqCl_2.6H_2O$
- **12.** (c) Dolamite $MgCO_3$. $CaCO_3$ Magnesite $MgCO_3$ Carnallite $KCl. MgCl_2.6H_2O$
- **16.** (c) Diamond made up of carbon only.
 - (b) Bauxite (Al_2O_3) Cry olite (Na_3AlF_6) Corundum (Al_2O_3) Minerals of Al

 $Gypsum(CaSO_4.2H_2O)$

18. (d) Cryolite $(Na_3AlF_6) \rightarrow$ Halide ore

Galena (PbS)Cinnaber (HgS) Sulphide ore

Bauxite $Al_2O_3.2H_2O \rightarrow Oxide$ ore

19. (d) Pig iron \rightarrow It is the most impure form of iron and contains highest proportion of carbon (2.5-4%)

Malachite $\rightarrow Cu(OH)_2.CuCO_3$

Zinc blende $\rightarrow ZnS$

Bauxite $\rightarrow Al_2O_3.2H_2O$

- **20.** (b) Chile salt petre \rightarrow *NaNO*₃
- **21.** (a) *Na* is alkali metal highly reactive. Hence present in combined state.
- **24.** (c) Na_3AlF_6 Sodium hexafluoro aluminate (III)
- **28.** (a) Bauxite $(Al_2O_3.2H_2O)$

 $Corundum(Al_2O_3)$

- **29.** (d) Fluorspar (CaF_2) , Cryolite (Na_3AlF_6) , Feldspar $(KAlSi_3O_8)$, Mica $(K_2O.3Al_2O_3.6SiO_2.2H_2O)$
- **30.** (a) Haematite Fe_2O_3
- **33.** (a) Invar Fe = 64% and Ni = 36%
- **34.** (c) Cassiterite (SnO_2) , Magnetite (Fe_3O_4) ,

Haematite (Fe_2O_3) , Limonite $(Fe_2O_3.3H_2O)$.

- **36.** (b) Copper is a reddish brown metal
- **37.** (b) Azurite $Cu(OH)_2.2CuCO_3$
- **38.** (d) Malachite $(Cu(OH)_2.CuCO_3)$
- **40.** (b) Argentite or silver glance (Ag_2S)
- **44.** (c) Zinc blende is ZnS not $ZnCl_2$
- 46. (c) Galena (*PbS*), Anglesite (*PbSO*₄),
 Calamine (*ZnCO*₃), Cerrussite (*PbCO*₃)
- **52.** (b) Cuprite (Cu_2O) and Argentite (Ag_2S)
- **53.** (a) Horn silver (AgCl)
- **55.** (c) Carnallite is $KCl.MgCl_2.6H_2O$
- **56.** (b) Cryolite is an ore of Al containing Na_3AlF_6 .
- **58.** (c) Corundum (Al_2O_3) is an ore of Al.
- **59.** (d) All minerals are not suitable for the extraction of metals commercially. Thus all ores are minerals, but all minerals are not ores.
- **60.** (c) Among cuprite $[Cu_2O]$, Chalcacite $[Cu_2S]$, Chalcopyrite $[CuFeS_2]$ & Malachite $[Cu(OH)_2.CuCO_3]$, only Chalcopyrite is an ore which contains both *Fe* and *Cu*
- **61.** (a) Felspar is $K_2O.Al_2O_3.6SiO_2$
- **62.** (a) Chile salt petre is $NaNO_3$ While KNO_3 is Indian salt petre. Na_2SO_4 is Glouber salt and $Na_2S_2O_3$ is known as Hypo.
- **63.** (c) Gypsum $(CaSO_4.2H_2O)$ is an ore of calcium.

Dolomite ($CaCO_3.MgCO_3$), Magnesite ($MgCO_3$) and Carnalite ($KCl.MgCl_2.6H_2O$) are the ores of Magnesium.

64. (c) Magnetite (Fe_3O_4) , Siderite $(FeCO_3)$, Limonite $(Fe_2O_3.3H_2O)$ and Haematite (Fe_2O_3) are ores of Iron. Only Smithsonite is not an ore of Iron.

65. (c) Carnalite is an important ore of magnesium. It is

 $KCl.MgCl_2.6H_2O$

- **67.** (c) Al is most abundant metal in the earth crust
- **68.** (d) Chalcopyrite (*CuFeS*₂)
- **70.** (a) Cassiterite SnO_2

Cryolite - Na₃AlF₆

Cerussite - PbCO₃

- **71.** (b) Carnalite is the ore of K and M_g its formula is $KCl.MgCl_2.6H_2O$
- 72. (b) Pyrolusite MnO_2 Malachite – $CuCO_3.Cu(OH)_2$ Diaspore – $Al_2O_3.H_2O$ Cassiterite – SnO_2

Concentration

- (a) Froth floatation method is based on the fact that the surface of sulphide ores is preferentially wetted by oil while that of gangue is wetted by water.
- 4. (c) Haematite (Fe_2O_3)

Iron ores are concentrated by this method

- (b) Pine oil is foaming agent. Now another substance collector such as potassium ethyl xanthate or amyl xanthate are added.
- **6.** (c) Cinnabar (H_gS) the ore of mercury is concentrated by froth floatation process.
- (c) Cyanide process is used in the extraction of both Silver and Gold because these form complex salts with CN⁻ ion due to presence of lone pair of electron on nitrogen atom.
- 8. (b) Cassiterite SnO_2 or tinstone an ore of tin being non-magnetic can be separated from magnetic impurities like *Fe* and *Mn* from this method.
- 13. (c) Chemical separation or Leaching.In this powdered ore is treated with a suitable reagent which can dissolve the ore but not the impurities.
- 14. (d) Copper pyrite *CuFeS*₂ (Chalcopyrite)
- **16.** (c) Sulphides ores are always concentrated by froth floatation process
- **20.** (a) Froth floatation because it is sulphide ore (ZnS)
- **22.** (a) Here only Galena is *PbS* (a sulphide ore).

Cassiterite is SnO_2 (oxide ore). Magnetite is Fe_3O_4 (Oxide ore) and Malachite is $Cu(OH)_2$. $CuCO_3$ (Carbonate ore). The froath floatation process is used to concentrate sulphide ores, based on preferential wetting properties with froating agent and water.

Roasting & Calcination

- (b) These are the substances which can withstand very high temperature without melting or becoming soft.
- **2.** (a) To remove volatile substances.

 $S_8 + 8O_2 \rightarrow 8 SO_2 \uparrow$; $P_4 + 5O_2 \rightarrow P_4O_{10} \uparrow$

 $4 As + 3O_2 \rightarrow 2 As_2O_3 \uparrow$

- **3.** (c) In this process sulphides ores are converted into oxide ores $2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2 \uparrow$
- 5. (c) SiO_2 $CaCO_3$, lime, CaO Acidic flux Basic flux
- **6.** (a) (Impurity) Gangue + flux \rightarrow Slag Infusible Fusible
- 7. (a) $CaCO_3 \rightarrow CaO + CO_2$

Heating the ore in absence of air is calcination.

9. (b) Smelting is a process of reducing metal oxide to metal by means of coke or *CO*.

 $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$

 $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

- 13. (c) Flux is added during smelting it combines with infusible gangue present in the ore to form a fusible mass known as slag. Flux + Gangue → Slag
- **15.** (d) $CaO \rightarrow$ It is hygroscopic in nature
- 22. (b) Reduction with carbon is called smelting

$$Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$$

25. (a)
$$SiO_2 + CaO \rightarrow CaSiO_3$$

Impurity Flux Slag

26. (c) Impurities of SiO_2 is present in the iron ore so basic flux $CaCO_3$ is added. $CaO + SiO_2 \rightarrow CaSiO_3$ _{Flux Impurity Slag}

28. (b)
$$CaCO_3 \rightarrow CaO + CO_2$$
; $CaO_3 + SiO_2 \rightarrow CaSiO_3$
Flux $Hint = SiO_2 + SiO_2 - Slag$
Impurity of Slag
harmonic slag

29. (b)
$$FeO + SiO_2 \rightarrow FeSiO_2$$

_{Impurity} $Flux$ $Slag$

- **30.** (c) Hydrometallurgy $Ag_2S + 4NaCN \rightarrow 2Na[Ag(CN)_2] + Na_2S$ $2Na[Ag(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4] + 2Ag$
- **31.** (b) $Cu_2Cl_2 + Ag_2S \rightarrow Cu_2S + 2AgCl$

 $2AgCl + Hg \rightarrow Hg_2Cl_2 + 2Ag$

 $AgCl + Hg \rightarrow Ag + HgCl$

- 32. (d) Roasting (Sulphide ore is heated in excess of air)
- **33.** (b) $ZnCO_3 \rightarrow ZnO + CO_2$

In calcination ore is heated in absence of air in a reverberatory furnace to remove moisture and CO_2

- **36.** (b) $SiO_2 + CaO_3 \rightarrow CaSiO_3$ Acidicimpurity $Basic flux \rightarrow CaSiO_3$
- **39.** (b) $CaCO_3 + Coke + Calcined$
- **41.** (b) Zinc blende (ZnS); $2ZnS + 3O_2 \xrightarrow{\Delta} 2ZnO + 2SO_2$
- **42.** (c) When conc. *HgS* ore is roasted

$$HgS + O_2 \xrightarrow{773-873K} Hg + SO_2$$

At this temperature, mercury vaporises and the vapours are condensed to the liquid metal. Mercury so obtained is about 99.7% pure.

4 3 .	(d) Combustion zone	1800 K
	Fusion zone	1600 K
	Slage zone	1300 K
	Treduction zone	800 K

- **44.** (b) In roasting process, the ore (usually sulphide) alone or mixed with other materials is heated in excess of air.
- **45.** (d) Flux is used to fuse non-fusible impurities presents in ore.
- **46.** (d) During extraction of Fe calcium silicate $(CaSiO_3)$ slag is obtained.
- **47.** (b) In Bessemer converter copper sulphide is partially oxidised to cuprous oxide which further reacts with remaining copper sulphide to form copper and sulphur dioxide. $Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$
- **48.** (d) Flux is used to remove silica and undesirable metal oxide.
- **49.** (a) Roasting is the process of heating the ore strongly in the presence of excess of air. It is generally carried in a reverberatory or blast furnace.
- **50.** (b) Lime stone which is a flux used to remove acidic impurities in metallurgical process.
- 52. (a) CN⁻ solution used in extraction of Ag metal in the cyanide process.
- **57.** (c) Lime stone (*CaCO*₃) is used for formation of slag in *Fe* extraction

$$CaCO_{3} \longrightarrow CaO + CO_{2} \uparrow$$

Lime stone
$$CaO + SiO_{2} \longrightarrow CaSiO_{2}$$

58. (a) $Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$ (Auto-reduction).

This reaction occurs in reverberatory furnace to get metallic copper.

59. (b) Roasting involves heating of the ore either alone or with some other material usually in presence of air below its fusion temperature. In roasting, definite chemical changes like oxidation, chlorination etc., take place

 $S + O_2 \rightarrow SO_2$

60. (a) Calcination $ZnCO_3 \rightarrow ZnO + CO_2$

Reduction to free metal

- (c) Because Na is very reactive and can not be extracted by means of the reduction by C, CO etc. So extracted by electrolysis.
- **2.** (a) Carbon reduction, $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$
- **3.** (b) Flux + Gangue \rightarrow Slag
- 4. (b) Alumino thermite process involves reduction of oxides such as Fe_2O_3 , Mn_3O_4 , Cr_2O_3 etc. to metals with aluminum. $Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr \Delta H = -ve$
- 5. (b) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
- 7. (a) A mixture of Al powder and metallic oxide $(Cr_2O_3, Mn_3O_4 \text{ etc})$ is called thermite.
- **9.** (b) *Al* is highly electropositive. It can be obtained by electrolytic reduction.
- 10. (d) $Fe_2O_3 + 3C \rightarrow 3CO + 2Fe$
- 13. (a) Bauxite into aluminium because Al is a strong reducing agent it has strong affinity with oxygen than carbon
- **20.** (c) Electrolytic reduction Hall and Heroult process.
- **23.** (b) $Fe_2O_3 + 3CO \rightarrow 3CO_2 + 2Fe$
- **24.** (c) Self reduction :- Reduction of oxide ore of a metal by its own sulphide $2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$
- **26.** (a) $ZnO + CO \rightarrow CO_2 + Zn$
- **27.** (d) $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$

$$3Cu_2O + CH_4 \rightarrow 6Cu + 2H_2O + CO$$
(From green
logs of wood)

30. (c) Sodium \rightarrow Highly reactive metal

33. (a)
$$Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2C$$

- 34. (a) In thermite process a mixture of aluminium powder and ferricoxide in the rate of 1 : 3 is used.
- **35.** (b) Heating with carbon in absence of air is known as carbon reduction.

This is used in Iron metallurgy.

 $Fe_2O_3 + C \xrightarrow{\text{(in blast furnace)}} Fe$

Refining of crude metal

- (c) Van Arkel method *Ti* and *Zn* are refined by this method. It is used for obtaining ultra pure metals.
- **3.** (b) Cupellation method is used when the impure metals contain impurity of another metal which forms volatile oxide.
- 4. (a) Metals are electropositive elements because they have tendency to loose e^- and forms + ve ions

 $Na \rightarrow Na^+ + e^-$

- **6.** (b) Impure metal as anode and pure metal as cathode.
- 7. (b) Mg and Al can not be obtained by the electrolysis of aqueous solution of their salts because instead of metal H_2 gas is liberated at cathode.

8. (a)
$$Ti + 2I_2 \xrightarrow{500 K} TiI_4 \xrightarrow{1700 K} Ti + 2I_2$$

Stable compound Volatile Pure metal

9. (c) Zone refining is employed for preparing extremely pure metals.

It is based on the principle that when a molten solution of the impure metal is allowed to cool the pure metal crystallises out while the impurities remain in the melt. Ex : Semiconductors like *Si, Ge* and *Ga* are purified by this method.

10. (c) $2NaCl \rightarrow 2Na^+ + 2Cl^-$

Anode: $2Cl^- \rightarrow 2e^- + Cl_2$ (oxidation)

Cathode: $2Na^+ + 2e^- \rightarrow 2Na$ – (reduction)

11. (b) Poling is used for purification of metal which contain their own oxide as impurity

e.g. Cu_2O in Cu; SnO_2 in Sn

- 12. (c) Cupellation : If metal possess the impurity of another metal which forms volatile oxide. Then cupellation method is used.
- **16.** (a) Mond's process

 $\underset{\text{Impure}}{\overset{Ni}{\longrightarrow}} + 4CO \xrightarrow{\text{heat}} [Ni(CO)_4] \xrightarrow{\text{Decompose}} Ni + 4CO$

17. (c) Hydrometallurgy is the process of dissolving the metal or its ore by the action of a suitable chemical regent followed by recovery of the metal either by electrolysis or by the use of a suitable precipitating agent.

$$4Au + 8KCN + 2H_2O + O_2 \rightarrow 4K[Au(CN)_2] + 4KOH$$

 $2K[Au(CN)_2] + Zn \rightarrow 2Au + K_2[Zn(CN)_4]$

- (c) Black Jack (ZnS), also called zinc blend, is an ore of Zinc.
- **2.** (a) Chalcopyrities is contain sulphur that's why it is concentrated by froth floatation process.
- **3.** (a) Removal of silicious matter from ores is known as dressing or concentration of ore.
- 4. (b) Wolframite ore [*FeWO*₄] is present in tin stone as impurities and it has same mass per unit volume as that of tin stone. So it is separated by electromagnetic separator because wolframite is magnetic in nature hence it gets attracted by magnet while tin stone doesn't
- 5. (b) Auto reduction is used for the extraction of copper from its ore with low copper content.
- (b) *PbO* & *PbSO*₄ get reduced by *PbS* itself which is already present in mixture so because the reduction took place by mixture itself, hence is known as self reduction.

 $2PbO + PbS \xrightarrow{\Delta} 3Pb + SO_2 \uparrow$

 $PbSO_4 + PbS \xrightarrow{\Lambda} 2Pb + 2SO_2 \uparrow$

- 7. (d) Zone refining is a method of purification used for semiconductors like *Si*, *Ge* and *Ga*.
- **8.** (d) By the process of zone refining pure silicon is obtained which is used in semiconductor.
- **9.** (d) M_gCO_3 is the formula of magnesite.
- **10.** (a) Lapis lazuli is the aluminium silicate present in earth rocks as blue stone.

Assertion and Reason

- (e) Iron is highly reactive element, therefore, it is found in combined state. Here assertion is false but reason is true.
- **3.** (a) Both assertion and reason are true and reason is the correct explanation of assertion.
- (b) Both assertion and reason are true but reason is not the correct explanation of assertion. Non fusible mass present in ore in mixing

with suitable flux are fused which are then reduced by coke to give free metal.

- (c) Assertion is false but reason is true. Leaching is a process of concentration.
- **6.** (c) Assertion is true but reason is false. Collectors absorbs themselves on polar groups to grains of ores and thus derive them on the surface to pass on into the froth.
- 7. (c) Assertion is true but reason is false.

Oxide ores being heavier than the earthy or rocky gangue particles settle down while lighter impurities are washed away.

- **8.** (a) Both assertion and reason are true and reason is the correct explanation of assertion
- **9.** (b) Both assertion and reason are true but reason is not the correct explanation of assertion.

Silver nitrate is called lunar caustic because when it comes in contact with organic substances (e.g. skin, clothes) and reduced to metallic silver which is white like the iron lunar.

10. (c) Assertion is true but reason is false.

Wolframite being magnetic is attracted by the magnetic roller and forms a heap under it.

(a) Both assertion and reason are true and reason is correct and reason is the correct explanation of assertion.

> Liquation process is based on the difference in fusibility of the metal and impurities. When the impurities are less fusible than the metal itself, the process is employed.

12. (a) Au is recovered from the solution by the addition of electropositive metal.

$$2NaAu(Cu)_2 + Zn \xrightarrow{Na_2} Zn(CN)_4 2Au \downarrow$$

Soluble complex

- The region in which main metals are found in earth is called
 - (a) Atomophil (b) Lithophil
 - (c) Calcophil (d) Siderophil
- 2. Which metal is found in free state
 - (a) Iron (b) Gold
 - (c) Aluminium (d) Sodium
- **3.** Which metal is found in Khetri region of Rajasthan
 - (a) Iron (b) Copper
 - (c) Gold (d) Lead
- 4. Sapphire is mineral of [BHU 1977]
 (a) Cu
 (b) Zn
 (c) Al
 (d) Mg
- 5. Of the following substances the one which does not contain oxygen is [JIPMER 1997]
 (a) Bauxite (b) Epsom salt
 - (c) Cryolite (d) Dolomite
- 6. The chief impurity present in red bauxite is : [DCE 2004]

(a)	SiO	(b) <i>I</i>	Fe_2O_2

(c) K_2SO_4 (d) NaF

7. In the froth floatation process for the purification of ores, the ore particles float because

[MP PMT 1984; NCERT 1981; CPMT 1987; MNR 1992; UPSEAT 2002]

- (a) They are light
- (b) Their surface is not easily wetted by water
- (c) They bear electrostatic charge
- (d) They are insoluble

8. Difference in density is the basis of

[Kerala (Med.) 2002]

- (a) Ultrafiltration
- (b) Molecular sieving
- (c) Gravity separation
- (d) Molecular attraction
- 9. Mark the wrong statement
 - (a) Wrought iron is prepared by heating cast iron in a reverberatory furnace

(b) The impurities present in cast iron are oxidised by air

- (c) The impurities are oxidised by Fe_2O_3
- (d) CO burns with blue flame and the Si, Mn and other impurities form slag with silica
- **10.** Thomas slag is
 - (a) $CaSiO_3$ (b) $Ca_3(PO_4)_2$
 - (c) $MnSiO_3$ (d) $CaCO_3$
- **11.** Which is correct

[MADT Bihar 1995]

[RPET 2003]

- (a) Aluminium : Calamine
- (b) Copper : Malachite
- (c) Magnesium : Calamine
- (d) Zinc : Carnellite

- (b) Gold, Ag and Pt are called noble metals. They 2. are unreactive and found in free state.
- (b) Copper metal is found in khetri region of 3. Rajasthan with that it is also found in singhbhum and Hazaribagh district in Bihar, Agnigundala in Andhra pradesh, Malanjkh in M.P.
- (c) Cryolite (Na_3AlF_6)
- 6. (b) Red bauxite has chief impurity of Fe_2O_3 .
- 7. (b) Ore particles are wetted by oil. Hence, float on the surface.
- 8. (c) Levigation or gravity separation is used when the ore particles are heavier than the earthy or rocky gangue particles.
- (b) The wrong statement is that the impurities 9. present in cast iron are oxidised by air.
- (b) Thomas slag $Ca_3(PO_4)_2$ is used as a valuable 10. fertilizer.
- ***_{11.} (b) Malachite is an ore of copper.