Chapter 2

ARRAY
Definition of Array- An array is defined as finite ordered collection of homogenous data
elements which are stored in contiguous memory locations.

Here the words,
finite means data range must be defined.
ordered means data must be stored in continuous memory addresses.
homogenous means data must be of similar data type.

There are two types of Array:
1. Single or One Dimensional Array
2. Multi Dimensional Array

Single or One Dimensional array: A list of items can be given one variable name using only
one subscript and such a variable is called single sub-scripted variable or one or Single

dimensional array.

First Element Last Element

l !

Numbers[0] | Numbers[1] | Numbers[2] | Numbers[3] | -—

Declaration of One Dimensional array: Like any other variable, arrays must be declared
before they are used so that the compiler can allocate space for them in the memory. The
syntax form of array declaration is:

type variable-name([size];

Ex-

float height[50];

int group[10];

charname[10];
The type specifies the type of the element that will be contained in the array, such as int, float,
or char etc. Variable-name specifies the name of array such as height, group and name. The
size indicates the maximum number of elements that can be stored inside the array. C
programming language also treats character strings simply as arrays of characters.

Now declare an array for five elements
intnumber[5];

Then the computer reserves five storage locations as the size of the array as shown below —

)

Reserved Space Storing Values after

Initailization
HWum ber[0] 35 Mum ber[a]
Mum ber[1] 20 Mum ber[l]
Mumber[2] 40 Mum ber[2]
Number[3] 5? Num ber|3]
Mum ber[4] 19 Mumber4]

Initialization of Single or One Dimentional Array: After an array is declared, it's elements
must be initialized. In C programming an array can be initialized at either of the following
stages:

- Atcompile time

- Atruntime

Compile Time initialization: Array can be initialized when it is declared. The general form
of'initialization of array is:
type array-name[size] = {listof values };

The values in the list are separated by commas. For example
intnumber[3]={0,5,4 };

The above statement will declare the variable “number”as an array of size 3 and will assign
the values to each element. If the number of values in the list are less than the number of
elements, then only that many elements will be initialized. The remaining elements values
will be setto zero automatically.

Remember, if we have more initializers than the declared size, the compiler will produce an
error.

Run time Initialization: An array can also be explicitly initialized at run time. For example
consider the following segment of a C program.
for(i=0;i<10;i++)
{
scanf(" %d ", &x[i]);

}
Above example will initialize array elements with the values entered through the keyboard.
In the run time initialization of the arrays, looping statements are almost compulsory.
Looping statements are used to initialize the values of the arrays one by one by using
assignment operator or through the keyboard by the user.

Sample One Dimensional Array Program:

/* Simple C program to store the elements in the array and to print them from the
array */

(6)

#include<stdio.h>
#include<conio.h>
void main()

{
intarray[5],i;
printf("Enter 5 numbers to store them in array \n");

for(i=0;i<5;i++)

scanf("%d",&array[i]);

printf("Element in the array are - \n \n");
for(i=0;1<5;i++)

{
printf("Element stored ata[%d] = %d \n",i,array[i]);

getch();

}
Input— Enter 5 numbers to store them inarray —23 45 32 25 45

Output— Element in the array are —
Element stored ata[0]-23
Element stored ata[1]-45
Element stored ata[2]-32
Element stored ata[3]-25
Element stored ata[4]-45

Multi Dimensional Array:

Array of an array known as multidimensional array. The general form of a multidimensional
array declaration —

type name[sizel |[size2]...[sizeN];
The simplest form of multidimensional array is the two-dimensional array. Example
intx[3][4];

Here, x is a two-dimensional (2d) array and can hold 12 elements. You can think the array as
table with 3 row and each row has 4 column.

(7

Column Column |Column Column
1 2 3 4

Row 1 | x[e][e] | x[@][1] | x[@][2] | x[@][3]

ROW 2| x[1](e] | x[1][2] | x[2][2] | x[1][3]

ROW 3| x[2][e] | x[2][1] | =x[2][2] | x[2][3]

Initialization of Two Dimensional(2D)Array: Like the one dimensional array, 2D arrays
canbe initialized in two ways; the compile time initialization and the run time initialization.

Compile Time initialization — We can initialize the elements of the 2D array in the same
way as the ordinary variables are declared. The best form to initialize 2D array is by using the
matrix form. Syntax isasbelow—

inttable[2][3]={
{0,2,5}

{1,3,0}

}5

Run Time initialization — As in the initialization of 1D array we used the looping statements
to set the values of the array one by one. In the similar way 2D array are initialized by using
the looping structure. To initialize the 2D array by this way, the nested loop structure will be
used; outer for loop for the rows (first sub-script) and the inner for loop for the columns

(second sub-script) of the 2D array. Below is the looping section to initialize the 2D array by
using the run time initialization method —

for(i=0;i<3;i++)
for(j=0;j<3:j++)
{

scanf("%d",&arl[i][j]);

}
}

Sample 2D array Program:
/* Sample 2-D array C program */

#include<stdio.h>

#include<conio.h>
void main()

®)

¥
Output—
1 2
4 5
7 8

Address Calculation in Single (One) Dimentional Array:

intarray[3][3].1,j,count=0;

/* Run time Initialization */
for(i=1;i<=3;i++)

{
for(j=1;j<=3;j++)
count++;
array[i][j]=count;
printf("%d\t",array[i][j]);
printf("\n");
}
getch();
3
6
9

Actual Address of the 1=
element of the array is known as

Base Address (B)
Here it is 1100

!

Memory space acquired by every
element in the Array is called
Width (W)

Here it is 4 bytes

——

Actual Address
B tha Bia 1100 | 1104 1108 | 1112 1116 1120
Elements 15 11 | 44 | 93 | 20
Address with respect to
the Array (Subscript) 0 2 3 . 5

1

Lower Limit/Bound
of Subscript (LB)

©)

Array of an element of an array say “A[1]”is calculated using the following formula:

Addressof A[1]=B+W*(I-LB)

Where,

B=Baseaddress

W =Storage Size of one element stored in the array (in byte)

I=Subscript of element whose address is to be calculate

LB =Lower limit/ Lower Bound of subscript, if not specified assume 0 (zero)

Example:
Given the base address of an array B[1300.....1900] as 1020 and size of each element is 2
bytes in the memory. Find the address of B[1700].

Solution:

The given values are: B=1020,LB=1300, W=2,1=1700
Addressof A[T]=B+W*(I-LB)
=1020+2*(1700—-1300)

=1020+2*400

=1020+800

=1820[Ans]

Address Calculation in Multi (Two) Dimensional Array:

While storing the elements of a 2-D array in memory, these allocations are contiguous
memory locations. Therefore, a 2-D array must be linearized their storage. There are two
alternatives to achieve linearization: Row-Major and Column-Major.

Calumn Index

A
r Al
0 1 2 3
o| 8 6 5 4
S 2 1 9 7
&
2| 3 6 4 2

Two-Dimensional Array

Row-Major (Row Wise Arrangement)

Row 0 Row 1 Row 2

Column-Major [Column Wise Arrangement)

(10)

Address of an element of any array say “A[I][J]” can be calculated by two types as given
below:

(a) Row Major System

(b) Column Major System

Row Major System:
The address of a location in Row Major System is calculated using the following formula:
Addressof A[1][J]=B+W*[N*(I-Lr)+(J-Lc)]

Column Major System:
The address of a location in Column Major System is calculated using the following formula:
Address of A[1][J] Column Major Wise=B+W *[(I-Lr)+M* (J—Lc)]

Where,

B=Baseaddress

I=Row subscript of element whose address is to be calculate

J=Column subscript of element whose address is to be calculate

W = Storage Size of one element stored in the array (in byte)

Lr=Lower limit of row/start row index of matrix, ifnot given assume 0 (zero)
Lc=Lower limit of column/start column index of matrix, if not given assume 0 (zero)
M =Number of row of the given matrix

N=Number of column of the given matrix

Note: Usually number of rows and columns of a matrix are given (like A[20][30] or
A[40][60]) but if it is given as A[Lr- ————Ur, Le- ———— Uc]. In this case number of rows
and columns are calculated using the following methods:

Number of rows (M) will be calculated as=(Ur—Lr) + 1

Number of columns (N) will be calculated as=(Uc—Lc)+ 1

And rest of the process will remain same as per requirement (Row Major Wise or Column
Major Wise).

Examples:

An array X [-15.......... 10, 15........o..l. 40] requires one byte of storage. If beginning
location is 1500 determine the location of X [15][20].

Solution:

As you see here the number of rows and columns are not given in the question. So they are
calculated as:

Number orrows say M=(Ur—Lr)+1=[10—(-15)]+1=26

Number or columns say N=(Uc—Lc)+1=[40—-15)]+1=26

(1) Column Major Wise Calculation of above equation

The given values are: B=1500, W=1byte,[=15,]=20,Lr=-15,Lc=15,M=26

Addressof A[T][J]=B+W*[(I-Lr)+M*(J-Lc)]
=1500+1* [(15—(-15)) +26 * (20— 15)] = 1500+ 1 * [30 + 26 * 5] = 1500 + 1 * [160]

(11)

=1660[Ans]
(i) Row Major Wise Calculation of above equation
The given values are: B=1500, W=1byte,[=15,]=20,Lr=-15,Lc=15,N=26

Addressof A[I][J]=B+W*[N*(I-Lr)+(J—Lc)]

=1500+1*[26* (15—(-15)))+(20—15)]=1500+1 *[26 * 30+ 5]=1500+1 *[780+ 5] =
1500 +785

=2285[Ans]

Basic Operations on Array: Follwing operations can be performed on array
(a) Traverse —access all the array elements one by one.
(b) Insertion —Adds an element at the given index.
(c) Deletion—Deletes an element at the given index.
(d) Search— Searches an element using the given index or by the value.
(e) Update —Updates an element at the given index.

Traverse: Traversing means accessing the each and every element of array exactly once.
Following is the algorithm for traversing a linear array

Here A is a linear array with lower bound LB and upper bound UB. This algorithm traverses
array A and applies the operation PROCESS to each element of the array.
1. RepeatForI=LBto UB
2. Apply PROCESStoA[l]
[End of For Loop]
3. Exit

Insertion: Insert operation is to insert one or more data elements into an array. Based on the
requirement, a new element can be added at the beginning, end, or any given index of array.
Following is the algorithm for Insertion an element in to a linear array.

Algorithm: Let LAbe a Linear Array (unordered) with N elements and K is a positive integer
such that K<=N. Following is the algorithm where ITEM is inserted into the Kth position of
LA-

1. Start
2.Set]J=N
3.SetN=N+1

4. Repeat steps 5 and 6 while] >=K
5.SetLA[J+1]1=LA[J]
6.SetJ=]J-1

7.SetLA[K]=ITEM

8. Stop

C Program for Insertion:
#include <stdio.h>

main() {

(12)

int LA[]={1,3,5,7,8};
intitem=10,k=3,n=35;
inti=0,j=n;

printf("The original array elements are :\n");

for(i=0; i<n; i++) {
printf("LA[%d]=%d\n", 1, LA[i]);
H

n=n+1;

while(j>=k) {
LA[j+11=LA[j;
}j:j-l;

LA[k]=item;
printf("The array elements after insertion :\n");

for(i=0;i<n;i++) {
printf("LA[%d]=%d\n", 1, LA[i]);
b
}

When we compile and execute the above program, it produces the following result—

The original array elements are :
LA[0]=1

The array elements after insertion :
LA[0]=1

LA[1]=3

LA[2]=5

LA[3]=10

LA[4]=7

LA[5]=8

Deletion: Deletion refers to removing an existing element from the array and re-organizing
all elements of an array. Following is the algorithm for Deletion an element from a linear

array.

Consider LA is a linear array with N elements and K is a positive integer such that K<=N.

(13)

Following is the algorithm to delete an element available at the Kth position of LA.
1. Start

2.SetJ=K

3. Repeat steps 4 and 5 while J<N

4.SetLA[J-1]=LA[J]

5.SetJ=J+1
6.SetN=N-1
7. Stop

C Program for Deletion:
#include <stdio.h>

main() {
int LA[]={1,3,5,7,8};
intk=3,n=5;
inti, j;

printf("The original array elements are :\n");

for(i=0; i<n;i++) {
printf("LA[%d]=%d\n", i, LA[i]);

§

=k

while(j<n) {
LAJ[j-1]=LA[j];
i=ith

}

n=n-1;

printf("The array elements after deletion :\n");

for(i=0;i<n;i++) {
printf("LA[%d]=%d\n", 1, LA[i]);
H
}

When we compile and execute the above program, it produces the following result —
Output

The original array elements are :
LA[0]=1

LA[1]=3

LA[2]=5

LA[3]=7

LA[4]=8

The array elements after deletion :

(14)

Search: Searching refers the finding out an element using the given index or by the value.
There are two types of searching in linear array

1.Linear Search

2.Binary Search

Linear Search:

A linear search is the basic and simple search algorithm. A linear search searches an element
or value from an array till the desired element or value is not found. It searches in a sequence
order. It compares the element with all the other elements given in the list and if the element is
matched it returns the value index else it return - 1. Linear Search is applied on the unsorted or
unordered list when there are fewer elements in a list.

Consider LA is a linear array with N elements and K is a positive integer such that K<=N.
Following is the algorithm to find an element with a value of ITEM using sequential search

1. Start

2.SetJ=0

3.Repeat steps 4 and 5 while J<N

4.IF LA[J]isequal ITEM THEN GOTO STEP 6

5.SetJ=J+1

6.PRINTJ,ITEM

7. Stop

C Program for Searching:

#include <stdio.h>

Void main() {
intLA[]={1,3,5,7,8};
intitem=5,n=5;
inti=0,j=0;

printf("The original array elements are :\n");

for(i=0;i<n;i++) {
printf("LA[%d]=%d\n", 1, LA[i]);
H

while(j<n){
if(LA[j]==item) {
break;
}

J=ith
}

(15)

printf("Found element %d at position %d\n", item, j+1);

}

When we compile and execute the above program, it produces the following result—
Output

The original array elements are:
LA[0]=1

LA[1]=3

LA[2]=5

LA[3]=7

LA[4]=8

Found element 5 at position 3

Binary Search:

Binary Search is applied on the sorted array or list. In binary search, we first compare the
value with the elements in the middle position of the array. If the value is matched, then we
return the value. If the value is less than the middle element, then it must lie in the lower half
of'the array and ifit's greater than the element then it must lie in the upper half of the array. We
repeat this procedure on the lower (or upper) half of the array. Binary Search is useful when
there are large numbers of elements in an array.

We basically ignore half of the elements just after one comparison.

Compare x with the middle element.

Ifx matches with middle element, we return the mid index.

Else If x is greater than the mid element, then x can only lie in right half subarray after the
mid element. So we recur for right half.

Else (x is smaller) recur for the left half.

C Prgram for Binary Search:
#include <stdio.h>
#include<conio.h>

#define MAX 20

// array of items on which linear search will be conducted.
intintArray[MAX]= {1,2,3,4,6,7,9,11,12,14,15,16,17,19,33,34,43,45,55,66} ;

void printline(int count) {
inti;

for(i=0;i<count-1;i++) {
printf("=");
H

printf("=\n");
H

(16)

int find(int data) {
int lowerBound =0;
intupperBound=MAX-1;
intmidPoint=-1;
int comparisons =0;
intindex=-1;

while(lowerBound <=upperBound) {
printf("Comparison %d\n" , (comparisons +1));
printf("lowerBound : %d, intArray[%d] = %d\n",lowerBound,lowerBound,
intArray[lowerBound]);
printf("upperBound : %d, intArray[%d] = %d\n" ,upperBound,upperBound,
intArray[upperBound]);
comparisons++;

// compute the mid point
//midPoint = (lowerBound +upperBound)/ 2;
midPoint=lowerBound + (upperBound - lowerBound) / 2;

// data found
if(intArray[midPoint] == data) {
index =midPoint;
break;
telse {
//if data is larger
if(intArray[midPoint] < data) {
// datais inupper half
lowerBound =midPoint+ 1;

// datais smaller
else {
// datais in lower half
upperBound =midPoint-1;
!
}

printf("Total comparisons made: %d" , comparisons);
return index;

}

void display() {
inti;
printf("[");
//navigate through all items
for(i=0;i<MAX;i++) {
printf("%d ", intArray[i]);
}

(17

printf("J\n");

main() {
printf("Input Array: ");
display();
printline(50);

//find location of 1
int location=find(55);

// if element was found
if(location !=-1)
printf("nElement found at location: %d" ,(location+1));
else
printf("nElement not found.");
}

If we compile and run the above program then it would produce following result —
Output

InputArray:[123467911121415161719333443455566]

Comparison 1

lowerBound : 0, intArray[0] =1
upperBound : 19, intArray[19]=66
Comparison 2

lowerBound : 10, intArray[10]=15
upperBound : 19, intArray[19]=66
Comparison 3

lowerBound : 15, intArray[15]=34
upperBound : 19, intArray[19]=66
Comparison 4

lowerBound : 18, intArray[18]=55
upperBound : 19, intArray[19]=66
Total comparisons made: 4
Element found at location: 19

Update: Update operation refers to updating an existing element from the array at given
index.

Consider LA is a linear array with N elements and K is a positive integer such that K<=N.
Following is the algorithm to update an element available at the Kth position of LA.

1. Start

2.SetLA[K-1]=ITEM

3. Stop

C Program for Updation:

(18)

#include <stdio.h>

#include<conio.h>

main() {
intLA[]={1,3,5,7,8};
intk=3,n=5,item=10;
inti,j;

printf("The original array elements are :\n");

for(i=0; i<n; i++) {
printf("LA[%d]=%d\n", 1, LA[i]);
H

LA[k-1]=item;
printf("The array elements after updation :\n");

for(i=0; i<n; i++) {
printf("LA[%d]=%d\n", 1, LA[i]);
H
}

When we compile and execute the above program, it produces the following result—
Output

The original array elements are :
LA[0]=1

LA[1]=3

LA[2]=5

LA[3]=7

LA[4]=8

The array elements after updation :
LA[0]=1

LA[1]=3

LA[2]=10

LA[3]=7

LA[4]=8

Character String in C: Strings are actually one-dimensional array of characters terminated
by anull character "\0'. Thus a null-terminated string contains the characters that comprise the
string followed by a null.

The following declaration and initialization create a string consisting of the word "Hello". To
hold the null character at the end of the array, the size of the character array containing the

string is one more than the number of characters in the word "Hello."

char greeting[6]= {'H','e","l','l",'0',"\0'};

(19)

Ifyou follow the rule of array initialization then you can write the above statement as follows

char greeting[]="Hello";

Following is the memory presentation of the above defined string in C/C++—

Index o | 2 3 4 5
Variable H e | | o \O
Address 023451 | 023452 | momess | oaase | oxzzass | oxessss

Actually, you do not place the null character at the end of a string constant. The C compiler
automatically places the "\0' at the end of the string when it initializes the array. Let us try to
print the above mentioned string —

#include <stdio.h>
intmain () {

char greeting[6]= {'H','e","l','",'0',"\0'};
printf("Greeting message: %s\n", greeting);
return 0;
}
When the above code is compiled and executed, it produces the following result —
Greeting message: Hello
C supports a wide range of functions that manipulate null-terminated strings —

S.N. [Function Purpose

1 strepy(sl, s2); | Copies string s2 into string s1.

2 streat(s1, s2); | Concatenates string s2 onto the end of string s1.

3 stien(s1); Returns the length of string s1.

4 stemp(s1, s2);[Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.
5 strchr(sl, ch); | Returns a pointer to the first occurrence of character ch in string sl.

6 strstr(sl, s2); | Returns a pointer to the first occurrence of string s2 in string sl.

The following example uses some of the above-mentioned functions —
#include <stdio.h>

#include<conio.h>

#include <string.h>

intmain () {

(20)

charstr1[12]="Hello";
char str2[12]="World";
charstr3[12];

int len;

/* copy strl into str3 */
strepy(str3, strl);
printf("strepy(str3, strl) : %s\n", str3);

/* concatenates strl and str2 */
strcat(strl, str2);
printf("strcat(strl, str2): %s\n", strl);

/* total length of str1 after concatenation */
len=strlen(strl);
printf("strlen(strl): %d\n",len);

return 0;

}

When the above code is compiled and executed, it produces the following result —
strepy(str3, strl) : Hello

strcat(strl, str2): HelloWorld

strlen(strl): 10

Static and Dynamic Memory Allocation:Dynamic memory allocation is at runtime. Static
memory allocation is before run time, but the values of variables may be change at run time.

Static memory allocation saves running time, but can't be possible in all cases.
Dynamic memory allocation stores it's memory on heap, and the static memory allocation
stores it's data in the “data segment” of the memory.

#include <stdio.h>

#include <stdlib.h>

int main ()

{

//static allocation example using integer array.

int arr[5]; /* static memory allocation memory allocated before execution, the size of array
should be initialized*/

for (intj=0;j<5;j++)//Waste of memory can be occured.

printf("Enter number for Static Array %d: " j);
scanf("%d", &arr[j]);

}
printf("nThe Static Array is: \n");
for (intj=0;j<S5;j++)

{
printf("The value of %d is %d\n", j, arr[j]);

21

}

//dynamic allocation example using integer array
int* array;
intn, 1;
printf("n \n\nDynamic Allocation\n");
printf("Enter the number of elements: ");
scanf("%d", &n);
array = (int*) malloc(n*sizeof(int)); //memory is allocated during the execution of the
program
//Less Memory space required.
for (i=0; i<n; i++) {
printf("Enter number %d: ", 1);
scanf("%d", &array[i]);

}

printf("\nThe Dynamic Array is: \n");

for (1i=0; i<n; i++) {
printf("The value of %d is %d\n", i, array[i]);

}
printf("Size=%d\n", 1);

system("PAUSE");
return 0;

}

Memory Allocation Functions:
Programming language provides several functions for memory allocation and management.
These functions can be found in the <stdlib.h>header file.

S.No. |Function & Description

1 void *calloc(int num, int size);

This function allocates an array of num elements each of which size in
bytes .

2 void free(void *address);

This function releases a block of memory specified by address.

3 void *malloc(int num);

This function allocates an array of num bytes and leave them
uninitialized.

4 void *realloc(void *address, int newsize);

This function re-allocates memory extending it upto newsize.

(22)

Following are examples of dynamic memory allocation using functions:
1.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main() {

charname[100];
char *description;

strcpy(name, "Zara Ali");

/* allocate memory dynamically */
description=malloc(200 * sizeof(char));

if(description==NULL) {
fprintf(stderr, "Error - unable to allocate required memory\n");

}

else {
strepy(description, "Zaraali a DPS student in class 10th");

}

printf("Name = %s'\n", name);
printf("Description: %s\n", description);

}

When the above code is compiled and executed, it produces the following result.

Name=ZaraAli
Description: Zara alia DPS student in class 10th

Same program can be written using calloc(); only thing is you need to replace malloc with
calloc as follows —

calloc(200, sizeof(char));

So you have complete control and you can pass any size value while allocating memory,
unlike arrays where once the size defined, you cannot change it.

2.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

intmain() {

charname[100];

(23)

char *description;
strecpy(name, "Angad");

/* allocate memory dynamically */
description=malloc(30 * sizeof(char));

if(description==NULL) {
fprintf(stderr, "Error - unable to allocate required memory\n");

}

else {
strepy(description, "Angad is a cute Boy.");

}

/* suppose you want to store bigger description */
description =realloc(description, 100 * sizeof(char));

if(description==NULL) {
fprintf(stderr, "Error - unable to allocate required memory\n");

}

else {
strcat(description, "He is in 1" Class");

}

printf("Name = %s\n", name);
printf("Description: %s\n", description);

/* release memory using free() function */
free(description);

}

When the above code is compiled and executed, it produces the following result.

Name=Angad
Description: Angad is a cute Boy.He isin 1" Class.

Pointers in 'C': A pointer is a variable whose value is the address of another variable, i.e.,
direct address of the memory location. Like any variable or constant, you must declare a
pointer before using it to store any variable address. The general form of a pointer variable

declarationis —
type *var-name;

Here, type is the pointer's base type; it must be a valid C data type and var-name is the name of
the pointer variable. The asterisk * used to declare a pointer is the same asterisk used for

multiplication. Take a look at

int *ip; /*pointerto aninteger */
double *dp; /* pointer to a double */

24)

some of the valid pointer declarations —

float *fp; /* pointertoafloat*/
char *ch /*pointerto acharacter */

The actual data type of the value of all pointers, whether integer, float, character, or
otherwise, is the same, a long hexadecimal number that represents a memory address. The
only difference between pointers of different data types is the data type of the variable or
constant that the pointer points to.

The following example shows use of pointer variable —

#include <stdio.h>

intmain () {

int var=20; /*actual variable declaration */
int *ip; /* pointer variable declaration */

ip=&var; /* store address of var in pointer variable*/
printf(" Address of var variable: %x\n", &var);

/* address stored in pointer variable */
printf(" Address stored in ip variable: %x\n", ip);

/* access the value using the pointer */
printf("Value of *ip variable: %d\n", *ip);

return 0;

}

When the above code is compiled and executed, it produces the following result —

Address of var variable: bffd8b3c
Address stored in ip variable: bffd8b3c
Value of *ip variable: 20

NULL Pointers

It is always a good practice to assign a NULL value to a pointer variable in case you do not
have an exact address to be assigned. This is done at the time of variable declaration. A
pointer that is assigned NULL is called a null pointer.

The NULL pointer is a constant with a value of zero defined in several standard libraries.
Consider the following program —

#include <stdio.h>

intmain () {

(25)

int *ptr=NULL,;
printf("The value of ptris : %ox\n", ptr);

return 0;

}

When the above code is compiled and executed, it produces the following result —
The value of ptris 0
To check for anull pointer, you can use an 'if' statement as follows —

if(ptr) /* succeedsifpisnotnull */
if(Iptr) /*succeedsifpisnull */

How does recursion work?

void recurse() :

{ recursive
s ww waa call
recurse(); ——

}

int main()

{
recurse();

}

Recursion in 'C': Recursion is the process of repeating items in a self-similar way. In
programming languages, if a program allows you to call a function inside the same function,
thenitis called a recursive call of the function. Or in orher words when a function is calling to
itselfis known as recursive function.

Recursion works as follows:
void recurse()

{
recurse();

int main()

{

(26)

recurse();

Conditions for recursive function:

1.Every function must have a Base Criteria (Termination condition) and for that it should
not call to itself.

2. Whenever a function is calling to itself it must be closer to the Base Criteria.

Following are some examples of recursions-
(a) Fibonacci Series

(b) Binomial coefficient

(¢)GCD

(a) Fibonacci Series

Fibonacci series are the numbers in the following integer sequence
0,1,1,2,3,5,8,13,21,34,55,89....

the first two numbers in the Fibonacci sequence are 0 and 1, and each subsequent term is the
sum of the previous two terms. In mathematical terms, the Nth term of Fibonacci numbers is
defined by the recurrence relation:

fibonacci(N) =Nth term in fibonacci series
fibonacci(N) = fibonacci(N - 1)+ fibonacci(N - 2);
whereas, fibonacci(0) =0 and fibonacci(1)=1

Below program uses recursion to calculate Nth fibonacci number. To calculate Nth fibonacci
number it first calculate (N-1)th and (N-2)th fibonacci number and then add both to get Nth
fibonacci number.

For Example : fibonacci(4)=fibonacci(3) + fibonacci(2);

C program to print fibonacci series till Nth term using recursion

In below program, we first takes the number of terms of fibonacci series as input from user
using scanf function. We are using a user defined recursive function named 'fibonacci' which
takes an integer(N) as input and returns the Nth fibonacci number using recursion as
discussed above. The recursion will terminate when number of terms are less then 2 because
we know the first two terms of fibonacci series are 0 and 1.

#include <stdio.h>
#include <conio.h>

int fibonacci(int term);
intmain(){
int terms, counter;
printf("Enter number of terms in Fibonacci series: ");
scanf("%d", &terms);
/ &
Nth term= (N-1)th therm + (N-2)th term;

27

*/
printf("Fibonacci series till %d terms\n", terms);
for(counter =0; counter < terms; counter++) {
printf("%d", fibonacci(counter));
H
geteh();
return 0;
}
/ %
Function to calculate Nth Fibonacci number
fibonacci(N) =fibonacci(N - 1)+ fibonacci(N - 2);
*/
int fibonacci(int term){
/* Exit condition of recursion™®/
if(term <2)
return term;
return fibonacci(term - 1)+ fibonacci(term - 2);

}

Program Output

Enter number of terms in Fibonacci series: 9
Fibonacci series till 9 terms
01123581321

(b) Binomial Coefficient Program:
#include<stdio.h>

int fact(int);

void main()

{

intn,r,f;

printf("enter value forn & r\n");
scanf("%d%d",&n,&r);

if(n<r)

printf("invalid input");

else f=fact(n)/(fact(n-r)*fact(r));
printf("binomial coefficient=%d",f);

}

int fact(int x)

{

if(x>1)

return x*fact(x-1);
elsereturn 1;

J
(¢) GCD of Two numbers:
Input first number: 10

(28)

Input second number: 15
Output GCD: 5

Logic to find GCD using recursion

factorsof 2- €@ @ €© () @ (12
factors of 30- o o e o (10) (15) (30)

Common faf-!tm ﬂf 12 and 30

Euclidean algorithm to tind GCD:
Begin:
function ged(a, b)
If (b=0) then
returna
Endif
Else
return ged(b, amod b);
Endif
End function
End

Program to find GCD using recursion:

/**

* C program to find GCD (HCF) of two numbers using recursion
*/

#include <stdio.h>

/* Function declaration */
int gcd(inta, intb);

int main()

{
intnuml, num2, hef;
/* Reads two numbers from user */
printf("Enter any two numbers to find GCD: ");
scanf("%d%d", &num1, &num?2);

hef=ged(numl, num?2);

(29)

printf("GCD of %d and %d =%d\n", num1, num2, hcf);

return 0;

}

/ ok

* Recursive approach of euclidean algorithm to find GCD of two numbers
*/

intged(inta, intb)

if(b==0)
returna;

else
return gcd(b, a%b);

Output:

Enter any two numbers to find GCD: 12
30

GCDof12and30=6

Important Points

e Anarray is defined as finite ordered collection of homogenous data elements
which are stored in contiguous memory locations.

e While storing the elements of a 2-D array in memory, these are allocated
contiguous memory locations.

e Traversing means accessing the each and every element of array exactly
once.

e Apointerisavariable whose value is the address of another variable.

Exercise
Objective type questions.
Q1. In linear search algorithm worst case occurs when
a. The item is somewhere in the middle of the array
b. The item is not in the array at all
c. The item is the last element in the array
d. The item is the last element in the array or is not there at all
Q2. The complexity of linear search algorithm is
a. O(n) b. O(logn)
c. O(n2) d. O(nlogn)
Q3. Average case occur in linear search algorithm
a. When item is somewhere in the middle of the array
b. When item is not in the array at all

(30)

c. When item is the last element in the array
d. When item is the last element in the array or is not there at all
Q4. Finding the location of the element with a given value is:

a. Traversal b. Search
c. Sort d. None of above
Q5. Which of the following case does not exist in complexity theory
a. Bestcase b. Worst case
c. Average case d. Null case

Short answer type questions.
Q1. What is the time complexity of binary search ?
Q2. What do you mean by Array ?
Q3. What is string ?
Q4. What do you mean by pointer ?
Q5. What is dynamic memory allocation ?

Essay type questions.

Q1. Explain two Dimentional array with example ?
Q2. Explain Malloc function in detail ?

Q3. Which data structure is used to perform recursion ?
Q4. Why binary search is better then linear search ?
Q5. Explain character string ?

Answers
Ansl.d Ans2.d
Ans4.b Ans4d.d

€2))

Ans3.a

