

DPP No. 39Total Marks : 25Max. Time : 26 min.

Topics : Application of Derivatives, Solution of Triangle			
Type of Questions		M.M., Min.	
Comprehension (no negative marking) Q.1 to Q.3	(3 marks, 3 min.)	[9,	9]
Single choice Objective (no negative marking) Q. 4,5,6,7	(3 marks, 3 min.)	[12,	12]
Subjective Questions (no negative marking) Q.8	(4 marks, 5 min.)	[4,	5]

COMPREHENSION (Q. NO. 1 TO 3)

Let f(x) be a function such that it is thrice differentiable in (a, b). Consider a function

 $\phi(x) = f(b) - f(x) - (b - x) f'(x) - \frac{(b - x)^2}{2} f''(x) - (b - x)^3 \lambda$. and $\phi(x)$ follows all conditions of Rolle's theorem on [a, b]

If there exist some number $c \in (a, b)$ such that $\phi'(c) = 0$ and $f(b) = f(a) + (b - a) f'(a) + \frac{(b - a)^2}{2}$ 1. $f''(a) + \mu (b - a)^3 f'''(c)$, then μ is

(A) $\frac{1}{2}$ (B) $\frac{1}{6}$ (C) $\frac{1}{8}$ (D) $-\frac{1}{2}$

Let $f(x) = x^4 - 6x^3 + 12x^2 - 8x + 3$. If Rolle's theorem is applicable to $\phi(x)$ on [2, 2 + h] and there exist 2.

 $c \in (2, 2 + h) \text{ such that } \phi'(c) = 0 \text{ and } \frac{f(2 + h) - f(2)}{h^3} = g(c), \text{ then slope of tangent of curve } y = g(x) \text{ at } x = 5$ is

(A) 4 (B) 5 (C) 6 (D) 10

Let $f(x) = e^{2x}$ and b = a + h. If there exists a real number $\theta \in (0, 1)$ such that $\phi(a + \theta h) = 0$ 3.

and
$$\frac{e^{2h} - 1 - 2h - 2h^2}{h^3}$$
 = Ae^{B0h}, then the value of $\frac{2B}{A}$ is equal to
(A) 4 (B) 3 (C) 6 (D) 8

- The curve $y = x^3 + x^2 x$ has two horizontal tangents. The distance between these two horizontal 4. lines, is
 - (A) $\frac{13}{9}$ (B) $\frac{11}{9}$ (C) $\frac{22}{27}$ (D) $\frac{32}{27}$

- 5. If a, b > 0, then minimum value of y = $\frac{b^2}{a-x} + \frac{a^2}{x}$ in (0, a) is
 - (A) $\frac{a+b}{a}$ (B) $\frac{ab}{a+b}$ (C) $\frac{1}{a} + \frac{1}{b}$ (D) none of these

Find maximum possible area that can be enclosed by a wire of length 20 cm by bending it in form of a circular sector.
(A) 10
(B) 25
(C) 30
(D) 20

7. If the sides a, b, c of a triangle ABC are the roots of the equation $x^3 - 13x^2 + 54x - 72 = 0$, then the value of

$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}$$
 is equal to (with usual notation in $\triangle ABC$)

(A) $\frac{169}{144}$ (B) $\frac{61}{72}$ (C) $\frac{61}{144}$ (D) $\frac{169}{72}$

8. If x = e^t sin t, y = e^t cos t, show that $\frac{d^2y}{dx^2} = \frac{-2(x^2 + y^2)}{(x + y)^3}$

Answers Key

 1. (B)
 2. (A)
 3. (B)
 4. (D)

 5. (D)
 6. (B)
 7. (C)