

Definition, Equation of the Circle

[Rajasthan PET 1985; MP PET 1989]

[AMU 1978]

(d) None of these

(d) None of these

[IIT 1982]

[IIT 1976]

[MP PET 1984]

Basic Level

(c) 2

(c) Parabola

(b) $x^2 + y^2 + ax + ay - a^2 = 0$

(d) $x^2 + y^2 - ax - ay + a^2 = 0$

(b) $x^2 + y^2 - 4x - 10y + 25 = 0$

(d) $x^2 + y^2 - 14y + 8 = 0$

The two points A and B in a plane such that for all points P lies on circle satisfied $\frac{PA}{PB} = k$, then k will not be equal to

Locus of a point which moves such that sum of the squares of its distances from the sides of a square of side unity is 9, is

(b) 1

(b) Circle The equation of the circle which touches both the axes and whose radius is a, is

1.

2.

3.

10.

11.

(a) Straight line

(a) $x^2 + y^2 - 2ax - 2ay + a^2 = 0$

(c) $x^2 + y^2 + 2ax + 2ay - a^2 = 0$

(a) $x^2 + y^2 + 4x - 10y + 25 = 0$

(c) $x^2 + y^2 - 4x - 10y + 16 = 0$

The equation of the circle passing through the points (0, 0), (0, b) and (a, b) is

4.	ABCD is a square the length of whose side is a. Taking AB and vertices of the square, is	AD as the coordinate axes, the equation of the circle p	assing through the [MP PET 2003
	(a) $x^2 + y^2 + ax + ay = 0$ (b) $x^2 + y^2 - ax - ay = 0$	(c) $x^2 + y^2 + 2ax + 2ay = 0$ (d) $x^2 + y^2 - 2ax + 2ay = 0$	ax - 2ay = 0
5.	The equation of the circle in the first quadrant touching each coord	inate axis at a distance of one unit from the origin is	
		[Rajasthan PET 1991; N	MP PET 1987, 1989
	(a) $x^2 + y^2 - 2x - 2y + 1 = 0$	(b) $x^2 + y^2 - 2x - 2y - 1 = 0$	
	(c) $x^2 + y^2 - 2x - 2y = 0$	(d) None of these	
6.	The equation of the circle which touches both axes and whose cent	re is (x_1, y_1) , is	[MP PET 1988
	(a) $x^2 + y^2 + 2x_1(x+y) + x_1^2 = 0$	(b) $x^2 + y^2 - 2x_1(x+y) + x_1^2 = 0$	
	(c) $x^2 + y^2 = x_1^2 + y_1^2$	(d) $x^2 + y^2 + 2xx_1 + 2yy_1 = 0$	
7.	The equation of the circle which touches x-axis and whose centre is	s (1, 2), is	[MP PET 1984
	(a) $x^2 + y^2 - 2x + 4y + 1 = 0$	(b) $x^2 + y^2 - 2x - 4y + 1 = 0$	
	(c) $x^2 + y^2 + 2x + 4y + 1 = 0$	(d) $x^2 + y^2 + 4x + 2y + 4 = 0$	
8.	The equation of the circle having centre $(1, -2)$ and passing through	gh the point of intersection of lines $3x + y = 14$, $2x + 5y$	v = 18 is
			[MP PET 1990
	(a) $x^2 + y^2 - 2x + 4y - 20 = 0$	(b) $x^2 + y^2 - 2x - 4y - 20 = 0$	
	(c) $x^2 + y^2 + 2x - 4y - 20 = 0$	(d) $x^2 + y^2 + 2x + 4y - 20 = 0$	
9.	The equation of the circle passing through (4, 5) and having the cer	ntre at (2, 2), is [MNR 1986; MP PET 19	984; UPSEAT 2000
	(a) $x^2 + y^2 + 4x + 4y - 5 = 0$	(b) $x^2 + y^2 - 4x - 4y - 5 = 0$	
	(c) $x^2 + y^2 - 4x = 13$	(d) $x^2 + y^2 - 4x - 4y + 5 = 0$	

The equation of the circle which passes through the points (2, 3) and (4, 5) and the centre lies on the straight line y - 4x + 3 = 0, is

[Kurukshetra CEE 1998]

[EAMCET 2002]

13.	(a) $a = b = 0$ and $c = 0$ (b) $f = g$ and $h = 0$ The equation of the circle whose diameters have the end points (a,	(c) $a = b \neq 0$ and $h = 0$ (d) $f = g$ and $c = 0$ 0), $(0, b)$ is given by [MP PET 1993]	
		(c) $x^2 + y^2 - ax + by = 0$ (d) $x^2 + y^2 + ax + by = 0$	
14.	The equation of the circle which touches x-axis at (3, 0) and passes		
	(a) $x^2 + y^2 - 6x - 5y + 9 = 0$	(b) $x^2 + y^2 + 6x + 5y - 9 = 0$	
	(c) $x^2 + y^2 - 6x + 5y - 9 = 0$	(d) $x^2 + y^2 + 6x - 5y + 9 = 0$	
15.	From three non-collinear points we can draw	[MP PET 1984; BIT Ranchi 1990]	
	(a) Only one circle (b) Three circle	(c) Infinite circles (d) No circle	
16.	Equation of a circle whose centre is origin and radius is equal to the	e distance between the lines $x = 1$ and $x = -1$ is [MP PET 1984]	
	(a) $x^2 + y^2 = 1$ (b) $x^2 + y^2 = \sqrt{2}$	(c) $x^2 + y^2 = 4$ (d) $x^2 + y^2 = -4$	
17.	If the centre of a circle is $(2, 3)$ and a tangent is $x + y = 1$, then the	e equation of this circle is [Rajasthan PET 1985, 1989]	
	(a) $(x-2)^2 + (y-3)^2 = 8$ (b) $(x-2)^2 + (y-3)^2 = 3$	(c) $(x+2)^2 + (y+3)^2 = 2\sqrt{2}$ (d) $(x-2)^2 + (y-3)^2 = 2\sqrt{2}$	
18.	$ax^2 + 2y^2 + 2bxy + 2x - y + c = 0$ represents a circle through the	e origin, if [MP PET 1984]	
	(a) $a = 0, b = 0, c = 2$ (b) $a = 1, b = 0, c = 0$	(c) $a = 2, b = 2, c = 0$ (d) $a = 2, b = 0, c = 0$	
19.	If the equation $\frac{K(x+1)^2}{3} + \frac{(y+2)^2}{4} = 1$ represents a circle, then	K = [MP PET 1994]	
	(a) 3/4 (b) 1	(c) 4/3 (d) 12	
20.	A circle has radius 3 units and its centre lies on the line $y = x - 1$.	Then the equation of this circle if it passes through point (7, 3), is	
		[Roorkee 1988]	
	(a) $x^2 + y^2 - 8x - 6y + 16 = 0$	(b) $x^2 + y^2 + 8x + 6y + 16 = 0$	
	(c) $x^2 + y^2 - 8x - 6y - 16 = 0$	(d) None of these	
21.	The equation of circle whose diameter is the line joining the points [III	(-4,3) and $(12,-1)$ is T 1971; Rajasthan PET 1984, 87, 89; MP PET 1984; Roorkee 1969; AMU 1979]	
	(a) $x^2 + y^2 + 8x + 2y + 51 = 0$	(b) $x^2 + y^2 + 8x - 2y - 51 = 0$	
	(c) $x^2 + y^2 + 8x + 2y - 51 = 0$	(d) $x^2 + y^2 - 8x - 2y - 51 = 0$	
22.	The equation of the circle which passes through the points $(3, -2)$	and $(-2, 0)$ and centre lies on the line $2x - y = 3$, is	
		[Roorkee 1971]	
	(a) $x^2 + y^2 - 3x - 12y + 2 = 0$	(b) $x^2 + y^2 - 3x + 12y + 2 = 0$	
	(c) $x^2 + y^2 + 3x + 12y + 2 = 0$	(d) None of these	
23.	For $ax^2 + 2hxy + 3y^2 + 4x + 8y - 6 = 0$ to represent a circle, on	ne must have	
24.	(a) $a = 3, h = 0$ (b) $a = 1, h = 0$ The equation of the circle in the first quadrant which touches each a	(c) $a = h = 3$ (d) $a = h = 0$ axis at a distance 5 from the origin is [MP PET 1997]	
	(a) $x^2 + y^2 + 5x + 5y + 25 = 0$	(b) $x^2 + y^2 - 10x - 10y + 25 = 0$	
	(c) $x^2 + y^2 - 5x - 5y + 25 = 0$	(d) $x^2 + y^2 + 10x + 10y + 25 = 0$	
25.	If (α, β) is the centre of a circle passing through the origin, then it		
	(a) $x^2 + y^2 - \alpha x - \beta y = 0$ (b) $x^2 + y^2 + 2\alpha x + 2\beta y = 0$		
	(a) $\lambda = y = \omega = py = 0$ (b) $\lambda = y = 2\omega + 2py = 0$	(c) $x + y = 2\alpha x - 2\beta y = 0$ (d) $x + y + \alpha x + \beta y = 0$	

The equation of the circle whose diameter lies on 2x + 3y = 3 and 16x - y = 4 and which passes through (4, 6) is

The equation of the circle of radius 5 and touching the coordinate axes in third quadrant is

(b) $x^2 + y^2 - 4x - 8y = 200$

(d) $x^2 + y^2 = 40$

(a) $x^2 + y^2 + ax + by = 0$ (b) $x^2 + y^2 - ax + by = 0$ (c) $x^2 + y^2 - ax - by = 0$ (d) $x^2 + y^2 + ax - by = 0$

12.

26.

27.

(a) $5(x^2 + y^2) - 3x - 8y = 200$ (c) $5(x^2 + y^2) - 4x = 200$

The equation $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$ will represent a circle, if [MNR 1979; MP PET 1988; Rajasthan PET 1997, 2003]

(a)
$$(x-5)^2 + (y+5)^2 = 25$$

(b)
$$(x+4)^2 + (y+4)^2 = 2$$

(c)
$$(x+6)^2 + (y+6)^2 = 25$$

(a)
$$(x-5)^2 + (y+5)^2 = 25$$
 (b) $(x+4)^2 + (y+4)^2 = 25$ (c) $(x+6)^2 + (y+6)^2 = 25$ (d) $(x+5)^2 + (y+5)^2 = 25$

28. The centre of a circle is (2, -3) and the circumference is 10π . Then the equation of the circle is [Kerala (Engg.) 2002]

(a)
$$x^2 + y^2 + 4x + 6y + 12 = 0$$

(b)
$$x^2 + y^2 - 4x + 6y + 12 = 0$$

(c)
$$x^2 + y^2 - 4x + 6y - 12 = 0$$

(d)
$$x^2 + y^2 - 4x - 6y - 12 = 0$$

29. The circle described on the line joining the points (0, 1), (a, b) as diameter cuts the x-axis in points whose abscissae are roots of the equation

(a)
$$x^2 + ax + b = 0$$

(b)
$$x^2 - ax + b = 0$$

(c)
$$x^2 + ax - b = 0$$

(d)
$$x^2 - ax - b = 0$$
.

Four distinct points (2k, 3k), (1, 0), (0, 1) and (0, 0) lie on a circle for 30.

(a) All integral values of
$$k$$

(b)
$$0 < k < 1$$

(c)
$$k < 0$$

(d) For two values of k

31. The equations of the circles which touch both the axes and the line x = a are

(a)
$$x^2 + y^2 \pm ax \pm ay + \frac{a^2}{4} = 0$$

(b)
$$x^2 + y^2 + ax \pm ay + \frac{a^2}{4} = 0$$

(c)
$$x^2 + y^2 - ax \pm ay + \frac{a^2}{4} = 0$$

(d) None of these.

The equation of the unit circle concentric with $x^2 + y^2 + 8x + 4y - 8 = 0$ is 32.

[EAMCET 1991]

(a)
$$x^2 + y^2 - 8x + 4y - 8 = 0$$

(b)
$$x^2 + y^2 - 8x + 4y + 8 = 0$$

(c)
$$x^2 + y^2 - 8x + 4y - 28 = 0$$

(d)
$$x^2 + y^2 - 8x + 4y + 19 = 0$$

33. A circle of radius 2 touches the coordinate axes in the first quadrant. If the circle makes a complete rotation on the x-axis along the positive direction of the x-axis then the equation of the circle in the new position is

(a)
$$x^2 + y^2 - 4(x + y) - 8\pi x + (2 + 4\pi)^2 = 0$$

(b)
$$x^2 + y^2 - 4x - 4y + (2 + 4\pi)^2 = 0$$

(c)
$$x^2 + y^2 - 8\pi x - 4y + (2 + 4\pi)^2 = 0$$

(d) None of these

A circle which touches the axes and whose centre is at distance $2\sqrt{2}$ from the origin, has the equation 34.

(a)
$$x^2 + y^2 - 4x + 4y + 4 = 0$$

(b)
$$x^2 + y^2 + 4x - 4y + 4 = 0$$

(c)
$$x^2 + y^2 + 4x + 4y + 4 = 0$$

(d) None of these

If (-1, 4) and (3, -2) are end points of a diameter of a circle, then the equation of this circle is 35.

[Rajasthan PET 1987, 89]

(a)
$$(x-1)^2 + (y-1)^2 = 1$$

(a)
$$(x-1)^2 + (y-1)^2 = 13$$
 (b) $(x+1)^2 + (y+1)^2 = 13$ (c) $(x-1)^2 + (y+1)^2 = 13$ (d) $(x+1)^2 + (y-1)^2 = 13$

(c)
$$(x-1)^2 + (y+1)^2 = 13$$

(d)
$$(x+1)^2 + (y-1)^2 = 13$$

The equation of the circle concentric with the circle $x^2 + y^2 - 3x + 4y - c = 0$ and passing through the point (-1, -2) is 36.

[Rajasthan PET 1984, 92]

(a)
$$x^2 + y^2 - 3x + 4y - 1 = 0$$

(b)
$$x^2 + y^2 - 3x + 4y = 0$$

(c)
$$x^2 + y^2 - 3x + 4y + 2 = 0$$

(d) None of these

If (-3, 2) lies on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ which is concentric with $x^2 + y^2 + 6x + 8y - 5 = 0$, then c is equal to 37.

[Rajasthan PET 1986]

(c)
$$-24$$

Equation $x^2 + y^2 + 4x + 6y + 13 = 0$ represents 38.

[Roorkee 1990]

(b) A pair of two different lines

(c) A pair of coincident lines

(d) A point

39. If the lines 2x + 3y + 1 = 0 and 3x - y - 4 = 0 lie along diameters of a circle of circumference 10π , then the equation of the circle is

[AIEEE 2004]

(a)
$$x^2 + y^2 + 2x - 2y - 23 = 0$$

(b)
$$x^2 + y^2 - 2x - 2y - 23 = 0$$

(c)
$$x^2 + y^2 + 2x + 2y - 23 = 0$$

(d)
$$x^2 + y^2 - 2x + 2y - 23 = 0$$

[MP PET 1990]

41.	If $y = 2x$ is a chord of the circle $x^2 + y^2 - 10x = 0$, then the equ	ation of the circle of which this cl	hord is a diameter, is
			[Rajasthan PET 1988]
	(a) $x^2 + y^2 - 2x + 4y = 0$ (b) $x^2 + y^2 + 2x + 4y = 0$	(c) $x^2 + y^2 + 2x - 4y = 0$	(d) $x^2 + y^2 - 2x - 4y = 0$
42.	The circle on the chord $x \cos \alpha + y \sin \alpha = p$ of the circle $x^2 + y^2$	$= a^2$ as diameter has the equation	n [Roorkee 1967; MP PET 1993]
	(a) $x^2 + y^2 - a^2 - 2p(x\cos\alpha + y\sin\alpha - p) = 0$	(b) $x^2 + y^2 + a^2 + 2p(x \cos x)$	$\alpha - y\sin\alpha + p) = 0$
	(c) $x^2 + y^2 - a^2 + 2p(x\cos\alpha + y\sin\alpha + p) = 0$	(d) $x^2 + y^2 - a^2 - 2p(x \cos x)$	$\alpha - y \sin \alpha - p) = 0$
43.	The equation of circle which touches the axes of coordinates a	and the line $\frac{x}{3} + \frac{y}{4} = 1$ and wh	nose centre lies in the first quadrant is
	$x^2 + y^2 - 2cx - 2cy + c^2 = 0$, where c is		[Ranchi BIT 1986; Kurukshetra CEE 1996]
	(a) 1 (b) 2	(c) 3	(d) 6
44.	The equation of a circle which touches both axes and the line $3x - 6$	4y + 8 = 0 and lies in the third q	[MP PET 1986]
	(a) $x^2 + y^2 - 4x + 4y - 4 = 0$	(b) $x^2 + y^2 - 4x + 4y + 4 =$: 0
	(c) $x^2 + y^2 + 4x + 4y + 4 = 0$	(d) $x^2 + y^2 - 4x - 4y - 4 =$	0
45.	Equation of the circle which touches the lines $x = 0$, $y = 0$ and $3x = 0$	x + 4y = 4 is	[MP PET 1991]
	(a) $x^2 - 4x + y^2 + 4y + 4 = 0$	(b) $x^2 - 4x + y^2 - 4y + 4 =$	0
	(c) $x^2 + 4x + y^2 + 4y + 4 = 0$	(d) $x^2 + 4x + y^2 - 4y + 4 =$	0
46.	The equation of the circumcircle of the triangle formed by the lines	$y + \sqrt{3}x = 6$, $y - \sqrt{3}x = 6$ and	y = 0, is [EAMCET 1982]
	(a) $x^2 + y^2 - 4y = 0$ (b) $x^2 + y^2 + 4x = 0$	(c) $x^2 + y^2 - 4y = 12$	(d) $x^2 + y^2 + 4x = 12$
47.	A variable circle passes through the fixed point $A(p, q)$ and touched	es x-axis. The locus of the other en	nd of the diameter through A is
			[AIEEE 2004]
	(a) $(y-q)^2 = 4px$ (b) $(x-q)^2 = 4py$	(c) $(y-p)^2 = 4qx$	$ (d) (x-p)^2 = 4qy $
48.	If a circle passes through the points of intersection of the coordinate	the axes with the lines $\lambda x - y + 1$	= 0 and $x - 2y + 3 = 0$, then the value
	of λ is		[HT 1991]
40	(a) 1 (b) 2	(c) 3	(d) 4
49.	Equation to the circles which touch the lines $3x - 4y + 1 = 0$, $4x$		
	(a) $(x-2)^2 + (y-8)^2 = 25$	(b) $5x^2 + 5y^2 - 12x - 24y $	+31 = 0
	(c) Both (a) and (b)	(d) None of these	
50.	The equation of the circle which passes through $(1, 0)$ and $(0, 1)$ and		e, is
	(a) $x^2 + y^2 - 2x - 2y + 1 = 0$	(b) $x^2 + y^2 - x - y = 0$	
	(c) $2x^2 + 2y^2 - 3x - 3y + 1 = 0$	(d) $x^2 + y^2 - 3x - 3y + 2 =$	0
51.	The centres of a set of circles, each of radius 3, lie on the circle x^2	$+y^2 = 25$. The locus of any point	nt in the set is [AIEEE 2002]
	(a) $4 \le x^2 + y^2 \le 64$ (b) $x^2 + y^2 \le 25$	(c) $x^2 + y^2 \ge 25$	(d) $3 \le x^2 + y^2 \le 9$
52.	The equation of the circle which touches both the axes and the straig	ght line $4x + 3y = 6$ in the first of	quadrant and lies below it is
			[Roorkee 1992]

(b) $x^2 + y^2 - 6x - 6y + 9 = 0$

y = mx is a chord of a circle of radius a and the diameter of the circle lies along x-axis and one end of this chord is origin. The equation of

(b) $(1+m^2)(x^2+y^2)-2a(x+my)=0$

(d) $(1+m^2)(x^2+y^2)-2a(x-my)=0$

40.

the circle described on this chord as diameter is

(c) $(1+m^2)(x^2+y^2)+2a(x+my)=0$

(a) $(1+m^2)(x^2+y^2)-2ax=0$

(a) $4x^2 + 4y^2 - 4x - 4y + 1 = 0$

(c)
$$x^2 + y^2 - 6x - y + 9 = 0$$

(d)
$$4(x^2 + y^2 - x - 6y) + 1 = 0$$

Three sides of a triangle have the equations $L_r \equiv y - m_r x - c_r = 0$; r = 1, 2, 3. Then $\lambda L_2 L_3 + \mu L_3 L_1 + \nu L_1 L_2 = 0$, where 53. $\lambda \neq 0$, $\mu \neq 0$, $\nu \neq 0$, is the equation of the circumcircle of the triangle, if

(a)
$$\lambda(m_2 + m_3) + \mu(m_3 + m_1) + \nu(m_1 + m_2) = 0$$

(b)
$$\lambda (m_2 m_3 - 1) + \mu (m_3 m_1 - 1) + \nu (m_1 m_2 - 1) = 0$$

(c) Both (a) and (b) hold together

- (d) None of these
- The equation of the circle passing through the point (1, 1) and having two diameters along the pair of lines $x^2 y^2 2x + 4y 3 = 0$ is 54.

(a)
$$x^2 + y^2 - 2x - 4y + 4 = 0$$

(b)
$$x^2 + y^2 + 2x + 4y - 4 = 0$$

(c) $x^2 + y^2 - 2x + 4y + 4 = 0$

- (d) None of these
- 55. The equation of a circle which touches x-axis and the line 4x - 3y + 4 = 0, its centre lying in the third quadrant and lies on the line x - y - 1 = 0, is

(a)
$$9(x^2 + y^2) + 6x + 24y + 1 = 0$$

(b)
$$9(x^2 + y^2) - 6x - 24y + 1 = 0$$

(c) $9(x^2 + y^2) - 6x + 2y + 1 = 0$

- (d) None of these
- Two vertices of an equilateral triangle are (-1, 0) and (1, 0) and its third vertex lies above the x-axis. The equation of the circumcircle of the **56.** triangle is

(a)
$$x^2 + y^2 = 1$$

(b)
$$\sqrt{3}(x^2 + y^2) + 2y - \sqrt{3} = 0$$

(b)
$$\sqrt{3}(x^2 + y^2) + 2y - \sqrt{3} = 0$$
 (c) $\sqrt{3}(x^2 + y^2) - 2y - \sqrt{3} = 0$ (d) None of these

A triangle is formed by the lines whose combined equation is given by (x + y - 4)(xy - 2x - y + 2) = 0. The equation of its circumcircle is 57.

(a)
$$x^2 + y^2 - 5x - 3y + 8 = 0$$

(b)
$$x^2 + y^2 - 3x - 5y + 8 = 0$$

(c)
$$x^2 + y^2 - 3x - 5y - 8 = 0$$

- (d) None of these
- If the centroid of an equilateral triangle is (1, 1) and its one vertex is (-1, 2) then the equation of its circumcircle is 58.

(a)
$$x^2 + y^2 - 2x - 2y - 3 = 0$$

(b)
$$x^2 + y^2 + 2x - 2y - 3 = 0$$

(c)
$$x^2 + y^2 + 2x + 2y - 3 = 0$$

- (d) None of these
- 59. The equation of the circle whose one diameter is PQ, where the ordinates of P, Q are the roots of the equation $x^2 + 2x - 3 = 0$ and the abscissae are the roots of the equation $y^2 + 4y - 12 = 0$, is

(a)
$$x^2 + y^2 + 2x + 4y - 15 = 0$$

(b)
$$x^2 + y^2 - 4x - 2y - 15 = 0$$

(c)
$$x^2 + y^2 + 4x + 2y - 15 = 0$$

- (d) None of these
- The equation of the circumcircle of an equilateral triangle is $x^2 + y^2 + 2gx + 2fy + c = 0$ and one vertex of the triangle is (1, 1). The equation 60. of incircle of the triangle is

(a)
$$4(x^2 + y^2) = g^2 + f^2$$

(b)
$$4(x^2 + y^2) + 8gx + 8fy = (1 - g)(1 + 3g) + (1 - f)(1 + 3f)$$

(c)
$$4(x^2 + y^2) + 8gx + 8fy = g^2 + f^2$$

- (d) None of these
- The equation of the circle of radius $2\sqrt{2}$ whose centre lies on the line x-y=0 and which touches the line x+y=4, and whose centre's 61. coordinates satisfy the inequality x + y > 4 is

(a)
$$x^2 + y^2 - 8x - 8y + 24 = 0$$

(b)
$$x^2 + y^2 = 8$$

(c)
$$x^2 + y^2 - 8x + 8y = 24$$

- (d) None of these
- The circumcircle of the quadrilateral formed by the lines x = a, x = 2a, y = -a, $y = \sqrt{2}a$ is 62.

(a)
$$x^2 + y^2 + 3ax + a^2 = 0$$
 (b) $x^2 + y^2 - 3ax - a^2 = 0$

(c)
$$x^2 + y^2 - 3ax + 2a^2 = 0$$
 (d) $x^2 + y^2 + 3ax - a^2 = 0$

(d)
$$x^2 + y^2 + 3ax - a^2 = 0$$

Equation of a circle S(x, y) = 0, S(2, 3) = 16, which touches the line 3x + 4y - 7 = 0 at (1, 1) is given by 63.

(a)
$$x^2 + y^2 + x + 2y - 5 = 0$$
 (b) $x^2 + y^2 + 2x + 2y - 6 = 0$ (c) $x^2 + y^2 + 4x - 6y = 0$

$$x^{2} + y^{2} + 4x - 6y = 0$$
 (d) None of these

Centre and Radius of a Circle

1995

64.	The area of the circle whose	e centre is at (1, 2) and which passe		CET 1	000. MD DET 2002. 1	DCE 20001
	(a) 5π	(b) 10π	[MNR 1982; IIT 1980; Karnatak (c) 25π		None of these	DCE 2000]
65.	` '	• •	1 and $x^2 + y^2 - 12x + 4y = 1$ are	(u)		PET 1986]
00.	(a) Same	(b) Collinear	(c) Non-collinear	(d)	None of these	121 1900]
66.	* *	the point $(0, 0)$, $(a, 0)$, $(0, b)$, then its	` '	(u)		MNR 1975]
	(a) (a, b)	(b) (b, a)	(c) $\left(\frac{a}{2}, \frac{b}{2}\right)$	(d)	$\left(\frac{b}{2}, -\frac{a}{2}\right)$	
67.	If the radius of the circle x	$(x^2 + y^2 - 18x + 12y + k = 0)$ be 11	, then $k =$		[MI	P PET 1987]
	(a) 347	(b) 4	(c) -4	(d)	49	
68.	The centre and radius of the	e circle $2x^2 + 2y^2 - x = 0$ are			[MP PI	ET 1984, 87]
	(a) $\left(\frac{1}{4}, 0\right)$ and $\frac{1}{4}$	(b) $\left(-\frac{1}{2}, 0\right)$ and $\frac{1}{2}$	(c) $\left(\frac{1}{2}, 0\right)$ and $\frac{1}{2}$	(d)	$\left(0, -\frac{1}{4}\right)$ and $\frac{1}{4}$	
69.	Centre of the circle $(x-3)^2$	$^{2} + (y - 4)^{2} = 5$ is			[MI	PET 1988]
	(a) (3, 4)	(b) $(-3, -4)$	(c) (4, 3)	(d)	(-4, -3)	
70.	A circle has its equation in	the form $x^2 + y^2 + 2x + 4y + 1 =$	= 0. Choose the correct coordinates o	f its centi	re and the right value of	of its radius
	from the following				[MI	P PET 1982]
	(a) Centre $(-1, -2)$, radiu		Centre $(2, 1)$, radius = 1	2		
71.	(c) Centre (1, 2), radius =	the points $(3, 0)$ and $(0, -3)$. The	(d) Centre $(-1, 2)$, radius =	2	ſMI	PET 1992]
, 1.	(a) $(3, -3)$	(b) (0,0)	(c) $(-3, 0)$	(d)	(6, -6)	1121 1//2]
72.		$e^2 + 2x\cos\theta + 2y\sin\theta - 8 = 0, \text{ is}$				MNR 1974]
	(a) 1	(b) 3	(c) $2\sqrt{3}$	(d)	$\sqrt{10}$	
73.	· /	centre is (h, k) and radius a is	(c) 2 v 3	(u)		PET 1994]
		(b) $\pi a^2 h k$	(c) πa^2	(d)	None of these	-
74.	If the coordinates of one en	d of the diameter of the circle x^2	$+y^2 - 8x - 4y + c = 0$ are $(-3, 2)$, t			l are [Roorke
, -1.	(a) (5, 3)	(b) $(6, 2)$	(c) $(1, -8)$		(11, 2)	are [Rootke
75.		$= -1 + 2\cos\theta, y = 3 + 2\sin\theta, \text{ is}$	(4) (1, 3)	(4)		P PET 1995]
	(a) $(1, -3)$	(b) (-1, 3)	(c) (1, 3)	(d)	None of these	
76.	If $g^2 + f^2 = c$, then the ed	$quation x^2 + y^2 + 2gx + 2fy + c =$			[MI	P PET 2003]
	(a) A circle of radius g		(c) A circle of diameter \sqrt{c}	(d)	A circle of radius 0	
77.		· · · · · ·	$(2x^2 - 8x + 12) = 0$ and $(x^2 - 14y + 45) = 0$			eening 2003]
, , .	(a) (4, 7)	(b) (7, 4)	(c) $(9,4)$		(4, 9)	cming 2003]
78.		3x + 2fy + c = 0 will represent a result.		(4)	(.,)	
	(a) $g^2 + f^2 - c < 0$		(c) Always	(d)	None of these	
70		circle $x^2 + y^2 - 12x + 4y + 6 = 0$	•	(u)	Trone of these	
79.		(b) $x + 3y = 0$	(c) x = y	(4)	3x + 2y = 0	
90	•	, ,	•		-	1:10031
80.	_		Whose diameters are $x + y = 6$ and			anchi 1993]
	(a) 10	(b) $2\sqrt{5}$	(c) 6	(d)	4	
81.	If the equation of a circle is	$ax^{2} + (2a - 3)y^{2} - 4x - 1 = 0$ th	nen its centre is			
	(a) (2, 0)	(b) (2/3, 0)	(c) $(-2/3, 0)$	(d)	None of these	
82.	If $2(x^2 + y^2) + 4\lambda x + \lambda^2 =$	= 0 represents a circle of meaning	ful radius then the range of real values	s of λ is		

120	O Circle and System of O	Circles			
	(a) R	(b) $(0, +\infty)$	(c) (-∞, 0)	(d) None of these	
83.	The locus of the centres	s of the circles for which one end of	f a diameter is (1, 1) while the other end	l is on the line $x + y = 3$ is	
	(a) $x + y = 1$	(b) $2(x - y) = 5$	(c) $2x + 2y = 5$	(d) None of these	
84.	If A and B are two point	ts on the circle $x^2 + y^2 - 4x + 6y$	-3 = 0 which are farthest and nearest	respectively from the point (7, 2)	then
	(a) $A = (2 - 2\sqrt{2}, -$	$3-2\sqrt{2}$)	(b) $B = (2 + 2\sqrt{2}, -3 +$	$2\sqrt{2}$)	
	(c) $A = (2 + 2\sqrt{2}, -$	$3+2\sqrt{2})$	(d) $B = (2 - 2\sqrt{2}, -3 +$	$2\sqrt{2}$)	
85.	The radius of the circle	passing through the point (5, 4) and	d concentric to the circle $x^2 + y^2 - 8x$	-12y + 15 = 0 is	
	(a) 5	(b) $\sqrt{5}$	(c) 10	(d) $\sqrt{10}$	
86.	The length of the radius	s of the circle $x^2 + y^2 + 4x - 6y =$	= 0 is	[Rajasthan	PET 1995]
	(a) $\sqrt{11}$	(b) 12	(c) $\sqrt{13}$	(d) $\sqrt{14}$	
87.	(2, y) is the centre of a	circle. If $(x, 3)$ and $(3, 5)$ are end p	oints of a diameter of this circle, then	[Ro	orkee 1986]
	(a) $x = 1, y = 4$	(b) $x = 4, y = 1$	(c) $x = 8, y = 2$	(d) None of these	
88.	The greatest distance of	f the point $P(10, 7)$ from the circle	$x^2 + y^2 - 4x - 2y - 20 = 0$ is		
	(a) 5	(b) 15	(c) 10	(d) None of these	
89.	If one end of a diameter	$x^2 + y^2 - 4x - 6y + 4y + 6y + 6y + 6y + 6y + 6y + 6y +$	-11 = 0 be $(3, 4)$, then the other end is	[MP PET 1986; BIT R	anchi 1991]
	(a) (0, 0)	(b) (1, 1)	(c) (1, 2)	(d) (2, 1)	
			Advance Level		
90.	If 2x - 4y = 9 and 6x	x - 12y + 7 = 0 are the tangents of	same circle, then its radius will be	[Ro	orkee 1995]
	(a) $\frac{\sqrt{3}}{5}$	(b) $\frac{17}{6\sqrt{5}}$	(c) $\frac{2\sqrt{5}}{3}$	(d) $\frac{17}{3\sqrt{5}}$	
91.	If $5x - 12y + 10 = 0$ a	and $12y - 5x + 16 = 0$ are two tan	gents to a circle, then the radius of the	circle is [EAM	ICET 2003
	(a) 1	(b) 2	(c) 4	(d) 6	
92.	$If 2x^2 + \lambda xy + 2y^2 + ($	$(\lambda - 4)x + 6y - 5 = 0$ is the equation	on of a circle then its radius is		
	(a) $3\sqrt{2}$	(b) $2\sqrt{3}$	(c) $2\sqrt{2}$	(d) None of these	
93.	C_1 is a circle of radius Then the radius of C_2 is		is. C_2 is another circle of radius >1 an	d touching the axes as well as the	e circle C_1
	(a) $3 - 2\sqrt{2}$	(b) $3 + 2\sqrt{2}$	(c) $3 + 2\sqrt{3}$	(d) None of these	
94.		It distance and the shortest distance $y - 51 = 0$ then <i>GM</i> of <i>p</i> and <i>q</i> is e	respectively of the point $(-7, 2)$ from equal to	any point (α, β) on the curve who	se equation
	(a) $2\sqrt{11}$	(b) $5\sqrt{5}$	(c) 13	(d) None of these	
95.	The equation of a circle	e is $x^2 + y^2 = 4$. The centre of the	smallest circle touching this circle and	the line $x + y = 5\sqrt{2}$ has the co-	ordinates
	(a) $\left(\frac{7}{2\sqrt{2}}, \frac{7}{2\sqrt{2}}\right)$	(b) $\left(\frac{3}{2}, \frac{3}{2}\right)$	(c) $\left(-\frac{7}{2\sqrt{2}}, -\frac{7}{2\sqrt{2}}\right)$	(d) None of these	

A circle touches the line 2x - y - 1 = 0 at the point (3, 5). If its centre lies on the line x + y = 5 then the centre of that circle is

(c) (4, 1)

(b) (-3, 8)

[Rajasthan PET 1992]

(d) (8, -3)

96.

(a) (3, 2)

[Rajasthan PET 2002]

(d) $x^2 + y^2 - ax = 0$

97.	The locus of the centre of	the circle $(x\cos\theta + y\sin\theta - a)^2 + (x\sin\theta - a)^2$	$\sin \theta - y \cos \theta + a)^2 = a^2 \text{ is}$		
	(a) $x^2 + y^2 = a^2$	(b) $x^2 + y^2 = 2a^2$	(c) $x^2 + y^2 = 4a^2$	(d) $x^2 + y^2 - 2ax - 2ax$	$y + a^2 = 0$
98.	If a circle $S(x,y) = 0$ to	uches at the point $(2, 3)$ of the line $x +$	y = 5 and $S(1, 2) = 0$, then radi	us of such circle	
	(a) 2 units	(b) 4 units	(c) $\frac{1}{2}$ units	(d) $\frac{1}{\sqrt{2}}$ units	
				Intersection of a Line and	l a Circle
		Ba	sic Level		
99.	A circle touches the <i>y</i> -axi	s at the point (0, 4) and cuts the x-axis	in a chord of length 6 units. The ra	ndius of the circle is [M	P PET 1992]
	(a) 3	(b) 4	(c) 5	(d) 6	
100.		ch touches y-axis at $(0, 3)$ and cuts inte			[IIT 1972]
	(a) 3	(b) 2	(c) 5	(d) 8	
101.		$y = x$ by the circle $x^2 + y^2 - 2x = 0$			[IIT 1996]
	(a) $x^2 + y^2 - x - y = 0$	(b) $x^2 + y^2 - 2x - y = 0$	(c) $x^2 + y^2 - x + y = 0$	(d) $x^2 + y^2 + x - y = 0$	1
102.	The circle $x^2 + y^2 - 3x$	-4y + 2 = 0 cuts <i>x</i> -axis at		[Karnataka	CET 2001]
	(a) $(2,0), (-3,0)$	(b) (3, 0), (4, 0)	(c) $(1, 0), (-1, 0)$	(d) $(1, 0), (2, 0)$	
103.	If the line $y = x + 3$ mee	ets the circle $x^2 + y^2 = a^2$ at A and B	, then the equation of the circle ha	ving AB as a diameter will be	
				[Rajasthar	n PET 1988]
	(a) $x^2 + y^2 + 3x - 3y -$	$-a^2 + 9 = 0$	(b) $x^2 + y^2 - 3x + 3y - a$	$e^2 + 9 = 0$	
	(c) $x^2 + y^2 + 3x + 3y - 3y$	$-a^2 + 9 = 0$	(d) None of these		
104.	If the circle $x^2 + y^2 + 2a$	ax + 8y + 16 = 0 touches x-axis, then	the value of a is	[Rajasthar	n PET 1994]
	(a) ±16	(b) ±4	(c) ±8	(d) ±1	
105.	The length of the intercep	t made by the circle $x^2 + y^2 = 1$ on t	the line $x + y = 1$ is		
	(a) 2	(b) $\sqrt{2}$	(c) $1/\sqrt{2}$	(d) $2\sqrt{2}$	
107	` '		-		
106.		of points of intersection of the circle x			
105	(a) g	(b) $-g$	(c) f	(d) − <i>f</i>	
107.		$-(y + 3) = 0$ cuts the circle $(x - 2)^2 +$			[MNR 1975]
100	(a) No points	(b) One point	(c) Two points	(d) None of these $2x + 5x + 18 = 0$	onkoo 1077
108.	_	whose centre is $(3, -1)$ and which cuts			orkee 1977
	(a) $(x-3)^2 + (y+1)^2 =$	= 38 (b) $(x+3)^2 + (y-1)^2 = 38$	(c) $(x-3)^2 + (y+1)^2 = v$	38 (d) None of these	
109.	The points of intersection	of the line $4x - 3y - 10 = 0$ and the	circle $x^2 + y^2 - 2x + 4y - 20 =$	0 are	[IIT 1983]
	(a) $(-2, -6), (4, 2)$	(b) $(2, 6), (-4, -2)$	(c) $(-2, 6), (-4, 2)$	(d) None of these	
110.	The line $y = mx + c$ inte	ersects the circle $x^2 + y^2 = r^2$ at two	real distinct points, if		
	(a) $-r\sqrt{1+m^2} < c \le 0$	(b) $0 \le c < r\sqrt{1 + m^2}$	(c) (a) and (b) both	$(d) -c\sqrt{1-m^2} < r$	
111.	A line through (0, 0) cuts	the circle $x^2 + y^2 - 2ax = 0$ at A and	d B, then locus of the centre of the	circle drawn AB as diameter is	

(c) $x^2 + y^2 + ax = 0$

112. If the line y-1=m(x-1) cuts the circle $x^2+y^2=4$ at two real points then the number of possible values of m is

(a) $x^2 + y^2 - 2ay = 0$ (b) $x^2 + y^2 + ay = 0$

113.	3. The GM of the abscissae of the points of intersection of the circle $x^2 + y^2$	-4x - 6y + 7 = 0 and the line	y = 1 is
	(a) $\sqrt{7}$ (b) $\sqrt{2}$	$\sqrt{14}$	i) 1
114.	4. The equation(s) of the tangent at the point (0, 0) to the circle, making interc	cepts of length 2a and 2b units of	on the coordinate axes, is (are)
	(a) $ax + by = 0$ (b) $ax - by = 0$ (c)	x = y (c	d) None of these
	Advance Leve	el	
115.	5. A circle which passes through origin and cuts intercepts on axes a and b , the	ne equation of circle is	[Rajasthan PET 1991]
	(a) $x^2 + y^2 - ax - by = 0$ (b) $x^2 + y^2 + ax + by = 0$ (c)	$x^2 + y^2 - ax + by = 0 $ (0)	$x^2 + y^2 + ax - by = 0$
116.			the intercepts made by the circle
	$x^2 + y^2 - x + 3y = 0$ on L_1 and L_2 are equal, then which of the following	equations can represent L_1	[IIT 1999]
	(a) $x + y = 0$ (b) $x - y = 0$	$x + 7y = 0 \tag{6}$	x - 7y = 0
117.	7. The two lines through (2, 3) from which the circle $x^2 + y^2 = 25$ intercep	ts chords of length 8 units have	equations
	(a) $2x + 3y = 13$, $x + 5y = 17$ (b)	y = 3, 12x + 5y = 39	
	(c) $x = 2, 9x - 11y = 51$ (d)	None of these	
118.	8. Circles are drawn through the point (2, 0) to cut intercepts of length 5 un equation is	its on the x-axis. If their centre	s lie in the first quadrant, then their [Roorkee 1992]
	(a) $x^2 + y^2 - 9x + 2ky + 14 = 0$ (b)	$3x^2 + 3y^2 + 27x - 2ky + 42 = 2x + 42$	= 0
	(c) $x^2 + y^2 - 9x - 2ky + 14 = 0$ (d)	$x^2 + y^2 - 2kx - 9y + 14 = 0$	
119.	9. A circle touches the y-axis at (0, 2) and has an intercept of 4 units on the po	ositive side of the x-axis. Then t	he equation of the circle is
	_	_	[HT 1995]
	(a) $x^2 + y^2 - 4(\sqrt{2}x + y) + 4 = 0$ (b)	$x^{2} + y^{2} - 4(x + \sqrt{2}y) + 4 = 0$	
	(c) $x^2 + y^2 - 2(\sqrt{2}x + y) + 4 = 0$ (d)	None of these	
120.	0. Circles are drawn through the point (3, 0) to cut an intercept of length 6 un of their centres is	its on the negative direction of t	the <i>x</i> -axis. The equation of the locus

(c) The y-axis

(c) $\frac{-1-\sqrt{29}}{14}$

(b) Intercept on y-axis is 2

(d) None of these

(c) $(\alpha - \beta)^2 + r^2$

Circles $x^2 + y^2 = 1$ and $x^2 + y^2 - 8x + 11 = 0$ cut off equal intercepts on a line through the point $\left(-2, \frac{1}{2}\right)$. The slope of the line is

(a) $(1+m^2)(a^2+l^2)$ (b) $(1+m^2)(a^2-l^2)$ (c) $(1-m^2)(a^2+l^2)$ (d) $(1-m^2)(a^2-l^2)$

If 2*l* be the length of the intercept made by the circle $x^2 + y^2 = a^2$ on the line y = mx + c, then c^2 is equal to

The length of the chord joining the points in which the straight line $\frac{x}{3} + \frac{y}{4} = 1$ cuts the circle $x^2 + y^2 = \frac{169}{25}$ is

A line is drawn through a fixed point $P(\alpha, \beta)$ to cut the circle $x^2 + y^2 = r^2$ at A and B. Then PA. PB is equal to

(c) Infinite

(d) None of these

(d) x + y = 0

(d) None of these

(d) None of these

[Orissa JEE 2003]

122 Circle and System of Circles

(a) The *x*-axis

122.

123.

124.

125.

(a) $\frac{-1+\sqrt{29}}{14}$ (b) $\frac{1+\sqrt{7}}{4}$

(a) The length of tangent from (1, 2) is 7

(a) $(\alpha + \beta)^2 - r^2$ (b) $\alpha^2 + \beta^2 - r^2$

(c) Intercept on x-axis is $2 - \sqrt{2}$

(a) 1

(b) 2

(b) x - y = 0

For the circle $x^2 + y^2 + 4x - 7y + 12 = 0$ the following statement is true

	(a) $(-\infty, -\sqrt{3}] \cup [\sqrt{3},$	$+\infty$) (b) $[-\sqrt{3}, \sqrt{3}]$	(c) $[\sqrt{3}, +\infty)$	(d)	None of these
				Posi	tion of a point w.r.t. a Circle
			Basic Level		
127.	A point inside the circle x	$(x^2 + y^2 + 3x - 3y + 2) = 0$ is			[MP PET 1988]
	(a) (-1, 3)	(b) (-2, 1)	(c) (2, 1)	(d)	(-3, 2)
128.	Position of the point $(1, 1)$	with respect to the circle $x^2 + y^2$	-x + y - 1 = 0 is		[MP PET 1986, 1990]
	(a) Outside the circle	(b) Upon the circle	(c) Inside the circle	(d)	None of these
129.	The number of tangents that	at can be drawn from (0, 0) to the ci	$rcle x^2 + y^2 + 2x + 6y - 15 = 0$	is	[MP PET 1992]
	(a) None	(b) One	(c) Two	(d)	Infinite
130.	The number of tangents wh	nich can be drawn from the point (-	1, 2) to the circle $x^2 + y^2 + 2x - 2$	-4y + 4 = 0	is [BIT Ranchi 1991]
	(a) 1	(b) 2	(c) 3	(d)	0
131.	The point (0.1, 3.1) with re	espect to the circle $x^2 + y^2 - 2x - 4$	y + 3 = 0, is		[MNR 1980]
	(a) At the centre of the ci	rcle	(b) Inside the circle but r	not at the cen	itre
	(c) On the circle		(d) Outside the circle		
132.	The number of the tangents	s that can be drawn from $(1, 2)$ to x	$^{2} + y^{2} = 5$ is		
	(a) 1	(b) 2	(c) 3	(d)	0
133.	The number of points on the	$e circle 2x^2 + 2y^2 - 3x = 0 whice$	ch are at a distance 2 from the poir	at $(-2, 1)$ is	
	(a) 2	(b) 0	(c) 1	(d)	None of these
134.	If $x^2 + y^2 - 6x + 8y - 11$	= 0 is a given circle and $(0, 0)$, $(1, 0)$	8) are two points, then		
	(a) Both the points are in	side the circle	(b) Both the points are o	utside the cir	rcle
	(c) One point is on the cit	rcle another is outside the circle	(d) One point is inside an	nd another is	outside the circle
		Ad	vance Level		
135.	A region in the <i>x-y</i> plane i then	s bounded by the curve $y = \sqrt{25}$	$-x^2$ and the line $y = 0$. If the point	int $(a, a+1)$	lies in the interior of the region,
	(a) $a \in (-4, 3)$	(b) $a \in (-\infty, -1) \cup (3, +\infty)$	(c) $a \in (-1, 3)$	(d)	None of these
136.	If (2, 4) is a point interior interval	to the circle $x^2 + y^2 - 6x - 10y +$	$-\lambda = 0$ and the circle does not cu	t the axes at	any point , then $\boldsymbol{\lambda}$ belongs to the
	(a) (25, 32)	(b) (9, 32)	(c) $(32, +\infty)$	(d)	None of these
137.	The range of values of $\theta \in$	$[0, 2\pi]$ for which $(1 + \cos \theta, \sin \theta)$) is an interior point of the circle	$x^2 + y^2 = 1$	is
	(a) $(\pi/6, 5\pi/6)$	(b) $(2\pi/3, 5\pi/3)$	(c) $(\pi/6, 7\pi/6)$	(d)	$(2\pi/3, 4\pi/3)$
138.	The range of values of r for	r which the point $\left(-5 + \frac{r}{\sqrt{2}}, -3 + \frac{r}{\sqrt{2}}\right)$	$-\frac{r}{\sqrt{2}}$ is an interior point of the r	najor segmer	nt of the circle $x^2 + y^2 = 16$, cut
	off by the line $x + y = 2$ i				
	(a) $(-\infty, 5\sqrt{2})$	(b) $(4\sqrt{2} - \sqrt{14}, 5\sqrt{2})$	(c) $(4\sqrt{2} - \sqrt{14}, 4\sqrt{2} +$	$\sqrt{14}$) (d)	None of these
139.		nt of a circle $x^2 + y^2 - 2x + 4y -$			
	(a) $p < -1$	(b) $p < -4$	(c) $p > 96$	(d)	
		T.	uation of Tangent, Condition	e m	

Basic Level

The range of values of m for which the line y = mx + 2 cuts the circle $x^2 + y^2 = 1$ at distinct or coincident points is

126.

140.	The equation of the tangent to	the circle $x^2 + y^2 = r^2$ at (a, b) is a	$ax + by - \lambda = 0$, where λ is		
	(a) a^2	(b) b^2	(c) r^2	(d)	None of these
141.	$x = 7$ touches the circle x^2	$+y^2 - 4x - 6y - 12 = 0$, then the coo	ordinates of the point of contact are		[MP PET 1996]
	(a) (7, 3)	(b) (7, 4)	(c) (7, 8)	(d)	(7, 2)
142.	A circle with centre (a, b) pass	ses through the origin. The equation o			[Rajasthan PET 2000]
	(a) $ax - by = 0$	(b) ax + by = 0	(c) $bx - ay = 0$	` ′	bx + ay = 0
143.	If the tangent at a point $P(x,$	y) of a curve is perpendicular to the li	ine that joins origin with the point P	, ther	
	(a) Circle	(b) Parabola	(a) Ellinga	(d)	[MP PET 1998]
144.	The circle $x^2 + y^2 - 8x + 4y$	• •	(c) Ellipse	(u)	Straight line
144.		(b) y-axis only	(a) Roth r and v avis	(d)	[Karnataka CET 1999]
1.45	(a) x-axis only	$\cos \alpha + y \sin \alpha = p$ may touch the circ	(c) Both x and y-axis	(u)	Does not touch any axis
145.	The condition that the line x c				[AMU 1999]
	(a) $p = a \cos \alpha$	(b) $p = a \tan \alpha$	(c) $p^2 = a^2$	(d)	$p\sin\alpha=a$
146.	The equation of circle with ce	ntre (1, 2) and tangent $x + y - 5 = 0$	is		[MP PET 2001]
	(a) $x^2 + y^2 + 2x - 4y + 6 =$	= 0	(b) $x^2 + y^2 - 2x - 4y + 3 = 0$		
	(c) $x^2 + y^2 - 2x + 4y + 8 =$	= 0	(d) $x^2 + y^2 - 2x - 4y + 8 = 0$		
147.	The equation of tangent to the	ecircle $x^2 + y^2 = a^2$ parallel to $y =$	mx + c is		[Rajasthan PET 2001]
	(a) $y = mx \pm \sqrt{1 + m^2}$	(b) $y = mx \pm a\sqrt{1 + m^2}$	(c) $x = mv \pm a\sqrt{1 + m^2}$	(d)	None of these
148.		the circle $x^2 + y^2 = 4r^2$ at only one	•	` /	[Karnataka CET 2003]
1 101			- 52		20
	(a) $20r^2$	(b) $52r^2$	(c) $\frac{52}{9}r^2$	(d)	$\frac{20}{9}r^2$
149.	The line $lx + my + n = 0$ will	l be a tangent to the circle $x^2 + y^2 =$	a^2 if		[MNR 1974; AMU 1981]
	(a) $n^2(l^2 + m^2) = a^2$	(b) $a^2(l^2+m^2)=n^2$	(c) $n(l+m)=a$	(d)	a(l+m)=n
150.	The circle $x^2 + y^2 + 4x - 4y$	y + 4 = 0 touches			[MP PET 1988]
	(a) x-axis	(b) y-axis	(c) x-axis and y-axis	(d)	None of these
151.	If the line $lx + my = 1$ be a ta	angent to the circle $x^2 + y^2 = a^2$, the	en the locus of the point (l, m) is		[MNR 1978; Rajasthan PET 1997]
	(a) A straight line	(b) A circle	(c) A parabola	(d)	An ellipse
152.	The straight line $x - y - 3 = 0$	0 touches the circle $x^2 + y^2 - 4x + 6$	6y + 11 = 0 at the point whose coo	rdina	tes are [MP PET 1993]
	(a) $(1, -2)$	(b) (1, 2)	(c) (-1, 2)	(d)	(-1, -2)
153.	If the straight line $y = mx + c$	touches the circle $x^2 + y^2 - 4y = 0$), then the value of c will be		[Rajasthan PET 1988]
	(a) $1 + \sqrt{1 + m^2}$	(b) $1 - \sqrt{m^2 + 1}$	(c) $2(1+\sqrt{1+m^2})$	(d)	$2+\sqrt{1+m^2}$
154.	At which point on <i>v</i> -axis the li	ine $x = 0$ is a tangent to circle $x^2 + y^2$	$(2^2 - 2x - 6y + 9) = 0$		[Rajasthan PET 1984]
	(a) (0, 1)	(b) (0, 2)	(c) (0, 3)	(d)	(0, 4)
155.	At which point the line $y = x$	$+\sqrt{2}a$ touches to the circle $x^2 + y^2$	$=a^2$		
	or				
	Line $y = x + a\sqrt{2}$ is a tanger	Int to the circle $x^2 + y^2 = a^2$ at		[R	Rajasthan PET 1991; MP PET 1999]
	(a) $\left(\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right)$	(b) $\left(-\frac{a}{\sqrt{2}}, -\frac{a}{\sqrt{2}}\right)$	(c) $\left(\frac{a}{\sqrt{2}}, -\frac{a}{\sqrt{2}}\right)$	(d)	$\left(-\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right)$
156.	If the line $3x + 4y - 1 = 0$ to	buches the circle $(x-1)^2 + (y-2)^2 =$	r^2 , then the value of r will be		[Rajasthan PET 1986]

[Roorkee 1972; Kurukshetra CEE 1996]

[MNR 1976]

(d) $\frac{2}{5}$

(d) 3x + 4y = 0

(d) 35, -15

(d) $3\sqrt{5}$

159.	The tangent to $x^2 + y^2 = 9$	which is parallel to y-axis and does no	t lie iı	n the third quadrant touches the	e circ	ele at the point
	(a) (3, 0)	(b) $(-3,0)$	(c)	(0,3)	(d)	(0, -3)
160.	The points of contact of tanger	nts to the circle $x^2 + y^2 = 25$ which	are in	nclined at an angle of 30° to th	e x-a	xis are
	(a) $\left(\pm \frac{5}{2}, \pm \frac{1}{2}\right)$	(b) $\left(\pm \frac{1}{2}, \pm \frac{5}{2}\right)$	(c)	$\left(\mp\frac{5}{2},\mp\frac{1}{2}\right)$	(d)	None of these.
161.	If the line $hx + ky = 1$ touche	es $x^2 + y^2 = a^2$, then the locus of the	e poin	t(h, k) is a circle of radius		
	(a) <i>a</i>	(b) $\frac{1}{a}$	(c)	\sqrt{a}	(d)	$\frac{1}{\sqrt{a}}$
162.	The slope of the tangent at the	e point (h, h) of the circle $x^2 + y^2 = a$	a^2 is			[Roorkee 1993]
	(a) 0	(b) 1	(c)	– 1	(d)	Depends on h.
163.	The line $y = mx + \sqrt{4 + 4m^2}$	$m \in R$, is a tangent to the circle				
	(a) $x^2 + y^2 = 2$	(b) $x^2 + y^2 = 4$	(c)	$x^2 + y^2 = 1$	(d)	None of these
164.	The point of contact of a tange	ent from the point (1, 2) to the circle	$x^2 + y$	$v^2 = 1$ has the coordinates		
	(a) $\left(\frac{1-2\sqrt{19}}{5}, \frac{2+\sqrt{19}}{5}\right)$	(b) $\left(\frac{1-2\sqrt{19}}{5}, \frac{2-\sqrt{19}}{5}\right)$	(c)	$\left(\frac{1+2\sqrt{19}}{5}, \frac{2+\sqrt{19}}{5}\right)$	(d)	$\left(\frac{1+2\sqrt{19}}{5}, \frac{2-\sqrt{19}}{5}\right)$
165.	If the line $x + y = 1$ is a tange	ent to a circle with centre (2, 3), then i	its equ	nation will be		[Rajasthan PET 1985, 89]
	(a) $x^2 + y^2 - 4x - 6y + 4 =$	= 0	(b)	$x^2 + y^2 - 4x - 6y + 5 = 0$		
	(c) $x^2 + y^2 - 4x - 6y - 5 =$	= 0	(d)	None of these		
166.	A tangent to the circle $x^2 + y$	$a^2 = a^2$ meets the axes at points A and	d <i>B</i> . T	he locus of the mid point of A.	B is	
	(a) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{a^2}$	(b) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{a^2}$	(c)	$\frac{1}{x^2} + \frac{1}{y^2} = 4a^2$	(d)	$\frac{1}{x^2} + \frac{1}{y^2} = \frac{a^2}{4}$
167.	If the tangent to the circle x^2	$+y^2 = 5$ at point $(1, -2)$ touches the	circle	$e^{x^2 + y^2} - 8x + 6y + 20 = 0$, the	en its point of contact is
	() (1 2)	(1) (2 1)	()	(2 1)	(1)	[IIT 1989]
168.	(a) $(-1, -3)$	(b) $(3, -1)$ the circle $x^2 + y^2 = 25$ which is inc		(-2,1)		(5, 0)
100.				$y = \sqrt{3}x \pm 2$		NI C.d
1.00	(4) \$ -	•	(c)	$y = \sqrt{3}x \pm 2$	(a)	None of these
169.	If $y = c$ is a tangent to the cir (a) $ c > 2$		(c)	c = 2	(d)	c = 0
	(u) C > 2	(0) t \ 2	(0)	0 - 2	(u)	
		Advanc				
170.	If the circle $(x - h)^2 + (y - k)$ given by	$r^2 = r^2$ is a tangent to the curve $y = r^2$				[AMU 2000]
	(a) $hk = 5/2$	(b) $h + 2k = 5$	` ′	$h^2 - 4k^2 = 5$	` ′	
171.	If the tangent at the point P or length of PQ is	n the circle $x^2 + y^2 + 6x + 6y = 2$ I	neets	the straight line $5x - 2y + 6$	= 0 a	at a point Q on the y-axis, then the [IIT Screening 2002]

(c) 5

(c) 3y = 4x

(a) 2

158.

(a) 2y = x

(b) 5

(b) 4y = 3x

(b) -35, 15

(b) $2\sqrt{5}$

(a) 4

If the line $3x - 4y = \lambda$ touches the circle $x^2 + y^2 - 4x - 8y - 5 = 0$, then λ is equal to

157. If the centre of a circle is (-6, 8) and it passes through the origin, then equation to its tangent at the origin, is

172.	The tangents to $x^2 + y$	$a^2 = a^2$ having inclinations α and	1 β intersect at P . If $\cot \alpha + \cot \beta = 0$,	then the locus of <i>P</i> is	
	(a) x + y = 0	(b) x - y = 0	(c) $xy = 0$	(d) None of these	
173.	If the points $A(1, 4)$ an	d B are symmetrical about the tang	gent to the circle $x^2 + y^2 - x + y = 0$ at	the origin then coordinates	s of B are
	(a) (1, 2)	(b) $(\sqrt{2}, 1)$	(c) (4, 1)	(d) None of these	
174.	A line parallel to the lin	ne $x - 3y = 2$ touches the circle	$x^2 + y^2 - 4x + 2y - 5 = 0$ at the point		
	(a) $(1, -4)$	(b) (1, 2)	(c) $(3, -4)$	(d) (3, 2)	
175.	The possible values of	p for which the line $x \cos \alpha + y \sin \alpha$	$\alpha = p$ is a tangent to the circle $x^2 + y^2$	$a^2 - 2qx \cos \alpha - 2qy \sin \alpha$	= 0 is/are
	(a) 0 and <i>q</i>	(b) q and $2q$	(c) 0 and $2q$	(d) q	[SCRA, 1999]
176.	- · · ·		e circle $x^2 + y^2 = 9$, then the centre of		[IIT 1992]
	(a) $\left(\frac{3}{2}, \frac{1}{2}\right)$	(b) $\left(\frac{1}{2}, \frac{3}{2}\right)$	(c) $\left(\frac{1}{2}, \frac{1}{2}\right)$	(d) $\left(\frac{1}{2}, \pm \sqrt{2}\right)$	
				Leng	gth of Tangent
					sjg
			Basic Level		
177	The length of tengent f	from the point $(5, 1)$ to the circle x	$\frac{2}{2} + n^2 + 6n + 4n + 2 = 0$ is		IMND 10011
177.	(a) 81	(b) 29	+y + 6x - 4y - 3 = 0, is (c) 7	(d) 21	[MNR 1981]
178.	` '	from (x_1, y_1) to the circle $x^2 + y^2$	$a^2 + 2gx + 2fy + c = 0$, is	(4) ==	[EAMCET 1980]
	(a) $(x_1^2 + y_1^2 + 2gx_1)$		(b) $(x_1^2 + y_1^2)^{1/2}$		
	(c) $[(x_1 + g)^2 + (y_1 + y_2)^2]$		(d) None of these		
179.		ent from the point (4, 5) to the circle	• •		[DCE 1999]
2	(a) $\sqrt{13}$	(b) $\sqrt{38}$	(c) $2\sqrt{2}$	(d) $2\sqrt{13}$	[2022,333]
180.	, ,	• •	ne circle $x^2 + y^2 - 4x - 6y + 3 = 0$ is	(a) 2V13	[MP PET 2000]
	(a) 20	(b) 30	(c) 40	(d) 50	[,
181.	The length of the tange	nt from $(0, 0)$ to the circle $2(x^2 +$	$(y^2) + x - y + 5 = 0$ is		[EAMCET 1994]
	(a) $\sqrt{5}$	(b) $\frac{\sqrt{5}}{2}$	(c) $\sqrt{2}$	(d) $\sqrt{\frac{5}{2}}$	
	(a) v S	(b) ${2}$	(c) V2	$\sqrt{\frac{1}{2}}$	
182.	The length of the tange	$ext{nt to the circle } x^2 + y^2 - 2x - y - \frac{1}{2}$	-7 = 0 from $(-1, -3)$ is	[Kar	nataka CET 1994]
	(a) 2	(b) $2\sqrt{2}$	(c) 4	(d) 8	
183.		he circle $2(x^2 + y^2) - 3x + 4y =$	0 and it touches the circle at point A. T	he tangent passes through	the point $P(2, 1)$.
	Then PA is equal to				
	(a) 4	(b) 2	(c) $2\sqrt{2}$	(d) None of these	
184.			e circle $x^{2} + y^{2} - 2x - 10y + 1 = 0$. The	e length of the line segmer	it PA, A being the
	-	re the line meets the circle at coinc (b) $4\sqrt{3}$	(c) 48	(d) None of these	
	(a) 16	(0) 473	(C) 48	(d) None of these	
			Advance Level		
				2 2 2	
185.			ngents are drawn to the circles x	$x^2 + y^2 = 1$, $x^2 + y^2 + 8$	
		0 are of same length, are	(- \	<i>(</i> - \	[Roorkee 1982]
	(a) $\left(2, \frac{5}{2}\right)$	(b) $\left(-2, -\frac{5}{2}\right)$	(c) $\left(-2, \frac{5}{2}\right)$	(d) $\left(2, -\frac{5}{2}\right)$	
	(2)	(2)	(2)	(2)	

Length of the tangent drawn from any point on the circle $x^2 + y^2 + 2gx + 2fy + c_1 = 0$ to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is

[Kerala (Engg.) 2002]

	(a) $\sqrt{c_1 - c}$ (b) $\sqrt{c - c_1}$	(c) $\sqrt{c_1 + c}$	(d) None of these	
187.	If <i>P</i> is a point such that the ratio of the squares of the lengths of the	tangents from P to the circles x^2 +	$-y^2 + 2x - 4y - 20 = 0$	and
	$x^{2} + y^{2} - 4x + 2y - 44 = 0$ is 2:3, then the locus of P is a circle			EAMCET 2003]
	(a) $(7, -8)$ (b) $(-7, 8)$	(c) (7, 8)	(d) $(-7, -8)$	
188.	The lengths of the tangents from any point on	the circle $15x^2 + 15y^2 - 48x$	c + 64y = 0 to the	two circles
	$5x^2 + 5y^2 - 24x + 32y + 75 = 0$, $5x^2 + 5y^2 - 48x + 64y + 300$	0 = 0 are in the ratio		
	(a) 1:2 (b) 2:3	(c) 3:4	(d) None of these	
189.	If the squares of the lengths of the tangents from a point P to then	he circles $x^2 + y^2 = a^2$, $x^2 + y^2$	$=b^2$ and $x^2 + y^2 = c^2$	are in A. P.,
	(a) a, b, c are in $G.P$. (b) a, b, c are in $A.P$.	(c) a^2, b^2, c^2 are in A.P.	(d) a^2, b^2, c^2 are in	G.P.
			Pair of Tangents	to a Circle
	Basic	Level		V
190.	A pair of tangents are drawn from the origin to the circle $x^2 + y^2$	+20(x + y) + 20 = 0. The equation	of the pair of tangents is	S
				[MP PET 1990]
	(a) $x^2 + y^2 + 10xy = 0$ (b) $x^2 + y^2 + 5xy = 0$	(c) $2x^2 + 2y^2 + 5xy = 0$	(d) $2x^2 + 2y^2 - 5xy$	= 0
191.	The equations of the tangents drawn from the origin to the circle x	$(x^2 + y^2 - 2rx - 2hy + h^2) = 0$ are		
			kee 1989; IIT 1988; Rajast	
	(a) $x = 0, y = 0$ (b) $(h^2 - r^2)x - 2rhy = 0, x = 0$	y = 0, x = 4	(d) $(h^2 - r^2)x + 2rh$	$y=0,\ x=0$
192.	The equations of the tangents drawn from the point (0, 1) to the circ	cle $x^2 + y^2 - 2x + 4y = 0$ are		[Roorkee 1979]
	(a) $2x - y + 1 = 0$, $x + 2y - 2 = 0$	(b) $2x - y + 1 = 0$, $x + 2y + 2$	=0	
	(c) $2x-y-1=0$, $x+2y-2=0$	(d) $2x - y - 1 = 0$, $x + 2y + 2$	=0	
193.	The two tangents to a circle from an external point are always			[MP PET 1986]
	(a) Equal (b) Perpendicular to each other	(c) Parallel to each other	(d) None of these	
194.	The equation of pair of tangents to the circle $x^2 + y^2 - 2x + 4y + 4$			[AMU 1980]
		(b) $7x^2 + 23y^2 + 30xy - 66x$	-50y - 73 = 0	
	(c) $7x^2 + 23y^2 - 30xy - 66x - 50y + 73 = 0$	(d) None of these		
195.	Tangents drawn from origin to the circle $x^2 + y^2 - 2ax - 2by + b$	$^2 = 0$ are perpendicular to each oth	er, if	[MP PET 1995]
	(a) $a-b=1$ (b) $a+b=1$	(c) $a^2 = b^2$	(d) $a^2 + b^2 = 1$	
196.	The equation to the tangents to the circle $x^2 + y^2 = 4$, which are	parallel to $x + 2y + 3 = 0$, are		[MP PET 2003]
	(a) $x - 2y = 2$ (b) $x + 2y = \pm 2\sqrt{3}$	$(c) x + 2y = \pm 2\sqrt{5}$	(d) $x - 2y = \pm 2\sqrt{5}$	
197.	If $3x + y = 0$ is a tangent to the circle with centre at the point (2, -	1), then the equation of the other ta	ngent to the circle from t	he origin is [MNR 199
	(a) $x - 3y = 0$ (b) $x + 3y = 0$	(c) 3x - y = 0	(d) 2x + y = 0	
198.	The equation of a tangent to the circle $x^2 + y^2 = 25$ passing through	ugh (-2, 11) is		

(c) 24x-7y+125=0 (d) 7x+24y=230

(d) None of these

(b) 3x + 4y = 38

(b) $\sin^{-1} \frac{4}{5}$

Tangents drawn from the point (4, 3) to the circle $x^2 + y^2 - 2x - 4y = 0$ are inclined at an angle

The angle between the pair of tangents from the point (1, 1/2) to the circle $x^2 + y^2 + 4x + 2y - 4 = 0$ is

(c) $\sin^{-1} \frac{3}{5}$

(a) 4x + 3y = 25

(a) $\cos^{-1} \frac{4}{5}$

199.

200.

201. The equation of the pair of tangents drawn from the point (0, 1) to the circle
$$x^2 + y^2 = 1/4$$
 is

[Rajasthan PET 1998]

(a)
$$x^2 - 3y^2 + y + 1 = 0$$

(b)
$$x^2 - 3y^2 - y - 1 = 0$$

(c)
$$3x^2 - y^2 + 2y + 1 = 0$$

(a)
$$x^2 - 3y^2 + y + 1 = 0$$
 (b) $x^2 - 3y^2 - y - 1 = 0$ (c) $3x^2 - y^2 + 2y + 1 = 0$ (d) $3x^2 - y^2 + 2y - 1 = 0$

Advance Level

The angle between the two tangents from the origin to the circle $(x-7)^2 + (y+1)^2 = 25$ is 202.

[MNR 1990; Rajasthan PET 1997; DCE 2000]

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi}{6}$$

(d)
$$\frac{\pi}{2}$$

Tangents are drawn from the point (4, 3) to the circle $x^2 + y^2 = 9$. The area of the triangle formed by them and the line joining their points 203. of contact is [MP PET 1991; IIT 1981, 1987]

(a)
$$\frac{24}{25}$$

(b)
$$\frac{64}{25}$$

(c)
$$\frac{192}{25}$$

(d)
$$\frac{192}{5}$$

An infinite number of tangents can be drawn from (1, 2) to the circle $x^2 + y^2 - 2x - 4y + \lambda = 0$, then $\lambda =$ 204.

[MP PET 1989]

(a)
$$-20$$

The area of the triangle formed by the tangents from the points (h, k) to the circle $x^2 + y^2 = a^2$ and the line joining their points of contact is [MNR 1] 205.

(a)
$$a \frac{(h^2 + k^2 - a^2)^{3/2}}{h^2 + k^2}$$
 (b) $a \frac{(h^2 + k^2 - a^2)^{1/2}}{h^2 + k^2}$ (c) $\frac{(h^2 + k^2 - a^2)^{3/2}}{h^2 + k^2}$ (d) $\frac{(h^2 + k^2 - a^2)^{1/2}}{h^2 + k^2}$

(b)
$$a \frac{(h^2 + k^2 - a^2)^{1/2}}{h^2 + k^2}$$

(c)
$$\frac{(h^2 + k^2 - a^2)^{3/2}}{h^2 + k^2}$$

(d)
$$\frac{(h^2 + k^2 - a^2)^{1/2}}{h^2 + k^2}$$

Two tangents PQ and PR drawn to the circle $x^2 + y^2 - 2x - 4y - 20 = 0$ from point P (16, 7). If the centre of the circle is C then the area 206. of quadrilateral PQCR will be [HT 1981; MP PET 1994]

(a) 75 sq. units

The tangents are drawn from the point (4, 5) to the circle $x^2 + y^2 - 4x - 2y - 11 = 0$. The area of quadrilateral formed by these tangents 207. and radii, is

(a) 15 sq. units

Tangents are drawn to the circle $x^2 + y^2 = 50$ from a point 'P' lying on the x-axis. These tangents meet the y-axis at points 'P₁' and 'P₂'. 208. Possible coordinates of 'P' so that area of triangle PP_1P_2 is minimum, is /are

(b)
$$(10\sqrt{2}, 0)$$

(d)
$$(-10\sqrt{2}, 0)$$

The angle between the tangents from α , β to the circle $x^2 + y^2 = a^2$ is, (where $S_1 = \alpha^2 + \beta^2 - a^2$) 209.

(a)
$$\tan^{-1} \left(\frac{a}{\sqrt{S_1}} \right)$$

(b)
$$2 \tan^{-1} \left(\frac{a}{\sqrt{S_1}} \right)$$

(c)
$$2 \tan^{-1} \left(\frac{\sqrt{S_1}}{a} \right)$$

Normal and Condition of Normality

Basic Level

The normal to the circle $x^2 + y^2 - 3x - 6y - 10 = 0$ at the point (-3, 4), is 210.

[Rajasthan PET 1986, 89]

(a)
$$2x + 9y - 30 = 0$$
 (b) $9x - 2y + 35 = 0$

(b)
$$9x - 2y + 35 = 0$$

(c)
$$2x - 9y + 30 = 0$$

(d)
$$2x - 9y - 30 = 0$$

The equation of normal to the circle $2x^2 + 2y^2 - 2x - 5y + 3 = 0$ at (1, 1) is 211.

[MP PET 2001]

(a)
$$2x + y = 3$$

(b)
$$x - 2y = 3$$

(c)
$$x + 2y = 3$$

(d) None of these

The normal at the point (3, 4) on a circle cuts the circle at the point (-1, -2). Then the equation of the circle is 212.

[Orissa JEE 2002]

(a)
$$x^2 + y^2 + 2x - 2y - 13 = 0$$

(b)
$$x^2 + y^2 - 2x - 2y - 11 = 0$$

(c)
$$x^2 + y^2 - 2x + 2y + 12 = 0$$

(d)
$$x^2 + y^2 - 2x - 2y + 14 = 0$$

The line $\lambda x + \mu y = 1$ is a normal to the circle $2x^2 + 2y^2 - 5x + 6y - 1 = 0$ if

	(a)	$5\lambda - 6\mu = 1$
214.	The	equation of a

(b) $4 + 5\mu = 6\lambda$

(c) $4 + 6\mu = 5\lambda$

(d) None of these

(a) 3x + 4y = 0

The equation of a normal to the circle $x^2 + y^2 + 6x + 8y + 1 = 0$ passing through (0, 0) is

(c) 4x - 3y = 0

(d) 4x + 3y = 0

215.

(b) 3x - 4y = 0

[Rajasthan PET 1989]

(a) x + 4y = 0

(b) x - 4y = 0

(c) 4x + y = 3

(d) 4x - y = 0

216.

The equation of the normal to the circle $x^2 + y^2 - 4x + 6y = 0$ at (0, 0) is

The equation of the normal at the point (4, -1) of the circle $x^2 + y^2 - 40x + 10y = 153$ is

[Rajasthan PET 1992]

[Rajasthan PET 1986]

$$(a) \quad 3x - 2y = 0$$

(b) 2x - 3y = 0

(c) 3x + 2y = 0

(d) 2x + 3y = 0

Advance Level

The area of triangle formed by the tangent, normal drawn at $(1, \sqrt{3})$ to the circle $x^2 + y^2 = 4$ and positive x-axis, is 217.

[IIT 1989; Rajasthan PET 1997, 99; Kurukshetra CEE 1998]

(a)
$$2\sqrt{3}$$

(b) $\sqrt{3}$

(c) $4\sqrt{3}$

(d) None of these

218. y-x+3=0 is the equation of normal at $\left(3+\frac{3}{\sqrt{2}},\frac{3}{\sqrt{2}}\right)$ to which of the following circles

[Roorkee 1990]

(a)
$$\left(x-3-\frac{3}{\sqrt{2}}\right)^2 + \left(y-\frac{\sqrt{3}}{2}\right)^2 = 9$$

(b)
$$\left(x-3-\frac{3}{\sqrt{2}}\right)^2+y^2=6$$

(c)
$$(x-3)^2 + y^2 = 9$$

(d)
$$(x-3)^2 + (y-3)^2 = 9$$

The line ax + by + c = 0 is normal to the circle $x^2 + y^2 = r^2$. The portion of the line ax + by + c = 0 intercepted by this circle is of length 219.

(d) \sqrt{r}

If the straight line ax + by = 2; $a, b \ne 0$ touches the circle $x^2 + y^2 - 2x = 3$ and is normal to the circle $x^2 + y^2 - 4y = 6$ then the values of 220. a and b are respectively [Roorkee 2000]

- (a) 1, -1
- (b) 1, 2

- (c) $-\frac{4}{3}$, 1
- (d) 2, 1

The number of feet of normals from the point (7, -4) to the circle $x^2 + y^2 = 5$ is 221.

(a) 1

(b) 2

(c) 3

(d) 4

Equation of the Chord

Basic Level

222.	If (a,	b) is a point on the	e chord <i>AB</i> of the circle,	, where the ends of the chord	d are A = (2, -	- 3) and $B = ($	3, 2) then

(a) $a \in [-3, 2], b \in [2, 3]$ (b) $a \in [2, 3], b \in [-3, 2]$

(c) $a \in [-2, 2], b \in [-3, 3]$

(d) None of these

223. The equation of the circle with the chord
$$y = 2x$$
 of the circle $x^2 + y^2 - 10x = 0$ as its diameter is

(a) $x^2 + y^2 - 2x - 4y - 5 = 0$

(b) $x^2 + y^2 = 2x + 4y$

(c) $x^2 + y^2 = 4x + 2y$

(d) None of these

224. The radius of the circle, having centre at (2, 1), whose one of the chord is a diameter of the circle $x^2 + v^2 - 2x - 6y + 6 = 0$

[IIT Screening 2004]

(a) 1

(b) 2

(c) 3

(d) $\sqrt{3}$

Advance Level

225. The equation of the chord of the circle $x^2 + y^2 = 25$ of length 8 that passes through the point $(2\sqrt{3}, 2)$ and makes an acute angle with the positive direction of the x-axis is

(a) $(4\sqrt{3} - 3\sqrt{7})x + 3y = 18 - 6\sqrt{21}$

(b) $(4\sqrt{3} + 3\sqrt{7})x - 3y = 18 + 6\sqrt{21}$

(c) $(4\sqrt{3} + 3\sqrt{7})x - 3y + 18 + 6\sqrt{21} = 0$

(d) None of these

226. $P(\sqrt{2}, \sqrt{2})$ is a point on the circle $x^2 + y^2 = 4$ and Q is another point on the circle such that arc $PQ = \frac{1}{4} \times \text{circumference}$. The coordinates of Q are

(a) $(-\sqrt{2}, -\sqrt{2})$

(b) $(\sqrt{2}, -\sqrt{2})$

(c) $(-\sqrt{2}, \sqrt{2})$

(d) None of these

227. If a line passing through the point $(-\sqrt{8}, \sqrt{8})$ and making an angle 135° with x-axis cuts the circle $x = 5 \cos \theta$, $y = 5 \sin \theta$ at points A and B, then length of the chord AB is [Bihar CEE 1999]

(d) $2\sqrt{5}$

228. Equation of chord AB of circle $x^2 + y^2 = 2$ passing through P (2, 2) such that PB/PA = 3, is given by

(a) x = 3y

(b) x = y

(c) $y-2=\sqrt{3}(x-2)$

(d) None of these

229. If a chord of the circle $x^2 + y^2 = 8$ makes equal intercepts of length a on the coordinate axes, then

(a) |a| < 8

(b) $|a| < 4\sqrt{2}$

(c) |a| < 4

(d) |a| > 4

Chord of Contact

Basic Level

230. The distance between the chords of contact of the tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ from the origin and the point (g, f) is

(a) $g^2 + f^2$

(b) $\frac{1}{2}(g^2 + f^2 + c)$ (c) $\frac{1}{2} \cdot \frac{g^2 + f^2 + c}{\sqrt{g^2 + f^2}}$ (d) $\frac{1}{2} \cdot \frac{g^2 + f^2 - c}{\sqrt{g^2 + f^2}}$

231. If the straight line x - 2y + 1 = 0 intersects the circle $x^2 + y^2 = 25$ in points *P* and *Q*, then the coordinates of the point of intersection of tangents drawn at *P* and *Q* to the circle $x^2 + y^2 = 25$ are

(a) (25, 50)

(b) (-25, -50)

(c) (-25, 50)

(d) (25, -50)

232. If the chord of contact of tangents drawn from the point (h, k) to the circle $x^2 + y^2 = a^2$ subtends a right angle at the centre, then

(a) $h^2 + k^2 = a^2$

(b) $2(h^2 + k^2) = a^2$

(c) $h^2 - k^2 = a^2$

233. The chord of contact of the pair of tangents drawn from each point on the line 2x + y = 4 to the circle $x^2 + y^2 = 1$ pass through the point [IIT 1997]

(a) (1/2, -1/4)

(b) (1/2, 1/4)

(c) (-1/2, 1/4)

(d) (-1/2, -1/4)

Advance Level

234. If the tangents are drawn to the circle $x^2 + y^2 = 12$ at the point where it meets the circle $x^2 + y^2 - 5x + 3y - 2 = 0$, then the point of intersection of these tangents is

(a) (6, -6)

(b) (6, 18/5)

(c) (6, -18/5)

(d) None of these

235. A tangent to the circle $x^2 + y^2 = 1$ through the point (0, 5) cuts the circle $x^2 + y^2 = 4$ at A and B. The tangents to the circle $x^2 + y^2 = 4$ at A and B meet at C. The coordinates of C are

(a) $\left(\frac{8}{5}\sqrt{6}, \frac{4}{5}\right)$ (b) $\left(\frac{8}{5}\sqrt{6}, -\frac{4}{5}\right)$

(c) $\left(-\frac{8}{5}\sqrt{6}, -\frac{4}{5}\right)$

(d) None of these

236. Tangents drawn from (2, 0) to the circle $x^2 + y^2 = 1$ touch the circle at A and B. Then

(a) $A = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), B = \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$

(b) $A = \left(-\frac{1}{2}, \frac{-\sqrt{3}}{2}\right), B = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

(c) $A = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), B = \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$

(d)

 $A = \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right), B = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

Equation of a Chord whose Middle point is given

Basic Level

237. The equation of the chord of the circle $x^2 + y^2 = a^2$ having (x_1, y_1) as its mid-point is [IIT 1983; MP PET 1986]

(a) $xy_1 + yx_1 = a^2$

(b) $x_1 + y_1 = a$

(c) $xx_1 + yy_1 = x_1^2 + y_1^2$ (d) $xx_1 + yy_1 = a^2$

238. From the origin chords are drawn to the circle $(x-1)^2 + y^2 = 1$. The equation of the locus of the middle points of these chords is

[IIT 1985; EAMCET 1991]

(a) $x^2 + y^2 - 3x = 0$ (b) $x^2 + y^2 - 3y = 0$

(c) $x^2 + y^2 - x = 0$ (d) $x^2 + y^2 - y = 0$

239. The equation to the chord of the circle $x^2 + y^2 = 9$ whose middle point is (1, -2) is

[Roorkee 1989]

(a) x - 2y = 9

(b) x - 2y - 4 = 0

(c) x - 2y - 5 = 0

(d) x - 2y + 5 = 0

240. The locus of the middle point of chords of the circle $x^2 + y^2 = a^2$ which pass through the fixed point (h, k) is

(a) $x^2 + y^2 - hx - ky = 0$ (b) $x^2 + y^2 + hx + ky = 0$

(c) $x^2 + y^2 - 2hx - 2ky = 0$ (d) $x^2 + y^2 + 2hx + 2ky = 0$

241. Equation of the chord of the circle $x^2 + y^2 - 4x = 0$ whose mid point is (1, 0) is

(d) x = 1

242. The equation of a chord of the circle $x^2 + y^2 - 4x = 0$ which is bisected at the point (1, 1) is

(b) 3x - y = 2

(c) x - 2y + 1 = 0

(d) x - y = 0

243. The locus of the mid points of the chords of the circle $x^2 + y^2 - 2y = 0$ which are drawn from the origin, is **[EAMCET 199**]

(a) $x^2 + y^2 - y = 0$

(b) $x^2 + y^2 - x = 0$

(c) $x^2 + y^2 - 2x = 0$

(d) $x^2 + y^2 - x - y = 0$

2x + 3y = 12 is (a) 3x - 2y = 3

244.	is	e points of chords of the cir	Cie $x + y - 2x - 6y - 10 = 0$	which passes through the origin, [Roorkee 1989]
	(a) $x^2 + y^2 + x + 3y = 0$	(b) $x^2 + y^2 - x + 3y = 0$	(c) $x^2 + y^2 + x - 3y = 0$	
245.	The locus of mid-point of is	of the chords of the circle x^2	$+y^2 - 2x - 2y - 2 = 0$ which ma	akes an angle of 120° at the centre [MNR 1994]
	(a) $x^2 + y^2 - 2x - 2y + 1$	= 0	(b) $x^2 + y^2 + x + y - 1 = 0$	[224]
	(c) $x^2 + y^2 - 2x - 2y - 1$		(d) None of these	
246.				chord which lies along the line
_40.	3x + 4y - 15 = 0 is	8 2.011 011 010 10 % + y = 30	, then the length of the t	moru water also along the ame
	(a) $3\sqrt{6}$	(b) $2\sqrt{3}$	(c) $6\sqrt{3}$	(d) None of these
247.			$x^2 + y^2 = 4$ which subtends	a right angle at the origin is
	(a) $x + y = 2$	(b) $x^2 + y^2 = 1$		(d) $x + y = 1$
248.	The equation of the loc	cus of the middle point of a c	chord of the circle $x^2 + y^2 = 2$	2(x + y) such that the pair of lines
_	-	-		ially inclined to the <i>x</i> -axis is
	(a) $x + y = 2$	(b) $x - y = 2$	(c) $2x - y = 1$	(d) None of these
249.	The locus of the mid-po	oint of chords of length 2 <i>l</i> of	the circle $x^2 + y^2 = a^2$ is	[Rajasthan PET 1998]
	(a) $x^2 + y^2 = l^2 - a^2$	(b) $x^2 + y^2 = l^2 + a^2$	(c) $x^2 + y^2 = a^2 - 2l^2$	(d) $x^2 + y^2 = a^2 - l^2$
			Diameter of	a Circle and Director Circle
		Bas	ic Level	
250.	The equation of the dir	rector circle of the circle x^2	$+y^2 = 16$ is	
	(a) $x^2 + y^2 = 8$	(b) $x^2 + y^2 = 32$	(c) $x^2 + y^2 = 64$	(d) $x^2 + y^2 = 4$
251.	If $y = 2x + k$ is a diamet	ter of the circle $2(x^2 + y^2) + 3$	x + 4y - 1 = 0, then the value	of k is
	(a) 1/2	(b) - 1/2	(c) 1	(d) - 1
252.				ne origin is [Rajasthan PET 1991]
	(a) $x + 2y = 0$	(b) $x - 2y = 0$	(c) $2x + y = 0$	(d) 2x - y = 0
253.	-		the circle x^2	•
	(a) A circle passing the		(b)	A circle of radius 2a
	(c) A concentric circle		(d) None of these	
254.	-	or circle of the circle $x^2 + y^2$		[Ranchi BIT 1990]
	(a) $x^2 + y^2 = 4a^2$	(b) $x^2 + y^2 = \sqrt{2} a^2$	(c) $x^2 + y^2 - 2a^2 = 0$	(d) None of these
		Adva	nce Level	
	The constitute of the	diameter of the single 20	(2, 2, 2) 2 (a. 0. 0. which	h is perpendicular to the line

256. A point on the line x = 3 from which the tangents drawn to the circle $x^2 + y^2 = 8$ are at right angles is (a) $(3, -\sqrt{7})$ (b) $(3, \sqrt{23})$ (c) $(3, \sqrt{7})$ (d) $(3, -\sqrt{23})$

(c) 3x - 2y = 9

(d) None of these

(b) 3x - 2y + 1 = 0

Pole and Polar w.r.t. a Circle

Basic Level

257.	The coordinates of pole	e of line $lx + my + n = 0$ wi	th respect to circle $x^2 + y^2 = 1$, is [Rajasthan PET 1987]
	(a) $\left(\frac{l}{n}, \frac{m}{n}\right)$	(b) $\left(-\frac{l}{n}, -\frac{m}{n}\right)$	(c) $\left(\frac{l}{n}, -\frac{m}{n}\right)$	(d) $\left(-\frac{l}{n}, \frac{m}{n}\right)$
258.	The equation of polar of	of the point (1, 2) with re	espect to the circle $x^2 + y^2 = 7$,	is [MNR 1973; Rajasthan PET 1983, 84]
	(a) $x - 2y - 7 = 0$	(b) $x + 2y - 7 = 0$	(c) $x - 2y = 0$	(d) $x + 2y = 0$
259.	If polar of a circle x^2	$-y^2 = a^2$ with respect to ((x', y') is $Ax + By + C = 0$, then	its pole will be[Rajasthan PET 1984, 95]
	(a) $\left(\frac{a^2A}{-C}, \frac{a^2B}{-C}\right)$	(b) $\left(\frac{a^2A}{C}, \frac{a^2B}{C}\right)$	(c) $\left(\frac{a^2C}{A}, \frac{a^2C}{B}\right)$	(d) $\left(\frac{a^2C}{-A}, \frac{a^2C}{-B}\right)$
260.	Polar of origin (0, 0) v	vith respect to the circle	$x^2 + y^2 + 2\lambda x + 2\mu y + c = 0$ touch	es circle $x^2 + y^2 = r^2$ if[Rajasthan PET 19
	(a) $c = r(\lambda^2 + \mu^2)$	(b) $r = c(\lambda^2 + \mu^2)$	(c) $c^2 = r^2 (\lambda^2 + \mu^2)$	(d) $r^2 = c^2 (\lambda^2 + \mu^2)$
261.	The polar of the point	(5, -1/2) w.r.t. circle $(x - 1/2)$	$(-2)^2 + y^2 = 4$ is	[Rajasthan PET 1996]
	(a) $5x - 10y + 2 = 0$	(b) $6x - y - 20 = 0$	(c) $10x - y - 10 = 0$	(d) $x - 10y - 2 = 0$
262.	The pole of the line $2x$	$+3y = 4$ <i>w.r.t.</i> circle $x^2 +$	$+y^2 = 64$ is	[Rajasthan PET 1996]
		(b) (48, 32)		(d) (48, - 32)
263.	The pole of the straigh	t line $x + 2y = 1$ with resp	pect to the circle $x^2 + y^2 = 5$ is	[Rajasthan PET 2000, 01]
	(a) (5, 5)	(b) (5, 10)	(c) (10, 5)	(d) (10, 10)
264.	The polars drawn from	$(-1, 2)$ to the circles S_1	$\equiv x^2 + y^2 + 6y + 7 = 0$ and $S_2 \equiv$	$\equiv x^2 + y^2 + 6x + 1 = 0$, are [Rajasthan PET 2
	(a) Parallel			(d) Intersect at a point
265.	Let the equation of a c	ircle be $x^2 + y^2 = a^2$. If h^2	$a^2 + k^2 - a^2 < 0$ then the line hx	$+ky = a^2$ is the
	(a) Polar line of the po	oint (h, k) with respect to	the circle (b)	Real chord of contact of the
tange	ents from (h, k) to the c			
	= =	ent to the circle from the	_	(d) None of these
266.	_	_	the circle $x^2 + y^2 = 200$ is	[Rajasthan PET 1993]
	(a) (16, 12)	(b) (- 16, 12)		(d) (- 16, - 12)
267.	-	- '	th respect to the circle $(x-1)^2$	
	(a) $3x + 2y = 7$	•	(c) $3x - 2y = 8$	-
268.		-	-	nt iff[MP PET 1984; BIT Ranchi 1990]
cinal	(a) The point is inside	the circle	(b)	The point is outside the
circle	(c) The point is not in	side the circle	(d) Never	
260	-	+4y = 28 with respect to		[Rajasthan PET 1994]
209.	(a) (36/7, 9/7)	(b) (36/7, 16/7)	(c) $(16/7, 36/7)$	(d) None of these
270.		(-2, 3) <i>w.r.t.</i> the circle <i>x</i>		[Rajasthan PET 1996; EAMCET 1996]
_, ••	(a) $x = 0$	(b) $y = 0$	(c) $x = 1$	(d) $y = 1$
271				² , then that line will touch[Rajasthan PE
4/1 .	_			
	(a) $x + y = 4c$	(0) x + y = c / 9	(c) $x^2 + y^2 = c^2 / 4$	(a) $x + y = 2c$

Advance Level

(a) $23x^2 + 23y^2 - 156x + 38y + 168 = 0$

(c) $x^2 + y^2 + 156x + 38y + 168 = 0$

272.	If the polar of a point (p, q) with respect to the circl	e $x^2 + y^2 = a^2$ touches the circ	cle $(x-c)^2 + (y-d)^2 = b^2$, then			
	(a) $b^2 (p^2 + q^2) = (a^2 - cp - qd)^2$	(b) $b^2(p^2+q^2)=(a^2-cq-cq)$	$(dp)^2$			
	(c) $a^2(p^2+q^2)=(b^2-cp-dq)^2$	(d) None of these				
273.	The equation of a circle is $x^2 + y^2 - 4x + 2y - 4 = 0$. W	ith respect to the circle				
	(a) The pole of the line $x - 2y + 5 = 0$ is (1, 1)	•				
	(b) The chord of contact of real tangents from (1, 1) is the line $x - 2y + 5 = 0$					
	(c) The polar of the point (1, 1) is $x - 2y + 5 = 0$	Ž				
	(d) None of these					
	(4, 1:0.00					
			System of Cricles			
	Basic	c Level				
274.	If d is the distance between the centres of two circle	es, r_1 , r_2 are their radii and d	$= r_1 + r_2$, then [MP PET 1986]			
	(a) The circles touch each other externally	(b) The circles touch each	other internally			
	(c) The circles cut each other		(d) The circles are disjoint			
275.	The points of intersection of the circles $x^2 + y^2 = 25$	and $x^2 + y^2 - 8x + 7 = 0$ are	[MP PET 1988			
	(a) $(4, 3)$ and $(4, -3)$ (b) $(4, -3)$ and $(-4, -3)$	(c) (-4, 3) and (4, 3)	(d) (4, 3) and (3, 4)			
276.	Circles $x^2 + y^2 - 2x - 4y = 0$ and $x^2 + y^2 - 8y - 4 = 0$		[MP PET 1990			
	(a) Touch internally	(b) Touch externally				
	(c) Intersect each other at two distinct points	(d) Do not intersect each				
277.	For the given circles $x^2 + y^2 - 6x - 2y + 1 = 0$ and $x^2 + y^2 - 6x - 2y + 1 = 0$		_			
outsi	(a) One circle lies inside the other de the other	(b)	One circle lies completel			
0 44 60 1	(c) Two circle intersect in two points	(d) They touch each other	•			
278.	The two circles $x^2 + y^2 - 4y = 0$ and $x^2 + y^2 - 8y = 0$		[Ranchi BIT 1985			
	(a) Touch each other internally	(b)	Touch each other externally			
	(c) Do not touch each other	(d)	None of these			
279.	Circles $x^2 + y^2 - 2x - 4y = 0$ and $x^2 + y^2 - 8y - 4 = 0$		[IIT 1973			
	(a) Touch each other internally	(b)	Touch each other externally			
	(c) Cuts each other at two points	(d)	None of these			
280.	A tangent to the circle $x^2 + y^2 = 5$ at the point (1, -2)	2) to the circle $x^2 + y^2 - 8$	8x + 6y + 20 = 0 [IIT 1975]			
	(a) Touches (b) Cuts at real points	(c) Cuts at imaginary poin				
281.	If the circles $x^2 + y^2 - 9 = 0$ and $x^2 + y^2 + 2ax + 2y + 1$					
	(a) - 4/3 (b) o	(c) 1	(d) 4/3			
282.	The equation of the circle through the point	t of intersection of the	circles $x^2 + y^2 - 8x - 2y + 7 = 0$			
	$x^2 + y^2 - 4x + 10y + 8 = 0$ and (3, -3) is		[AI CBSE 1981			

(b) $23x^2 + 23y^2 + 156x + 38y + 168 = 0$

(d) None of these

	the <i>y</i> -axis is given by the	e equation		[IIT 1993; DCE 200	o]
	(a) $x^2 - 6x - 10y + 14 = 0$	(b) $x^2 - 10x - 6y + 14 = 0$	(c) $y^2 - 6x - 10y + 14 = 0$	(d) $y^2 - 10x - 6y + 14 = 0$	
284.	Circles $x^2 + y^2 + 2gx + 2fy$	$= 0 \text{ and } x^2 + y^2 + 2g'x + 2f'y = 0$	touch externally, if [MP	PET 1994; Karnataka CET 200	3]
	(a) $f'g = g'f$	(b) $fg = f'g'$	(c) $f'g' + fg = 0$	(d) $f'g + g'f = 0$	
285.	The circle passing throu	gh point of intersection of the	circle $S = 0$ and the line $P =$	O is [Rajasthan PET 199	5]
	(a) $S + \lambda P = 0$	(b) $S - \lambda P = 0$	(c) $\lambda S + P = 0$	(d) $P - \lambda S = 0$	
286.	The two circles $x^2 + y^2 -$	$-2x-3=0$ and $x^2+y^2-4x-6y$	-8 = 0 are such that	[MNR 199	5]
	(a) They touch each other		-	(c) One lies inside the other	r(d)
287.	Consider the circles x^2	$+(y-1)^2 = 9$, $(x-1)^2 + y^2 = 25$. Th	ney are such that	[EAMCET 199	4]
	(a) These circles touch of		(b) One of these circles lie	<u> </u>	
	(c) Each of these circles		(d) They intersect in two p		_
288.	_	e circle passing through the po 6 = 0 and the line $3x + 2y - 5 = 0$	_	_	
		•		[Rajasthan PET 199	oj
	(a) $x^2 + y^2 + 2x - 4y - 4 =$: ()	(b) $x^2 + y^2 + 4x - 2y - 4 = 0$		
	(c) $x^2 + y^2 - 3x - 4y = 0$		(d) $x^2 + y^2 - 4x - 2y = 0$		
289.	If the circles $x^2 + y^2 = 4$,	$x^2 + y^2 - 10x + \lambda = 0 $ touch exte	ernally, then λ is equal to	[AMU 199	9]
	(a) - 16	(b) 9	(c) 16	(d) 25	
290.	The condition that the ci	ircle $(x-3)^2 + (y-4)^2 = r^2$ lies e	entirely within the circle x^2	$+y^2 = R^2$, is [AMU 199]	9]
	(a) $R + r \le 7$	(b) $R^2 + r^2 < 49$	(c) $R^2 - r^2 < 25$	(d) $R - r > 5$	
291.	If the centre of a circle	which passing through the pe	oints of intersection of the	circles $x^2 + y^2 - 6x + 2y + 4 =$	0
	and $x^2 + y^2 + 2x - 4y - 6 =$	= 0 is on the line $y = x$, then the	e equation of the circle is [1	Rajasthan PET 1991; Roorkee 19	989]
	(a) $7x^2 + 7y^2 - 10x + 10y $	-11 = 0	(b) $7x^2 + 7y^2 + 10x - 10y - 12$	2 = 0	
	(c) $7x^2 + 7y^2 - 10x - 10y $	-12 = 0	(d) $7x^2 + 7y^2 - 10x - 12 = 0$		
292.	The equation of a circ	cle passing through points	of intersection of the cir	cles $x^2 + y^2 + 13x - 3y = 0$ at	nd
	$2x^2 + 2y^2 + 4x - 7y - 25 =$	0 and point (1, 1), is	[R	ajasthan PET 1988, 89; IIT 198	3]
	(a) $4x^2 + 4y^2 - 30x - 10y$	-25 = 0	(b) $4x^2 + 4y^2 + 30x - 13y - 2$	25 = 0	
	(c) $4x^2 + 4y^2 - 17x - 10y$	+25 = 0	(d) None of these		
293.	The equation of circle pa	asses through the points of into	ersection of circles $x^2 + y^2$	$-6x + 8 = 0$ and $x^2 + y^2 = 6$ as	nd
	point (1, 1) is				
			-	ET 1988; IIT 1980; MP PET 200	2]
		(b) $x^2 + y^2 - 3x + 1 = 0$			
294.		rcle having its centre on th		assing through the points	of
		es $x^2 + y^2 - 2x - 4y + 1 = 0$ and y		[MNR 199	2]
	(a) $x^2 + y^2 - 6x + 7 = 0$	(b) $x^2 + y^2 - 3y + 4 = 0$	(c) $x^2 + y^2 - 2x - 2y + 1 = 0$	(d) $x^2 + y^2 + 2x - 4y + 4 = 0$	
295.	A circle of radius 5 toucl	hes another circle $x^2 + y^2 - 2x$	-4y - 20 = 0 at (5, 5), then i	ts equation is [IIT 197	9]
	(a) $x^2 + y^2 + 18x + 16y + 1$	20 = 0	(b) $x^2 + y^2 - 18x - 16y + 120$	= 0	
	(c) $x^2 + y^2 - 18x + 16y + 12$	20 = 0	(d) None of these		

283. The locus of the centre of a circle which touches externally the circle $x^2 + y^2 - 6x - 6y + 14 = 0$ and also touches

296. The points of intersection of circles $x^2 + y^2 = 2ax$ and $x^2 + y^2 = 2by$ are

	(a) (0, 0), (a, b) (b) (0, 0), $\left(\frac{2ab^2}{a^2+b^2}, \frac{2ba^2}{a^2+b^2}\right)$	(c) (0, 0), $\left(\frac{a^2 + b^2}{a^2}, \frac{a^2 + b^2}{b^2}\right)$	$\left(\frac{d}{d}\right)$ None of these
297.	The equation of the circle which passes th	rough the intersection	of $x^2 + y^2 + 13x - 3y = 0$ and
	$2x^{2} + 2y^{2} + 4x - 7y - 25 = 0$ and whose centre lies on 13	x + 30y = 0	[DCE 2001]
	(a) $x^2 + y^2 + 30x - 13y - 25 = 0$	(b) $4x^2 + 4y^2 + 30x - 13y - 2$	25 = 0
	(c) $2x^2 + 2y^2 + 30x - 13y - 25 = 0$	(d) $x^2 + y^2 + 30x - 13y + 25 =$	= 0
298.	The two circles $x^2 + y^2 - 2x + 6y + 6 = 0$ and $x^2 + y^2 - 5x$	x + 6y + 15 = 0	[Karnataka CET 2001]
	(a) Intersect (b) Are concentric	(c) Touch internally	(d) Touch externally
299.	The equation of the circle passing through (1, $x^2 + y^2 - 6x + 8y - 16 = 0$, $x^2 + y^2 + 4x - 2y - 8 = 0$ is	- 3) and the points of	common to the two circles
	(a) $x^2 + y^2 - 4x + 6y + 24 = 0$	(b) $2x^2 + 2y^2 + 3x + y - 20 =$	0
	(c) $3x^2 + 3y^2 - 5x - 7y - 19 = 0$	(d) None of these	
300.	The circles whose equations are $x^2 + y^2 + c^2 = 2ax$ and	$x^2 + y^2 + c^2 = 2by$ will touch	one another externally if
	(a) $\frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{a^2}$ (b) $\frac{1}{c^2} + \frac{1}{a^2} = \frac{1}{b^2}$	(c) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$	(d) None of these
301.	The equation of the circle and its chord are respective	ely $x^2 + y^2 = a^2$ and $x \cos \alpha +$	$y \sin \alpha = p$. The equation of the
	circle of which this chord is a diameter is		
	(a) $x^2 + y^2 - 2px \cos \alpha - 2py \sin \alpha + 2p^2 - a^2 = 0$	(b) $x^2 + y^2 - 2px \cos \alpha - 2py$	$\sin\alpha + p^2 - a^2 = 0$
	(c) $x^2 + y^2 + 2px \cos \alpha + 2py \sin \alpha + 2p^2 - a^2 = 0$	(d) None of these	
302.	The two circles $x^2 + y^2 - 5 = 0$ and $x^2 + y^2 - 2x - 4y - 15$	= 0	
	(a) Touch each other externally	(b)	Touch each other internally
	(c) Cut each other orthogonally	(d)	Do not intersect
303.	The circles $x^2 + y^2 - 4x - 6y - 12 = 0$ and $x^2 + y^2 + 4x + 6y - 12 = 0$	y + 4 = 0	[EAMCET 1991]
		(c) Intersect at two points	(d) Do not intersect
304.	The equations of two circles are $x^2 + y^2 - 26y + 25 = 0$	and $x^2 + y^2 = 25$ then	
ortho	(a) They touch each other egonally	(b)	They cut each other
OI the	(c) One circle is inside the other circle	(d) None of these	
305.	The equation of a circle C_1 is $x^2 + y^2 - 4x - 2y - 11 = 0$.	A circle C_2 of radius 1 rol	lls on the outside of the circle
	\mathcal{C}_1 . The locus of the centre of \mathcal{C}_2 has the equation		[MP PET 2003]
	(a) $x^2 + y^2 - 4x - 2y - 20 = 0$	(b) $x^2 + y^2 + 4x + 2y - 20 = 0$)
	(c) $x^2 + y^2 - 3x - y - 11 = 0$	(d) None of these	
306.	The locus of the centres of the circles passing the	hrough the intersection of	f the circles $x^2 + y^2 = 1$ and
	$x^2 + y^2 - 2x + y = 0$ is		
	(a) A line whose equation is $x + 2y = 0$	(b) A line whose equation	is $2x - y = 1$
	(c) A circle	(d) A pair of lines	
307.	If circles $x^2 + y^2 = 9$ and $x^2 + y^2 + 8y + c = 0$ touch each	other, then c is equal to	[Rajasthan PET 1994]
	(a) 15 (b) - 15	(c) 16	(d) - 16

[AMU 2000]

	the y-axis, is			[IIT 1993]
	(a) $x^2 - 6x - 10y + 14 = 0$	(b) $x^2 - 10x - 6y + 14 = 0$	(c) $v^2 - 6x - 10y + 14 = 0$	
300	·	·		S_2 with centre $C_2(a_2, b_2)$ and
509.		at their common point passes		S_1 with control $S_2(\omega_2, \sigma_2)$ and
	(a) $(a_1^2 + a_2^2) + (b_1^2 + b_2^2) = r$	$r_{1}^{2}+r_{2}^{2}$	(b) $(a_1^2 - a_2^2) + (b_1^2 - b_2^2) = r_1^2$	$-r_{2}^{2}$
	(c) $(a_1^2 - b_2^2) + (a_2^2 + b_2^2) = r$	$r_{1}^{2}+r_{2}^{2}$	(d) $(a_1^2 - b_1^2) + (a_2^2 + b_2^2) = r_1^2$	$+r_{2}^{2}$
		4.1	7	
		Advance	e Level	
310.	The circles $x^2 + y^2 - 10x$	$+16 = 0$ and $x^2 + y^2 = r^2$ inters	sect each other in two distin	ct points if [IIT 1994]
	(a) $r < 2$	(b) $r > 8$	(c) 2< r < 8	(d) $2 \le r \le 8$
311.	The centre of the circle p	passing through (0, 0) and (1,	o) and touching the circle	$x^2 + y^2 = 9$ is [AIEEE 2002]
	(a) $\left(\frac{1}{-},\frac{1}{-}\right)$	(b) $\left(\frac{1}{2}, -\sqrt{2}\right)$	(c) $(\frac{3}{4}, \frac{1}{4})$	(d) $(\frac{1}{2}, \frac{3}{2})$
	(2 2)	(2)	(2 2)	(2 2)
312.		of the circles which touch bot	th the circles $x^2 + y^2 = a^2$ are	$x^2 + y^2 = 4ax $ externally has
	the equation	2 2 2	2 2	
	•	(b) $9(x-a)^2 - 5y^2 = 2a^2$	•	
313.			ne circle $x^2 + y^2 + 2gx + 2fy +$	c = 0. Then the equation of the
	circumcircle of the trian (a) $x^2 + y^2 + 2gx + 2fy = 0$	gie <i>OPQ</i> is (b) $x^2 + y^2 + gx + fy = 0$	(c) $x^2 + y^2 - gx - fy = 0$	(d) $x^2 + y^2 - 2gx - 2fy = 0$
314.				he equation of the circle on AB
3 -1	as diameter is		-,	
	•	(b) $2x^2 + 2y^2 + 2x + 6y + 1 = 0$		
315.		nallest circle passing throug	gh the intersection of the	line $x + y = 1$ and the circle
	$x^2 + y^2 = 9$ is	a	() 2 2 0 0	
	• • •	(b) $x^2 + y^2 - x - y - 8 = 0$	• •	
316.	(a) $x - 2y - 3 = 0$			centres on the line [SCRA 1999]
	(a) $x - 2y - 3 = 0$	(b) $x + 2y - 3 = 0$	(c) $x - 2y + 3 = 0$	(u) $x + 2y + 3 = 0$
			Commo	n Tangents to Two Circles
		Basic .	Level	
317.	The number of common	tangents to the circles $x^2 + y^2$	$-4x - 6y - 12 = 0$ and $x^2 + y$	$^{2} + 6x + 18y + 26 = 0$ is [MP PET 1995]
	(a) 1	(b) 2	(c) 3	(d) 4
318.	The number of common	tangents to two circles $x^2 + y^2$	$x^2 = 4$ and $x^2 + y^2 - 8x + 12 = 0$) is [EAMCET 1990]
	(a) 1	(b) 2	(c) 3	(d) 4
319.	The number of common	tangents to the circles $x^2 + y^2$	$-x = 0$, $x^2 + y^2 + x = 0$ is	[EAMCET 1994]
	(a) 2	(b) 1	(c) 4	(d) 3
320.			=	their common tangent is [MP PET 19
	(a) $4y = 9$	(b) $y = 3$	(c) $y = -3$	(d) $x = 3$

308. The locus of the centre of the circle which touches externally the circle $x^2 + y^2 - 6x - 6y + 14 = 0$ and also touches

(a) 1

321.	The two circles $x^2 + y^2$	-2x + 6y + 6 = 0	and $x^2 + y^2 - 5x + 6y + 15 = 0$ to	ouch each other.	The equation of their
	common tangent is				[KCET 1993; DCE 1999]
	(a) $x = 3$	(b) $y = 6$	(c) $7x - 12y - 21 =$	= 0 (d) $7x$	+12y + 21 = 0
322	The number of common t	tangents to the c	ircle $x^2 + y^2 + 2x + 8y - 23 = 0$ as	nd $r^2 + v^2 - 4r - 10$	0v + 19 = 0 is

(c) 3

Advance Level

(b) 2

323.	If $a>2b>0$ then the	positive value o	f m for which	$y = mx - b\sqrt{1 + m^2}$	is a common	tangent to $x^2 + y^2 = b$	² and
	$(x-a)^2 + y^2 = b^2$, is					[IIT Screening	2002]

(a)
$$\frac{2b}{\sqrt{a^2 - 4b^2}}$$
 (b) $\frac{\sqrt{a^2 - 4b^2}}{2b}$ (c) $\frac{2b}{a - 2b}$

324. Two circles, each of radius 5, have a common tangent at (1, 1) whose equation is 3x + 4y - 7 = 0. Then their centres are

(a) 0 (b) 1 (c) 3 (d) 2

326. The range of values of λ for which the circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 4\lambda x + 9 = 0$ have two common tangents, is

(a)
$$\lambda \in \left[-\frac{13}{8}, \frac{13}{8} \right]$$
 (b) $\lambda > \frac{13}{8}$ or $\lambda < -\frac{13}{8}$ (c) $1 < \lambda < \frac{13}{8}$

327. Two circles with radii r_1 and r_2 , $r_1 > r_2 \ge 2$, touch each other externally, if ' θ ' be the angle between the direct common tangents, then

(a)
$$\theta = \sin^{-1}\left(\frac{r_1 + r_2}{r_1 - r_2}\right)$$
 (b) $\theta = 2\sin^{-1}\left(\frac{r_1 - r_2}{r_1 + r_2}\right)$ (c) $\theta = \sin^{-1}\left(\frac{r_1 - r_2}{r_1 + r_2}\right)$ (d) None of these.

Common Chord of Two Circles

(d) 4

Basic Level

328. The common chord of the circle $x^2 + y^2 + 4x + 1 = 0$ and $x^2 + y^2 + 6x + 2y + 3 = 0$ is [MP PET 1991]

a)
$$x + y + 1 = 0$$
 (b) $5x + y + 2 = 0$ (c) $2x + 2y + 5 = 0$ (d) $3x + y + 3 = 0$

329. The equation of line passing through the points of intersection of the circles $3x^2 + 3y^2 - 2x + 12y - 9 = 0$ and $x^2 + y^2 + 6x + 2y - 15 = 0$, is

(a)
$$10x - 3y - 18 = 0$$
 (b) $10x + 3y - 18 = 0$ (c) $10x + 3y + 18 = 0$ (d) None of these

330. Length of the common chord of the circles $x^2 + y^2 + 5x + 7y + 9 = 0$ and $x^2 + y^2 + 7x + 5y + 9 = 0$ is [Kurukshetra CEE 1996]
(a) 9 (b) 8 (c) 7 (d) 6

(c) $3\sqrt{2}$

331. The length of the common chord of the circles
$$x^2 + y^2 + 2x + 3y + 1 = 0$$
 and $x^2 + y^2 + 4x + 3y + 2 = 0$ is [MP PET 2000]

332. If the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ bisects the circumference of the circle $x^2 + y^2 + 2g'x + 2f'y + c' = 0$, then

(a)
$$2g(g-g')+2f(f-f')=c-c'$$
 (b) $2g'(g-g')+2f'(f-f')=c'-c$

(c)
$$2g'(g-g')+2f'(f-f')=c-c'$$
 (d) $2g(g-g')+2f(f-f')=c'-c$.

(b) $2\sqrt{2}$

333. If the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ bisects the circumference of the circle $x^2 + y^2 + 2g'x + 2f'y + c' = 0$, then the length of the common chord of these two circles is

(a)
$$2\sqrt{g^2 + f^2 - c}$$

The equation of

(a)
$$2\sqrt{g^2 + f^2 - c}$$
 (b) $2\sqrt{g'^2 + f'^2 - c'}$

(c)
$$2\sqrt{g^2+f^2+c}$$

(d)
$$2\sqrt{g'^2+f'^2+c'}$$

334. The equation of the circle described on the common chord of the circles $x^2 + y^2 + 2x = 0$ and $x^2 + y^2 + 2y = 0$ as diameter is

(a)
$$x^2 + y^2 + x - y = 0$$

(b)
$$x^2 + y^2 - x - y = 0$$

(a)
$$x^2 + y^2 + x - y = 0$$
 (b) $x^2 + y^2 - x - y = 0$ (c) $x^2 + y^2 - x + y = 0$ (d) $x^2 + y^2 + x + y = 0$

(d)
$$x^2 + y^2 + x + y = 0$$

335. The distance of the point (1, 2) from the common chord of circles $x^2 + y^2 - 2x + 3y - 5 = 0$ $x^2 + y^2 + 10x + 8y - 1 = 0$ is

[EAMCET 1990]

(a) 2 units

(b) 3 units

(c) 4 units

(d) None of these

Advance Level

336. The length of common chord of the circles $(x-a)^2 + y^2 = a^2$ and $x^2 + (y-b)^2 = b^2$ is

[MP PET 1989]

(a)
$$2\sqrt{a^2+b^2}$$

(b)
$$\frac{ab}{\sqrt{a^2+b^2}}$$

(c)
$$\frac{2ab}{\sqrt{a^2 + b^2}}$$

- (d) None of these
- **337.** The length of common chord of the circles $x^2 + y^2 = 12$ and $x^2 + y^2 4x + 3y 2 = 0$, is [Rajasthan PET 1990, 99]

(a)
$$4\sqrt{2}$$

(b)
$$5\sqrt{2}$$

(c)
$$2\sqrt{2}$$

- (d) $6\sqrt{2}$
- **338.** The line L passes through the points of intersection of the circles $x^2 + y^2 = 25$ and $x^2 + y^2 8x + 7 = 0$. The length of perpendicular from centre of second circle onto the line L, is [Bihar CEE 1994]

- (d) o
- **339.** The common chord of $x^2 + y^2 4x 4y = 0$ and $x^2 + y^2 = 16$ subtends at the origin an angle equal to

(a)
$$\frac{\pi}{6}$$

(b)
$$\frac{\pi}{4}$$

(c)
$$\frac{\pi}{3}$$

- **340.** The length of the common chord of the circles $(x-a)^2 + (y-b)^2 = c^2$ and $(x-b)^2 + (y-a)^2 = c^2$ is

(a)
$$\sqrt{c^2 - (a-b)^2}$$

(b)
$$\sqrt{4c^2-2(a-b)^2}$$

(c)
$$\sqrt{2c^2 - (a-b)^2}$$

- **341.** If the circles $(x-a)^2 + (y-b)^2 = c^2$ and $(x-b)^2 + (y-a)^2 = c^2$ touch each other, then

(a)
$$a = b \pm 2c$$

(b)
$$a = b \pm \sqrt{2}c$$

(c)
$$a = b \pm c$$

- (d) None of these
- **342.** If the circle $c_1: x^2 + y^2 = 16$ intersects another circle c_2 of radius 5 in such a manner that the common chord is of maximum length and has a slope equal to 3/4, the coordinates of the centre of $\,c_2\,$ are [IIT 1988]

(a)
$$\left(-\frac{9}{5}, \frac{12}{5}\right)$$
, $\left(\frac{9}{5}, -\frac{12}{5}\right)$ (b) $\left(-\frac{9}{5}, -\frac{12}{5}\right)$, $\left(\frac{9}{5}, \frac{12}{5}\right)$ (c) $\left(\frac{12}{5}, -\frac{9}{5}\right)$, $\left(-\frac{12}{5}, \frac{9}{5}\right)$ (d) None of these

$$\left(-\frac{9}{5}, -\frac{12}{5}\right), \left(\frac{9}{5}, \frac{12}{5}\right)$$

(c)
$$\left(\frac{12}{5}, -\frac{9}{5}\right), \left(-\frac{12}{5}, \frac{9}{5}\right)$$

- **343.** The common chord of the circle $x^2 + y^2 + 6x + 8y 7 = 0$ and a circle passing through the origin, and touching the line y = x, always passes through the point
 - (a) (- 1/2, 1/2)
- (b) (1, 1)

- (c) (1/2, 1/2)
- (d) None of these
- **344.** The equation of the circle drawn on the common chord of circles $x^2 + y^2 + 2ax + c = 0$ and $x^2 + y^2 + 2by + c = 0$ as a diameter is

[Rajasthan PET 1998]

(a)
$$x^2 + y^2 + \frac{2ab^2}{a^2 + b^2}x + \frac{2a^2b}{a^2 + b^2}y + c = 0$$

(b)
$$x^2 + y^2 + \frac{ab^2}{a^2 + b^2}x + \frac{a^2b}{a^2 + b^2}y + c = 0$$

(c)
$$(a^2 + b^2)(x^2 + y^2) + 2ab(bx + ay) + c = 0$$

(d) None of these

	diameter is				[EAMCET 1989]
	(a) $(a^2 + b^2)(x^2 + y^2) = 2a$	b(bx + ay)	(b) $(a^2 + b^2)(x^2 + y^2) = 2ab$	(ax + by)	[EAMCE! 1909]
	(c) $(a^2 - b^2)(x^2 + y^2) = 2a$	b(bx-ay)	(d) $(a^2 - b^2)(x^2 + y^2) = 2ab$	(ax - by)	
		Angle of Intersecti	on of Two Circles and Ort	hogonal Sys	tem of Circles
		Basic	c Level		
346.	If a circle passes throug locus of its centre is	th the point (1, 2) and cuts t	the circle $x^2 + y^2 = 4$ orthogo	onally, then the	e equation of the
	() 2 2 2 2 1				[MNR 1992]
	(a) $x^2 + y^2 - 3x - 8y + 1 =$	0	(b) $x^2 + y^2 - 2x - 6y - 7 = 0$,	
	(c) $2x + 4y - 9 = 0$		(d) $2x + 4y - 1 = 0$	- 2 2 2	
347•			and cuts orthogonally to circ		, is [IIT 1988]
	(a) $2px + 2qy - (p^2 + q^2 + q^2)$	$k^2) = 0$	(b) $2px + 2qy - (p^2 - q^2 + k^2)$	$^{2}) = 0$	
	(c) $x^2 + y^2 - 3px - 4qy + ($	$(p^2 + q^2 - k^2) = 0$	(d) $x^2 + y^2 - 2px - 3qy + (p$	$(2-q^2-k^2)=0$	
348.	Two given circles $x^2 + y$ when	$a^{2} + ax + by + c = 0$ and $a^{2} + y^{2}$	$x^2 + dx + ey + f = 0$ will intersec	t each other o	rthogonally, only
	(a) $a+b+c=d+e+f$	(b) $ad + be = c + f$	(c) $ad + be = 2c + 2f$	(d) 2ad + 2be	= c + f
349.	Two circles $S_1 = x^2 + y^2$ then	$+2g_1x + 2f_1y + c_1 = 0$ and S_2	$a_2 = x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$	cut each oth	ner orthogonally,
				[Ra	jasthan PET 1995]
	(a) $2g_1g_2 + 2f_1f_2 = c_1 + c_2$	(b) $2g_1g_2 - 2f_1f_2 = c_1 + c_2$	(c) $2g_1g_2 + 2f_1f_2 = c_1 - c_2$	(d) $2g_1g_2 - 2$	$2f_1f_2 = c_1 - c_2$
	(a) 1	(b) 2	and (5, 6) cut orthogonally, the (c) 3	(d) 4	[EAMCET 1988]
351.		$-6y + 3 = 0$ and $2(x^2 + y^2) + 6x$	+4y+c=0 will cut orthogona	ally, if c equals	[Kurukshetra CEE 199
	(a) 4	(b) 18	(c) 12	(d) 16	
352.		that intersects the circle x	$x^{2} + y^{2} + 14x + 6y + 2 = 0$ orthog	gonally and wh	
	2) is (a) $x^2 + y^2 - 4y - 6 = 0$	(b) $x^2 + y^2 + 4y - 14 = 0$	(c) $x^2 + y^2 + 4y + 14 = 0$	(d) $x^2 + y^2 -$	[MP PET 1998] 4y - 14 = 0
353.			ky + k = 0 intersect orthogona		
	(a) 2 or $-\frac{3}{2}$	_	(c) 2 or $\frac{3}{2}$	_	
354.	The locus of the centr orthogonally is	e of circle which cuts the	e circles $x^2 + y^2 + 4x - 6y + 9 =$	$= 0$ and $x^2 + y$	$^2 - 4x + 6y + 4 = 0$
	 				[UPSEAT 2001]

(a) 12x + 8y + 5 = 0 (b) 8x + 12y + 5 = 0 (c) 8x - 12y + 5 = 0 (d) None of these **355.** If the two circles $2x^2 + 2y^2 - 3x + 6y + k = 0$ and $x^2 + y^2 - 4x + 10y + 16 = 0$ cut orthogonally, then the value of k is

356. The circles $x^2 + y^2 + x + y = 0$ and $x^2 + y^2 + x - y = 0$ intersect at an angle of

[Kerala (Engg.) 2002]

(d) o

345. The equation of the circle drawn on the common chord of circles $(x-a)^2 + y^2 = a^2$ and $x^2 + (y-b)^2 = b^2$ as

	and $x^2 + y^2 + y = 0$ ortho (a) (-2, 1) The members of a family	(b) (-2, -1) ly of circles are given by	gonally by the fixed circle (c) O	(d) (2, 1) $+\lambda x - (1 + \lambda^2)y - 10 = 0$. The number of $x^2 + y^2 + 4x + 6y + 3 = 0$ is (d) None of these
	and $x^2 + y^2 + y = 0$ ortho (a) (-2, 1) The members of a family circles belonging to the	(b) (-2, -1) ly of circles are given by family that are cut orthogo	y the equation $2(x^2 + y^2)$ gonally by the fixed circle	$+\lambda x - (1 + \lambda^2)y - 10 = 0$. The number of $x^2 + y^2 + 4x + 6y + 3 = 0$ is
	and $x^2 + y^2 + y = 0$ ortho (a) (-2, 1) The members of a family	(b) (-2, -1) ly of circles are given by	y the equation $2(x^2 + y^2)$	$+\lambda x - (1 + \lambda^2)y - 10 = 0$. The number of
	and $x^2 + y^2 + y = 0$ ortho (a) (-2, 1)	(b) (-2, -1)		
364.		gonally are		
364.				, , , , , , , , , , , ,
	The coordinates of the c	entre of the circle which		$x^2 + 4x + 7 = 0$, $2x^2 + 2y^2 + 3x + 5y + 9 = 0$
	(c) $x^2 + y^2 - 2x + 4y + 1 =$	0	(d) $x^2 + y^2 - 2x - 4y$	
363.	The equation of a circle worthogonally is (a) $x^2 + y^2 - 2x - 4y + 1 = 0$		(b) $x^2 + y^2 - 3x - 6y + 14 = 0$,	$x^{2} + y^{2} - x - 4y + 8 = 0$ and $x^{2} + y^{2} + 2x$ x + 1 = 0
		Adva	ance Level	
	(a) $\frac{-5}{2}$	(b) - 1	(c) $\frac{-11}{8}$	(d) $\frac{-5}{4}$
362.	The value of λ , for orthogonally is	which the circle $x^2 + y^2$	$y^2 + 2\lambda x + 6y + 1 = 0$, inter	sects the circle $x^{2} + y^{2} + 4x + 2y = 0$ [MP PET 2004]
	(c) $2ax - 2by + (a^2 + b^2 + 4a^2 + b^2 + 4a^2 + b^2 + 4a^2 + b^2 + b^$		(d) $2ax + 2by + (a^2 + a^2)$	
	(a) $2ax - 2by - (a^2 + b^2 + 4a^2)$	(4) = 0	(b) $2ax + 2by - (a^2 + a^2)$	$b^2 + 4 = 0$
301.	centre is	gn the point (a, b) and	cuts the chicle $x + y = 0$	[AIEEE 2004]
261	(a) 45°	(b) 90°	(c) 60°	(d) 30° 4 orthogonally, then the locus of its
360.	The angle of intersection		$2y - 9 = 0 \text{and} x^2 + y^2 - 2x$	
	(a) A straight line of the(c) A pair of straight lin	3	(b) (d)	A circle None of these
359.	$x^2 + y^2 - 5x + 3y - 1 = 0$	2		and intersecting the fixed circle orthogonally is
	(c) Cut each other ortho	-	(d)	Do not cut each other
358.	The two circles $x^2 + y^2 - y^2 = 0$ (a) Touch externally	$2x - 2y - 7 = 0$ and $3(x^2 + y)$	(b) Touch internal	[Karnataka CET 1993]
				$+1 = 0$ (d) $x^2 + y^2 + 2x - 4y + 4 = 0$
			nd $x^2 + y^2 - 4x - 2y + 4 = 0$ i	
	The equation of the ci	ircle having its centre	on the line $x + 2y - 3 = 0$	and passing through the point of
357.	O	7		

366. The equation of radical axis of the circles $x^2 + y^2 + x - y + 2 = 0$ and $3x^2 + 3y^2 - 4x - 12 = 0$, is

(a) $2x^2 + 2y^2 - 5x + y - 14 = 0$

 $x^{2} + y^{2} + 2g_{2}x + 2f_{2}y + c_{2} = 0$

 $x^{2} + y^{2} - 12x + 2y + 30 = 0$ are

(c) 5x - y + 14 = 0

orthogonally is

(a) An ellipse

(c) A conic

(a) (6, 30)

(a) 7x + 8y + 14 = 0

(a) (13, 33/4)

(a) Parallel

(a) The orthocentre

	(c) Neither parallel, nor	perpendicular	(d) Intersecting, but not fully perpendicular								
373.	Radical axis of the circle	$3x^2 + 3y^2 - 7x + 8y + 11 = 0$ ar	and $x^2 + y^2 - 3x - 4y + 5 = 0$ is	[Rajasthan PET 2001]							
	(a) $x + 10y + 2 = 0$	(b) $x + 10y - 2 = 0$	(c) $x + 10y + 8 = 0$	(d) $x + 10y - 8 = 0$							
374.	Two tangents are drawn triangle formed by joining	-	s to the two circles touchin	g at Q and R respectively then [UPSEAT 2002]							
	(a) Isosceles	(b) Equilateral	(c) Right angled	(d) None of these							
375.	Equation of radical axis	of the circles $x^2 + y^2 - 3x - 4y$	$+5 = 0$ and $2x^2 + 2y^2 - 10x -$	12y + 12 = 0 is [Rajasthan PET 2003]							
	(a) $2x + 2y - 1 = 0$	(b) $2x + 2y + 1 = 0$	(c) $x + y + 7 = 0$	(d) $x + y - 7 = 0$							
376.	If the circle $x^2 + y^2 + 6x$	-2y + k = 0 bisects the circumf	erence of the circle $x^2 + y^2 +$	2x - 6y - 15 = 0, then $k = [EAMCET 20]$							
	(a) 21	(b) - 21	(c) 23	(d) - 23							
377•	The locus of a point w	hich moves such that the tar	ngents from it to the two	circles $x^2 + y^2 - 5x - 3 = 0$ and							
	$3x^2 + 3y^2 + 2x + 4y - 6 = 0$	are equal, is given by									
	(a) $2x^2 + 2y^2 + 7x + 4y - 3$	S = 0	(b) $17x + 4y + 3 = 0$								
	(c) $4x^2 + 4y^2 - 3x + 4y - 9$	$\theta = 0$	(d) $13x - 4y + 15 = 0$								

(a) $ax - by - \frac{a^2 + b^2}{4} = 0$ (b) $2gx - 2fy + g^2 - f^2 = 0$ (c) $g^2x + f^2y - g^4 - f^4 = 0$ (d) $2g^2x + 2f^2y - g^4 - f^4 = 0$

379. The equations of two circles are $x^2 + y^2 + 2\lambda x + 5 = 0$ and $x^2 + y^2 + 2\lambda y + 5 = 0$. P is any point on the line x - y = 0.

380. The locus of a point from which the lengths of the tangents to the circles $x^2 + y^2 = 4$ and

378. Two equal circles with their centres on x and y axes will possess the radical axis in the following form

If PA and PB are the lengths of the tangents from P to the two circles and PA = 3 then PB is equal to

(b) 7x - 3y + 18 = 0

(d) None of these

(d) Another circle

(c) 7x - 8y - 14 = 0

(c) (33/4, 13)

(b) Perpendicular

(c) (3, 0)

(c) The incentre of the triangle

(b) The radical axis of the given circles

367. The radical centre of three circles described on the three sides of a triangle as diameter is **[EAMCET 1994]**

369. The coordinates of the radical centre of the three circles $x^2 + y^2 - 4x - 2y + 6 = 0$, $x^2 + y^2 - 4x - 2y + 6y = 0$.

370. The equation of radical axis of the circles $2x^2 + 2y^2 - 7x = 0$ and $x^2 + y^2 - 4y - 7 = 0$ is [Rajasthan PET 1987, 89, 93, 96]

371. The radical centre of the circles $x^2 + y^2 - 16x + 60 = 0$, $x^2 + y^2 - 12x + 27 = 0$, $x^2 + y^2 - 12y + 8 = 0$ is [Rajasthan PET 2000]

368. The locus of centre of the circle which cuts the circles $x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$

(b) The circumcentre

(b) 7x - 8y + 14 = 0

(b) (o, 6)

(b) (33/4, -13)

372. The radical axis of two circles and the line joining their centres are

(b) 6

 $2(x^{2} + y^{2}) - 10x + 3y - 2 = 0$ are equal is

[Rajasthan PET 1984, 85, 86, 91, 2000]

(d) None of these

(d) None of these

(d) None of these

(d) None of these

(d)

and

[Karnataka CET 1991]

[Karnataka CET 2001]

[Rajasthan PET 1986]

	(a) $2x + 2y = 5$	(b) $4x - 2y - 5 = 0$	(c) $2x + 2y + 5 = 0$	(d) None of these											
382.	The equation of the r	adical axis of circles $(x-a)^2$	$+(y-b)^2 = c^2$ and $(x-b)^2 + (y-b)^2$	$-a)^2 = c^2 $ is											
	(a) $x + y = 0$	(b) $x - y = 0$	(c) $x + y = c^2$	(d) None of these											
				Miscellaneous problems											
	Basic Level														
383.			remaining two, then their rac												
384.	•	(b) Are coincident the circumference of anothe	er circle S_2 , then their radical	(d) Parallel al axis											
	(a) Passes through th		(b) Passes through the	e centre of S_2											
	(c) Bisects the line jo	oining their centres	(d) None of these												
385.	If two circles interse	ct a third circle orthogonally	, then their radical axis												
	(a) Touches the third	l circle	(b)	Passes through the centre of											
the tl	nird circle														
	(c) Does not intersec	t the third circle	(d) None of these												
386.	The radical axis of tw	vo circles													
	(a) Always intersects	s both the circles	(b) Intersects only one	e circle											
		oining their centres		mon tangent to those circles											
387.	-	•	•	0 passes through the point (1, - 1),											

(a) A straight line inclined at $\pi/4$ with the line joining the centres of the circles

(d) A straight line perpendicular to the line joining the centres of the circles **381.** The equation of the radical axis of circles $x^2 + y^2 + 6x = 0$ and $x^2 + y^2 + 4x - 2y + 5 = 0$ is

Advance Level

(a) -1 (b) 10 (c) -14 (d) 14 **388.** The radical centre of circles $x^2 + y^2 + 2ax + c = 0$, $x^2 + y^2 + 2by + c = 0$ and $x^2 + y^2 + 2ax + 2by + c = 0$ is

389. The equation of the radical axis of circles $7x^2 + 7y^2 - 7x + 14y + 18 = 0$ and $4x^2 + 4y^2 - 7x + 8y + 20 = 0$ is

390. If the radical axis of the circles $x^2 + y^2 + 2gx + 2fy + c = 0$ and $2x^2 + 2y^2 + 3x + 8y + 2c = 0$ touches the circle $x^{2} + y^{2} + 2x + 2y + 1 = 0$, then

then *p* is equal to

(a) 21x - 68 = 0

(a) $g = \frac{3}{4}$ and $f \neq 2$ (b) $g \neq \frac{3}{4}$ and f = 2 (c) $g = \frac{3}{4}$ and f = 2

(c) $3x^2 + 3y^2 + 6y - 6 = 0$ (d) None of these

391. If (1, 2) is the radical centre of circle $x^2 + y^2 - 3x - 6y + d_1 = 0$, $x^2 + y^2 - x - 4y + d_2 = 0$ $x^2 + y^2 + 2x - 6y + d_3 = 0$, then

(a) $d_1 + d_3 = 5$

(b) A circle (c) An ellipse

(b) $d_1 - d_3 = 5$

(b) (a, o)

(b) 3y - 1 = 0

(c) $d_1 + d_3 = 10$

(d) $d_1 - d_3 = 10$

392. x = 1 is the equation of the radical axis of two circle which intersect orthogonally. If the equation of one of these circles is $x^2 + y^2 = 4$, then the equation of the other is [EAMCET 1983]

(a) $x^2 + y^2 - 8x - 4 = 0$ (b) $x^2 + y^2 - 8x + 4 = 0$

(c) $x^2 + y^2 + 8x + 4 = 0$ (d) None of these

Co-axial System of Circles and Limiting Points

(a) (-2, -4)

(a) 2

				(Adv	ance Le	vel					
395.	One of $x^2 + y^2 - 6x - 6$	the $6y + 4 = 0$	limiting, $x^2 + y^2 - x^2$	point $2x - 4y + 3 =$	of = 0 is	the	coaxial	system	of	circles	contai	ning
	(a) (-1,1)		(b) (- :	1, 2)		(c)	(-2, 1)		(d)	(- 2, 2)	[EAMCET 19	987]
396.	The co-axial s (a) Intersection (c) Touching	ng circle		ven by x^2	$+y^2+2\xi$	(b)	Non inters	epresents. secting circlor or non-inter			ataka CET 20	004]
									Mi	scellaneo	ous proble	ms
					Ba	sic Leve	el					
397.	The limit of th	ne perim	eter of the	regular <i>n</i> -	gons in	scribed	in a circle o	of radius R a	is $n \rightarrow$	·∞ is	[MP PET 2	003]
398.	(a) $2\pi R$ A, B, C and D then		_	ntersectio	n with			s of the line				
paral	(a) A, B, C, D llelogram	are con	Cyclic				(b)		Α,	Б, С,	D 101111	a
	(c) A, B, C, D	form a r	hombus				(d)		Non	e of these		
				<	Adv	ance Le	vel					
399.	If the points (ıal to			[MNR 1	982]
	(a) $-1, -\frac{3}{14}$		(b) -1 ,	$-\frac{14}{3}$		(c)	$\frac{14}{3}$, 1		(d)	None of th	iese	
400.	Line $Ax + By +$ $x^2 + y^2 + a'x + a'$	b'y + c' =	0 in R and				_			B'y + C' = 0	cuts the ci	ircle
	$D = \begin{vmatrix} a - a' & b - a' \\ A & A' & B \end{vmatrix}$	$egin{array}{cccc} B & C & C & C & C & C & C & C & C & C &$	=								[Roorkee 1	986]
404	(a) 1	: 1 :	(b) 0		-16 -5		- 1			None of th		
401.	A circle is inso (a) $\frac{a^2}{3}$	cribed in	(b) $\frac{2a}{3}$		gie oi si		e area of an $\frac{a^2}{6}$	iy square ins	(d)	_	rcie is [IIT 1	.994]

393. Origin is a limiting point of a coaxial system of which $x^2 + y^2 - 6x - 8y + 1 = 0$ is a member. The other limiting point

(c) 3

(c) $\left(-\frac{3}{25}, -\frac{4}{25}\right)$ (d) $\left(\frac{4}{25}, \frac{3}{25}\right)$

(d) 4

(b) $\left(\frac{3}{25}, \frac{4}{25}\right)$

(b) - 2

394. If (3, λ) and (5, 6) are conjugate points with respect to circle $x^2 + y^2 = 3$, then λ equals

[EAMCET 1994]

[Rajasthan PET 1998]

			011 010	directly 57 555511 51 511 5155 2-15
402.	Any circle through the p	oints of intersection of the li	tines $x + \sqrt{3}y = 1$ and $\sqrt{3}x - y$	= 2 if intersects these lines at
	(a) 180°	angle subtended by the arc PC (b) 90°	Q at its centre is (c) 120°	[MP PET 1998] (d) Depends on centre of
radiu				
403.		formed by joining the origin	to the points of intersection	n of the line $x\sqrt{5} + 2y = 3\sqrt{5}$ and
	circle $x^2 + y^2 = 10$ is			[Roorkee 1998]
	(a) 3	(b) 4	(c) 5	(d) 6
404.		•	g a right angle at the centre	. Then the locus of the centroid
	of the $\triangle PAB$ as P moves of (a) A parabola	(b) A circle	(c) An ellipse	[IIT Screening 2001] (d) A pair of straight lines
405.	A square is inscribed in the	e circle $x^2 + y^2 - 2x + 4y - 93 = 0$) with its sides parallel to the	coordinate axes. The coordinates
	of its vertices are			
406.	(a) $(-6, -9)$, $(-6, 5)$, (8) (c) $(-6, -9)$, $(-6, 5)$, (8) If the lines $a_1x + b_1y + c_1 = 0$	(3, -9), (8, 5) (3, 9), (8, 5) (4, 5) (4, 5) (5, 5) (5, 6) (6, 5) (6, 5) (6, 5) (7, 6) (7, 6) (8, 5)	(b) (-6, 9), (-6, -5), (8, (d) (-6, -9), (-6, 5), (8, the coordinate axes in condinate axes	- 9), (8, - 5)
	(a) $a_1 a_2 = b_1 b_2$	(b) $a_1b_1 = a_2b_2$	(c) $a_1b_2 = a_2b_1$	(d) None of these
407.		circle $x^2 + y^2 = 9$, Q a point of Q . Then the coordinates of P and Q		d the perpendicular bisector of
	(a) (3, o)	(b) (o, 3)	(c) $\left(\frac{72}{25}, -\frac{21}{25}\right)$	(d) $\left(-\frac{72}{25}, \frac{21}{25}\right)$
408.				he triangle <i>OAB</i> . The distances respectively. Then the diameter
	(a) $m(m+n)$	(b) $n(m+n)$	(c) $m-n$	(d) None of these
409.	If the circle $x^2 + y^2 + 2gx$	+2fy+c=0 is touched by $y=$	x at P such that $OP = 6\sqrt{2}$,	then the value of c is
410.	(a) 36 One of the diameters of	(b) 144 the circle circumscribing the	(c) 72 rectangle <i>ABCD</i> is $4y = x + 7$	(d) None of these 7. If A and B are the points (-3,
	4) and (5, 4) respectively (a) 16 sq. units	y, then the area of the rectang (b) 24 sq. units	gle is (c)32 sq. units	(d) None of these
411.	The maximum number o	f points with rational coordin	ates on a circle whose cent	re is $(\sqrt{3},0)$ is
412.		(b) Two es of the centre of the circu nates (-1, 0) and (1, 0) and w	•	(d) Infinite exagon whose two consecutive ex-axis, are
	(a) $x^2 + y^2 - 2\sqrt{3}y - 1 = 0$	(b) $x^2 + y^2 - \sqrt{3}y - 1 = 0$	(c) $x^2 + y^2 - 2\sqrt{3}x - 1 = 0$	(d) None of these
413.	For each $k \in \mathbb{N}$, let C_k	denote the circle whose equa	ation is $x^2 + y^2 = k^2$. On the	e circle C_k , a particle moves k
				icle moves to C_{k+1} in the radial
	direction. The motion o		his manner. The particle s	starts at (1, 0). If the particle
	(a) 7	(b) 6	(c) 2	(d) None of these
414.	A ray of light incident at	t the point (- 2, - 1) gets refle	ected from the tangent at (O, - 1) to the circle $x^2 + y^2 = 1$.
	The reflected ray touche (a) $4x - 3y + 11 = 0$	s the circle. The equation of the circle $4x + 3y + 11 = 0$	the line along which the incidence (c) $3x + 4y + 11 = 0$	dent ray moved is (d) None of these
415.	=			uares of its distances from the
	_	s $6a^2$. If the radius of the circ	_	
	(a) A pair of straight lin		(b)	An ellipse
	(c) A circle of radius \sqrt{a}	$^{2}-r^{2}$	(d)	An ellipse of major axis a
	ninor axis r	. 2 2		
416.	=	_	agon is inscribed in the cir	cle whose one vertex is (2, 0).
	Then a consecutive verte	_	1.	122
	(a) $(\sqrt{3}, 1)$	(b) $(1, -\sqrt{3})$	(c) $(\sqrt{3}, -1)$	(d) $(1, \sqrt{3})$

417. A point $P(\sqrt{3}, 1)$ moves on the circle $x^2 + y^2 = 4$ and after covering a quarter of the circle leaves it tangentially. The equation of a line along which the point moves after leaving the circle is

(a)
$$y = \sqrt{3}x + 4$$

(b)
$$\sqrt{3}y = x + 4$$

(c)
$$\sqrt{3}y = x - 4$$

(d)
$$y = \sqrt{3}x - 4$$

418. If the curves $ax^2 + 4xy + 2y^2 + x + y + 5 = 0$ and $ax^2 + 6xy + 5y^2 + 2x + 3y + 8 = 0$ intersect at four concyclic points then the value of a is

(a) 4

$$(d) - 6$$

Assignment (Basic and Advance level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
ь	b	a	b	a	b	b	a	b	b	С	С	a	a	a	С	a	d	a	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
d	С	a	b	С	a	d	С	b	d	С	d	a	a,b,	a	b	a	d	d	b
													С						
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
d	a	d	С	b	С	d	b	С	b	a	a	С	a	a	С	b	a	С	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
a	С	a	С	b	С	С	a	a	a	a	b	С	d	b	d	a	b	b	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
b	a	С	b	b	С	a	b	С	b	a	d	b	a	a	b	b	d	С	С
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
a	d	a	b	b	b	a	a	a	С	d	С	b	b	a	b,c	b	С	a	С
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
a,c	b	d	b	b	a	b	a	a	d	d	a	b	d	С	a	d	b	d	С
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
a	b	a	b	С	b	b	b	b	С	b	a	С	С	d	a	b	b	a	a
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
b	С	b	a,d	b	b	b	a	С	b	С	С	С	b,c	С	d	С	a	a	С
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
d	b	b	b	b	b	b	a	С	С	b	a	a	a	С	С	a	a,c	d	b
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
d	d	С	С	a	a	С	a,c	b	a	С	b	С	С	a	С	a	С	С	С
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
b	b	b	С	b	b,c	a	b	С	d	С	d	b	С	a	c,d	c	С	С	a
U	U	U	C	U	0,0	а	U	C	u	C	u	U		а	c,u	C		C	а

146	Circle	and	System	of Circles
-----	--------	-----	--------	------------

241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
d	d	a	d	a	С	С	a	d	b	a	С	С	С	a	a,c	b	b	a	С
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
b	a	b	d	a	a	a	С	b	a	b	a	a,c	a	a	a	d	a	a	a
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
a,d	a	d	a	a,b,c d	b	b	b	a	d	С	b	b	a	b	a	b	С	b	С
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
a	b	С	b	a	a	a	d	b	С	b	a	b	b	b	d	С	С	d	b
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
b	С	a	С	b	b	b	a	a	d	b	С	b	d	a	С	a	d	d	b
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
b	a	С	a	a	С	a	С	a	С	b	d	a	С	С	d	a	С	d	b
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380
b	d	a	b	a	b	С	b	d	С	d	b	b	a	a	d	b	b	С	d
381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400
a	b	С	b	b	d	b	a	a	С	b	b	b	b	a	a	a	a	С	b
401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418		
С	a	С	b	a	a	a,d	d	С	С	b	a	a	b	С	b	b	b		