PRACTICE PAPER

(d) 2×0.693

Tim	e allowed: 45 minu	ites		Maximum Marks: 20					
Gene	eral Instructions: Sa	me as Practice Paper–1.							
Choc	ose the correct optio	n.							
1.		tallises out with a cubic st ell, then the radius of one		of 361 pm. If there are four meta					
	(a) 80 pm	(b) 108 pm	(c) 40 pm	(d) 128 pm					
2.	Which of the follow (a) conc. HNO ₃ and (c) Ethyl alcohol and	l water	ximum boiling azeotrope? (b) Acetone and benzene (d) Acetone and CS ₂						
3.	Standard reduction correct order of red (a) B > C > A		s A, B and C are + 0.5 V, - 3. tals will be (b) A > B > C	.0 V and – 1.2 V, respectively. The					
4	(c) C > B > A The rate of reaction	o for CLC CHO + NO -	(d) A > C > B \longrightarrow CHCL + NO + CO is a	riven by the eynression					
4.	The rate of reaction for, $Cl_3C.CHO + NO \longrightarrow CHCl_3 + NO + CO$ is given by the expression Rate = $k[Cl_3C.CHO]$ [NO]								
	- 0	expressed in mol/L, the u	nit of k is, (b) mol L ⁻¹ s ⁻¹ (d) s ⁻¹						
5.	With which one of	the following elements sil	icon should be doped so as to	o give p-type of semiconductor? (d) Arsenic					
6.	The Henry's law is (a) the gas undergo (b) the gas undergo	applicable only when es association or dissociation es any chemical change.							
7.	The value of standa	ard electrode potential for	this reaction will be						
	$2H^{+}(aq) + 2e^{-}$ (a) 0	(b) ±1	(c) -1	(d) None of these					

8. If the half lives of a first order and a zero order reaction is same, then the ratio of the initial rate of first order

(c) $\frac{1}{0.693}$

reaction to that of zero order reaction will be $(a) \ \frac{2}{0.693} \qquad \qquad (b) \ 6.93$

9.	The first order rate constant for the decreaction is	composition of N_2O_5 is 6×1	0 ⁻⁴ s ⁻¹ . The half life period of this							
	(a) 1155 s (b) 1117 s	(c) 223.4 s	(d) 160.9 s							
10.	A compound formed by elements X and Y crystallises in a cubic structure in which the X atoms are at the corners of a cube and the Y atoms are at the face-centres. The formula of the compound is									
	(a) XY_3 (b) X_3Y	(c) XY	(d) XY ₂							
11.	A solution has a 1:4 mole ratio of pentane are 440 mm Hg for pentane and 120 mm is									
	(a) 0.200 (b) 0.549	(c) 0.786	(d) 0.478							
12.	Given below are two statements labelled as Assertion and Reason:									
	Assertion (A): Current stops flowing when $E_{\text{cell}} = 0$.									
	Reason (R): Equilibrium of the cell									
	(a) Assertion and reason both are correct statements and reason is correct explanation for assertion. (b) Assertion and reason both are correct statements but reason is not correct explanation for assertion. (c) Assertion is correct statement but reason is wrong statement. (d) Assertion is wrong statement but reason is correct statement.									
13.	Peptization is a process of (a) precipitation of colloidal particles. (b) purification of colloidal solution. (c) dispersion of precipitate in colloidal particles. (d) migration of colloidal particles towards oppositely charged electrode.									
14.	Which property of colloids is used to determine the nature of charge on colloidal particle?									
	(a) Sedimentation (c) Dialysis	(b) Electrophoresis(d) Ultrafiltration								
15.	For electrochemical cell M/M ⁺ X ⁻ /X, $E_{M^+/M}^{o} = 0.44$ V and $E_{X/X^-}^{o} = 0.33$ V. From the data one can deduce that,									
	(a) M + X \rightarrow M ⁺ + X ⁻ is spontaneous		1 + X is spontaneous							
	(c) $E_{\text{cell}}^{\text{o}} = 0.77 \text{ V}$	(d) $E_{\text{cell}}^{\text{o}} = -0.77 \text{ V}$								
16.	The anode in dry cell is	(I) Cook								
	(a) MnO ₂ + C (c) Zinc container	(b) Carbon (d) Graphite electr	ode							
17	The IUPAC name of $K_3[Al(C_2O_4)_3]$ is	(a) Grapinic cicci	ode							
17.	(a) potassium aluminooxatate	(b) potassium alun	nino(III) oxalate							
	(c) potassium trioxalatoaluminate		calatoaluminate(III)							
18.	In potassium manganate, the oxidation state of manganese is									
	(a) +5	(b) +6								
	(c) +7	(d) +8								
19.	 (a) in the presence of NaCl. (b) in the presence of fluorite. (c) in the presence of cryolite which forms a melt with lower melting point. (d) in the presence of cryolite which forms a melt with high melting point. 									
20	Formula of copper pyrite is	9								
40.	(a) Cu ₂ S	(b) CuFeS								
	(c) CuFeS ₂	(d) Cu ₂ Fe ₂ S ₂								

	(a) 1-Bromo-1,1-diethoxyethane		(b) 3-Bromopentane								
	(c) 1-Bromo-1-ethylpropane		(d) 1-Bromopentane								
22.	$C_6H_6 + (CH_3)_2CHCH_2Cl \xrightarrow{Anhy. AlCl_3} $ 'A'										
	The product 'A' is										
	(a) cumene		(b) n-butyl benzene								
	(c) CH ₃ CH ₂ CH(CH ₃) ₂		(d) t-butyl benzene								
23.	Which of the following molecules does not pos	ssess	permanent dipole momen	t?							
	(a) H ₂ S (b) SO ₂		(c) SO ₃	(d) CS ₂							
24.	Which of the following elements of first series	of tra	nsition element has high	est density?							
	(a) Ti (b) Cu		(c) Mn	(d) V							
25.	The atomic number of V, Cr, Mn and Fe are expected to have the highest second ionisation	_	-	. Which one of	these may b						
	(a) V (b) Cr		(c) Mn	(d) Fe							
26.	Which of the following general formula is asso	ociate	d with fac and mer isomer	rism?							
	(a) M(AA') ₂		(b) M(AA) ₃								
	(c) MABCD		(d) MA ₃ X ₃								
27.	XeF ₂ is isostructural with										
	(a) ICl ₂ (b) SbCl ₃		(c) BaCl ₂	$(d) \text{ TeF}_2$							
28.	Match the compounds of Column I with shape given in Column II.										
	Column I		Column II]							
	A. XeF ₆	(i)	Linear								
	B. XeO ₃	(ii)	Square pyramidal								
	C. XeOF ₄	(iii)	Distorted octahedral								
	D. XeF ₂	(iv)	Pyramidal								
	(a) A-(iii), B-(iv), C-(ii), D-(i)		(b) A-(iv), B-(ii), C-(i), D	-(ii)							
	(c) A–(i), B–(ii), C–(iv), D–(iii)	(d) A–(ii), B–(i), C–(iii), D–(i υ)									
29.	Among the following complex ions, which one will not show optical isomerism?										
	(a) $[Pt(Br) (Cl) (I) (NO_2) (C_5H_5N) (NH_3)]^{-}$		(b) cis-[Co(en) ₂ Cl ₂] ⁺								
	(c) $[Co(en) (NH_3)_2Cl_2]^+$		$(d) \left[\operatorname{Cr}(NH_3)_4 \operatorname{Cl}_2 \right]^+$								
30.	The reaction conditions leading to the best yie	eld of	C ₂ H ₅ Cl are								
	(a) $C_2H_6 + Cl_2 \xrightarrow{\text{uv light}}$ (Excess)		$^{(b)}$ $C_2H_6 + Cl_2 - \frac{D}{Room ter}$	mperature							
	(c) $C_2H_6 + Cl_2 \xrightarrow{uv light}$ (Excess)		$(d) \ \ \mathrm{C_2H_6} + \mathrm{Cl_2} \stackrel{\mathrm{uvlight}}{}$	-							
31.	Helium is used as diluent for modern diving apparatus. This is because										
	(a) It has very low solubility in blood.	• •	(b) It has high solubility	in blood.							
	(c) It is a light gas.		(d) Both (a) and (c)								
32.	When 2-hydroxy benzoic acid is distilled with	zinc	dust, it gives								
	(a) Phenol		(b) Benzoic acid								
	(c) Benzaldehyde		(d) A polymeric compou	nd							
33.	Benzene diazonium chloride on reaction with phenol in weakly basic medium gives:										
	(a) diphenyl ether		(b) p-hydroxyazobenzene	e							
	(c) chlorobenzene		(d) benzene								

21. The correct IUPAC name for diethyl bromomethane is

34. Which of the following amines will give carbylamine reaction?

 $(a) (C_9H_5)_3N$

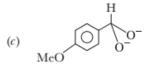
(b) (C₉H₅)₉NH

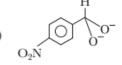
(c) C₂H₅NH₂

(d) C₃H₇NHC₂H₅

35. The chemical name of vitamin B_{12} is

(a) Ascorbic acid


(b) Thiamine


(c) Riboflavin

(d) Cobalamin

36. In a cannizzaro reaction, the intermediate that will be best hydride donor is

37. Which of the following polymer are the correct pair of copolymer?

(a) Polythene, PVC

(b) Nylon-6, Nylon-6,6

(c) Buna-S, Buna-N

(d) None of these

38. Williamson's synthesis is used to prepare

(a) alcohols

(b) ethers

(c) aldehydes

(d) amines

39. Given below are two statements labelled as Statement P and Statement Q:

Statement P: Receptors are crucial to body's communication process.

Statement Q: Receptors are proteins.

(a) P is true, but Q is false

(b) P is false, but Q is true

(c) Both P and Q are true

(d) Both P and Q are false

40. Each polypeptide in a protein has amino acids linked with each other in a specific sequence. This sequence of amino acids is said to be

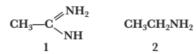
(a) primary structure of proteins.

(b) secondary structure of proteins.

(c) tertiary structure of proteins.

(d) quaternary structure of proteins.

41. n-Butylbenzene on oxidation will give


(a) Benzoic acid

(b) Butanoic acid

(c) Benzyl alcohol

(d) Benzaldehyde

42. The correct order of basicity of the following compound is:

 $(CH_3)_2NH$

(a) 2 > 1 > 3 > 4

(b) 1 > 3 > 2 > 4

(c) 3 > 1 > 2 > 4

(d) 1 > 2 > 3 > 4

43.
$$CH_3CH_2COOH \xrightarrow{Cl_2} [A] \xrightarrow{Alcoholic} [B]$$

The compound [B] is

(a) CH₃CH₉OH

(b) CH₃CH₉COCl

(c) $CH_2 = CHCOOH$

(d) CH3CHClCOOH

44. The IUPAC name of C₆H₅—O—C₂H₅ is

(a) ethoxy benzene

(b) 1-phenyl ethane

(c) 1-phenoxy ethane

(d) 2-ethoxy butane

45. Which of the following is the structure of a non-ionic detergent?

(b)
$$C_9H_{19}$$
— $O+CH_2$ — CH_2 — $O+_5$ — CH_2CH_2OH

(c)
$$CH_3$$
— $SO_3^-ONa^+$

(d)
$$\begin{bmatrix} CH_3 \\ | \\ CH_3(CH_2)_{15} -N - CH_3 \\ | \\ CH_3 \end{bmatrix} Br^{-1}$$

46. Lucas test is used to distinguish

(a) Alcohols

(b) Alkyl halide

(c) Amines

(d) Carbonyl compound

47. Propan-1-ol and propan-2-ol can be best distinguished by

- (a) Oxidation with alkaline KMnO₄ followed by reaction with Fehling solution.
- (b) Oxidation with acidic dichromate followed by reaction with Fehling solution.
- (c) Oxidation by heating with Cu followed by reaction with Fehling solution.
- (d) Oxidation with concentrated H2SO4 followed by reaction with Fehling solution.

48. The monomers of Buna-S are

(a) Styrene and butadiene

(b) Isoprene and butadiene

(c) Vinyl chloride and sulphur

(d) Butadiene

49. Which of the following orders of relative strength of acids is correct?

- (a) FCH2COOH> ClCH2COOH> BrCH2COOH
- (b) CICH₉COOH> BrCH₉COOH> FCH₉COOH
- (c) BrCH2COOH> ClCH2COOH> FCH2COOH
- (d) ClCH2COOH> FCH2COOH> BrCH2COOH

50. Which amino acid has phenolic-OH group as its backbone?

(a) Glycine

(b) Leucine

(c) Tyrosine

(d) Serine

Answers

PRACTICE PAPER — 16													
1.	(d)	2.	(a)	3.	(a)	4.	(c)	5.	(b)	6.	(c)	7.	(a)
8.	(d)	9.	(a)	10.	(a)	11.	(<i>d</i>)	12.	(a)	13.	(c)	14.	(b)
15.	(b)	16.	(c)	17.	(d)	18.	(b)	19.	(c)	20.	(c)	21.	(b)
22.	(d)	23.	(d)	24.	(b)	25.	(b)	26.	(<i>d</i>)	27.	(a)	28.	(a)
29.	(d)	30.	(a)	31.	(a)	32.	(b)	33.	(b)	34.	(c)	35.	(d)
36.	(d)	37.	(c)	38.	(b)	39.	(c)	40.	(a)	41.	(a)	42.	(b)
43.	(c)	44.	(a)	45.	(b)	46.	(a)	47.	(c)	48.	(a)	49.	(a)
50.	(c)												

Solutions

PRACTICE PAPER - 16

1. (d) Z = 4, i.e., structure is fcc Hence,

$$r = \frac{a}{2\sqrt{2}} = \frac{361}{2\sqrt{2}} = 127.65 \,\mathrm{pm} \approx 128 \,\mathrm{pm}$$

- 3. (a) The more negative is the standard reduction potential value, greater will its reducing power. Thus the correct order of reducing power of the given metals will be B > C > A.
- 7. (a) The given reaction is of standard hydrogen electrode and therefore $E_{2H^{\oplus}/H_2(g)}^{o} = 0.00 \text{ V}$
- **8.** (d) $t_{1/2}$ for zero order reaction = $\frac{[A]_0}{2k}$

 $t_{1/2}$ for first order reaction = $\frac{0.693}{k}$

Rate of zero order reaction,

$$r_0 = k \frac{[A]_0}{2 t_{1/2}}$$

Rate of first order reaction,

$$r_1 = k(A_0) = \frac{0.693}{k}[A_0]$$

$$\Rightarrow \frac{r_1}{r_0} = \frac{0.693 [A]_0}{t_{1/2}} \times \frac{2 \times t_{1/2}}{[A]_0} = 2 \times 0.693$$

9. (a) For first order reaction, $t_{1/2} = \frac{0.693}{k}$ Therefore, $t_{1/2} = \frac{0.693}{6 \times 10^{-4}}$

$$t_{1/2} = 1155 \text{ s}$$

10. (a) In a unit cell, X atoms at the corners $= \frac{1}{8} \times 8 = 1$

Y atoms at the face centres = $\frac{1}{2} \times 6 = 3$

Ratio of X and Y = 1 : 3. Hence formula is XY_3 .

11. (d) $\frac{n_{\text{pentane}}}{n_{\text{bexane}}} = \frac{1}{4}$

So,
$$\chi_{\text{pentane}} = \frac{1}{5}$$

$$\chi_{\text{Hexane}} = \frac{4}{5}$$

$$P_{\text{Total}} = p_{\text{pentane}}^{\text{o}} \times \chi_{\text{pentane}} + p_{\text{Hexane}}^{\text{o}} \times \chi_{\text{Hexane}}$$

= $440 \times \frac{1}{5} + 120 \times \frac{4}{5} = 184 \text{ mm of Hg}$

By Raoult's law

Now
$$p_{\text{pentane}} = p_{\text{pentane}}^{\text{o}} \times \chi_{\text{pentane}}$$
 ...(i)

 $\chi_{pentane}$ is mole fraction of pentane in solution.

By Dalton's law

$$p_{\text{pentane}} = P_T \times \chi'_{\text{pentane}}$$
 ...(ii)

 $\chi'_{pentane}$ is mole fraction of pentane in vapour phase.

From (i) and (ii), we get

$$p_{\text{pentane}}^{\text{o}} \times \chi_{\text{pentane}} = P_T \times \chi'_{\text{pentane}}$$

$$\chi'_{\text{pentane}} = \frac{p_{\text{pentane}}^{\text{o}} \times \chi_{\text{pentane}}}{P_T}$$

$$=\frac{440 \times \frac{1}{5}}{184} = \frac{88}{184} = 0.478$$

- 14. (b) The movement of colloidal particles towards oppositely charged electrode in an electric field is called electrophoresis. It occurs due to the presence of positive or negative charge on colloids.
- 15. (b) $E_{M^+/M}^o = 0.44 \text{ V}; E_{X/X^-}^o = 0.33 \text{ V}$ $E_{RP}^o \text{ for } M > E_{RP}^o \text{ for } X$

$$\mathcal{L}_{RP}$$
 for $M > \mathcal{L}_{RP}$ for

Thus,

$$M^+ + e^- \longrightarrow M$$
 Reduction (Cathode)

$$X^- \longrightarrow X + e^-$$
 Oxidation (Anode)

$$E_{coll}^o = E_R^o - E_L^o$$

$$= 0.44 - (0.33) = 0.44 - 0.33 = 0.11 \text{ V}$$

As electrode potential of cell is positive and therefore forward reaction is spontaneous.

- 16. (c) Leclanche or dry cell consists of a zinc container which acts as the anode. Carbon (graphite) rod surrounded by a mixture of powdered manganese dioxide and carbon acts as a cathode.
- 17. (d) The correct IUPAC name of K₃[Al(C₂O₄)₃] is potassiumtrioxalatoaluminate(III). Let oxidation number of Al be x.

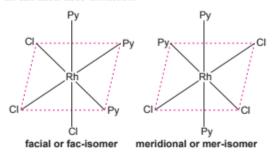
$$+3 + x + 3(-2) = 0$$

$$+3 + x - 6 = 0$$

$$x - 3 = 0$$

$$x = +3$$

(b) Let oxidation state of Mn is x in K₂MnO₄.


$$\therefore 2(+1) + x + 4(-2) = 0$$

$$x = +6$$

19. (c) In Hall-Herault process, purified Al₂O₃ is mixed with Na₃AlF₆ or CaF₂ which lowers the melting point of mixture and brings electrical conductivity. Fused mixture is electrolysed using graphite rod as anode and carbon lining as cathode.

22. (d)
$$\bigcirc$$
 +(CH₃)₂CHCH₂Cl \bigcirc CH₃ \bigcirc

- 23. (d) CS₂ does not possess permanent dipole moment as it is a linear molecule.
- 24. (b) The decrease in atomic radius coupled with increase in atomic mass results in increase in the density along the series.
- 25. (b) The electronic configuration of Cr⁺ is [Ar] 3d⁵ which is extra stable due to half filled configuration. Therefore it has highest second ionisation enthalpy.
- 26. (d) MA₃X₃ represents two isomeric forms referred as fac and mer isomers.

Type [MA₃X₃]

- 27. (a) ICl₂⁻has sp³d hybridisation with linear structure as of XeF₂ containing 3 lone pairs and 2 bond pairs.
- 29. (d) The complex [Cr(NH₃)₄Cl₂]⁺ will not show optical isomerism as it does not possesses chiral centre.
- 30. (a) C₂H₆ + Cl₂

 —UV light → C₂H₅Cl + HCl (excess)

 In this reaction, if we use Cl₂ in excess, then mono, di, tri and tetra chloroalkanes are formed as product and if ethane is used in excess, then ethyl chloride forms as major product.
- (b) On distilling 2-hydroxy benzoic acid with zinc dust, benzoic acid is formed as Zn dust reduces alcoholic group.

p-hydroxyazobenzene is formed as a result of coupling reaction.

- 34. (c) Only primary aromatic and aliphatic amines give this reaction.
- (d) Due to presence of –NO₂ (electron withdrawing group), molecule stabilizes after release of hydride.
- 37. (c) Buna-S is a copolymer of 1,3-Butadiene and styrene and Buna-N is a copolymer of 1,3-Butadiene and acrylonitrile.
- 40. (a) Each polypeptide in a protein has amino acids linked with each other in a specific sequence and it is this sequence of amino acids that is said to be the primary structure of that protein. Any change in this primary structure i.e., the sequence of amino acids creates a different protein.

41. (a)
$$CH_2$$
— CH_2 — CH_3 — CH_3 — $COOH_3$ — $COOH_4$ — C

42. (b) Compound (1) is maximum basic because the conjugate acid formed by addition of proton is resonance stabilized.

Compound (3) is more basic than compound (2) because the former is secondary amine while latter is primary amine. The compound (4) is the least basic in nature due to delocalisation of lone pair of electrons of N over the CO group. The correct order is, therefore, as given in (b).

43. (c)
$$CH_3CH_2COOH \xrightarrow{Cl_2} CH_3CHCOOH \ Cl$$
 α -Chloropropionic acid

[A]

 $KOH \longrightarrow CH_2 = CHCOOH$

Prop-2-enoic acid

45. (b) Non-ionic detergents do not contain any ion in their constitution. Liquid dishwashing detergents are the non-ionic type.

$$C_9H_{19} \hspace{-2mm} \longleftarrow \hspace{-2mm} \hspace{-2mm}$$

46. (a) Lucas test: In this test, the alcohol is treated with Lucas reagent which is an equimolar mixture of conc. HCl and ZnCl₂. Alcohols are soluble in Lucas reagent and form a clear solution. On reaction, alkyl chlorides are formed which being insoluble result in turbidity in the solution.

Alcohol
$$\xrightarrow{\text{conc. HCl}}$$
 Alkyl chloride + H₂O

If turbidity appears immediately, tertiary alcohol is indicated.

If turbidity appears within five minutes, secondary alcohol is indicated.

If turbidity appears only upon heating, primary alcohol is indicated.

47. (c)
$$CH_3 - CH_2 - CH_2OH \xrightarrow{Cu} CH_3 - CH_2 - CHO$$

Propan-1-ol

Ecuo No reaction

48. (a) nCH=CH-CH=CH₂ + Styrene

1, 3-Butadiene

+ CH₂-CH=CH-CH₂ - CH-CH₂-
$$\frac{1}{n}$$

Butadiene-styrene copolymer (Buna-S)

- 49. (a) The –I effect of the halogens decreases in the order: F > Cl > Br > I.
 Therefore, the acidic strength of the given halogen acids follow the order:
- **50.** (c) Tyrosine or 4-hydroxyphenylalanine is a non-essential amino acid with a polar side group.

 $FCH_2COOH > ClCH_2COOH > BrCH_2COOH$