Code No. 2018

Time: $2\frac{1}{2}$ Hours Cool-off time: 15 Minutes

Second Year – JUNE 2016 SAY / IMPROVEMENT

Part – III

MATHEMATICS (SCIENCE)

Maximum: 80 Scores

General Instructions to Candidates:

- There is a 'cool-off time' of 15 minutes in addition to the writing time of $2\frac{1}{2}$ hrs.
- You are not allowed to write your answers nor to discuss anything with others during the 'cool-off time'.
- Use the 'cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

നിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും. ഈ സമയത്ത് ചോദ്യങ്ങൾക്ക് ഉത്തരം എഴുതാനോ, മറ്റുളളവരുമായി ആശയവിനിമയം നടത്താനോ പാടില്ല.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരം എഴുതണം.
- ഒരു ചോദ്യനമ്പർ ഉത്തരമെഴുതാൻ തെരഞ്ഞെടുത്തു കഴിഞ്ഞാൽ ഉപചോദ്യങ്ങളും അതേ ചോദ്യനമ്പരിൽ നിന്ന് തന്നെ തെരഞ്ഞെടുക്കേണ്ടതാണ്.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

- 1. (a) If the matrix A is both symmetric and skew-symmetric, then A is a
 - (i) diagonal matrix
- (ii) zero matrix
- (iii) square matrix
- (iv) scalar matrix

(Score: 1)

(b) If $A = \begin{bmatrix} 1 & 3 \\ -2 & 4 \end{bmatrix}$, then show that $A^2 - 5A + 10I = 0$

(Scores: 3)

(c) Hence find A^{-1} .

(Scores: 2)

- 2. (a) The value of the determinant $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \end{vmatrix}$ i $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \end{vmatrix}$
 - (i) -4

(ii) 0

(iii) 1

(iv) 4

(Score : 1)

(b) Using matrix method, solve the system of

linear equations,

$$x + y + 2z = 4$$

$$2x - y + 3z = 9$$

$$3x - y - z = 2$$

(Scores: 4)

- 3. (a) If $f: R \to R$ and $g: R \to R$ defined by $f(x) = x^2$ and g(x) = x + 1, then gof (x) is
 - (i) $(x+1)^2$

(ii) $x^3 + 1$

(iii) $x^2 + 1$

(iv) x+1

(Score : 1)

- (b) Consider the function $f: N \to N$, given by $f(x) = x^3$. Show that the function f is injective but not surjective. (Scores: 2)
- (c) The given table shows an operation * on $A = \{p, q\}$

*	p	q
p	p	q
q	p	q

- (i) Is * a binary operation on A?
- (ii) Is * commutative? Give reason.

(Scores: 2)

·		(i) $\frac{\pi}{3}$	(ii) $\frac{-\pi}{3}$	
		(iii) $\frac{\pi}{4}$	(iv) $\frac{-\pi}{6}$	(Score: 1)
	(b)	Show that $tan^{-1}\frac{1}{2} + tan^{-1}$	$-1 \frac{2}{11} = \tan^{-1} \frac{3}{4}$	(Scores: 3)
	5. (a)	Find $\frac{dy}{dx}$, if $x = a \cos^2 \theta$,	$y = b \sin^2 \theta$.	. (Scores: 3)
	(b)	Find the second derivat	ive of the function	•
		$y = e^x \sin x$		(Scores: 3)
	6. (a)	The slope of the normal	1 to the curve, $y = x^3 - x^2$ at $(1, -1)$ is	${f S}$
		(i) 1	(ii) -1	
		(iii) 2	(iv) 0	(Score: 1)
	(b)	Find the intervals in we decreasing.	which the function $f(x) = 2x^3 - 24x$	+ 25 is increasing or (Scores: 4)
A		• ;	OR	
	(a)	The rate of change of th	ne area of a circle with respect to rad	lius r, when $r = 5$ cm
		(i) $25 \pi \text{cm}^2/\text{cm}$	(ii) 25 cm ² /cm	
		(iii) $10 \pi \text{cm}^2/\text{cm}$	(iv) 10 cm ² /cm	(Score: 1)
	(b)	Show that of all rectang	gles with a given area, the square has	s the least perimeter.
,	•			(Scores: 4)
	7. Find	the following:		
	(a)	$\int \cot x \log \sin x \mathrm{d}x$		(Scores: 2
	(b)	$\int \frac{1}{x^2 + 2x + 2} \mathrm{d}x$		(Scores: 2
	(c)	$\int x e^{9x} dx$		(Scores: 2
	2018		4	

The principal value of tan^{-1} ($-\sqrt{3}$) is

(b) If
$$\vec{a}$$
 and \vec{b} are any two vectors, then prove that $(\vec{a} \times \vec{b})^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} \end{vmatrix}$

(Scores: 2)

(c) Using vectors, show that the points

A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear.

(Scores: 2)

13. (a) The equation of the line which passes through the point (1, 2, 3) and parallel to the vector $3\hat{i} + 2\hat{j} - 2\hat{k}$ is

(i)
$$3\hat{i} + 2\hat{j} - 2\hat{k} + \lambda(\hat{i} + 2\hat{j} + 3\hat{k})$$

(ii)
$$2\dot{i} - 5\dot{k} + \lambda(3\dot{i} + 2\dot{j} - 2\dot{k})$$

(iii)
$$\hat{i} + 2\hat{j} + 3\hat{k} + \lambda(-2\hat{i} + 4\hat{j} - 2\hat{k})$$

(iv)
$$\hat{i} + 2\hat{j} + 3\hat{k} + \lambda(3\hat{i} + 2\hat{j} - 2\hat{k})$$

(Score: 1)

(b) Find the angle between the pair of lines

$$\overrightarrow{r} = 2\overrightarrow{i} - 5\overrightarrow{j} + \overrightarrow{k} + \lambda(3\overrightarrow{i} + 2\overrightarrow{j} + 6\overrightarrow{k}) \text{ and}$$

$$\overrightarrow{r} = 7\overrightarrow{i} - 6\overrightarrow{k} + \mu(\overrightarrow{i} + 2\overrightarrow{j} + 2\overrightarrow{k})$$

(Scores: 3)

- 14. (a) The distance of the plane x + y + z + 1 = 0 from the point (1, 1, 1) is
 - (i) 4 units

(ii) $\frac{1}{\sqrt{3}}$ units

(iii)
$$\frac{4}{\sqrt{3}}$$
 units

(iv) $\frac{1}{4\sqrt{3}}$ units

(Score: 1)

(b) Find the equation of the plane passing through (1, 0, -2) and perpendicular to each of the planes 2x + y - z = 2 and x - y - z = 3. (Scores: 3)

15. Consider the following L.P.P.

Maximise,

$$Z = 3x + 9y$$

Subject to the constraints

$$x + 3y \le 60$$

$$x + y \ge 10$$
.

$$x \le y$$

$$x \ge 0, y \ge 0$$

(a) Draw its feasible region.

(Scores: 3)

(b) Find the corner points of the feasible region.

(Scores: 3)

16. (a) If $P(A) = \frac{7}{13}$, $P(B) = \frac{9}{13}$ and $P(A \cap B) = \frac{4}{13}$ then P(A/B) is

 $(i) \frac{9}{4}$

(ii) $\frac{16}{13}$

(iii) $\frac{4}{9}$

 $(iv) \quad \frac{11}{13}$

(Score: 1)

(b) Probability of solving a specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, then

(i) Find the probability that the problem is solved.

(Scores: 2)

(ii) Find the probability that exactly one of them solves the problem.

(Scores: 2)

OR

A die is thrown 6 times. If getting an odd number is a success

(i) Find probability of success and failure

(Score : 1)

(ii) Find the probability of 5 success.

(Scores: 2)

(iii) Find the probability of atleast 5 successes.

(Scores: 2)

SECOND YEAR HIGHER SECONDARY SAY/IMP. EXAMINATION, JUNE 2016. (Finalised Scheme of Valuation)

Subject: Mathematics (Science)

Code No; 2018

Qn.No	Scoring Indicators	Split Score	Total Score	
	(a) (ii) Zero matrioc	1	1	
		1/2		
	b ² [-5 15]	1/2		
	(b) $A^2 = A \times A$ $A^2 = \begin{bmatrix} -5 & 15 \\ -16 & 10 \end{bmatrix}$ $A^2 - 5 + 10 I = \begin{bmatrix} -5 & 15 \\ -10 & 10 \end{bmatrix} - \begin{bmatrix} 5 & 15 \\ -10 & 20 \end{bmatrix} + \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$	I	3	
	$= \begin{bmatrix} -10 & 0 \\ 0 & -10 \end{bmatrix} + \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$	1		
	$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$	1		
	(c) multiplying by F' with the given matrix			
	equation We get, PA-5AA+10IA=0 AAA'-5I+10A=0	1/2		
	A - 51 + 10A = 0 $10A' = 51 - A$	1/2	2	
	$\vec{A}' = \frac{51 - A}{10}$ $\vec{A}' = \frac{1}{10} \begin{bmatrix} 4 & -3 \\ 2 & 1 \end{bmatrix}$	1		
	Remark! - Any other method give 1/2 Store			

10 Th

Qn.No		Scoring Indicators	Split Score	Total Score
2	(a) (b)	(iv) 4 Express in the matrix form $AX=B$ where $A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & -1 & 3 \\ 3 & -1 & -1 \end{bmatrix}$ $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ $B = \begin{bmatrix} 4 \\ 9 \\ z \end{bmatrix}$	1 1/2 1/2	1
		$ A = \begin{vmatrix} 1 & 1 & 2 \\ 2 & -1 & 3 \\ 3 & -1 & -1 \end{vmatrix} = 17$ $ A = \begin{vmatrix} 4 & -1 & 5 \\ 11 & -7 & 1 \\ 1 & 4 & -3 \end{vmatrix}$	1	4
		$X = A^{-1}B$ = $\frac{1}{17} \begin{bmatrix} 17 \\ -17 \\ 34 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ $\Rightarrow 2C = 1, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	1/2	
		(iii) 22+1 f: N=N, quien by fcn = x	1	1
		f: N \rightarrow N, given by $f(x) = x^2$ for x , $y \in N$ $f(x) = f(y)$ $\Rightarrow x^2 = y^3$ $\Rightarrow x = y$ if is injective	l	2
		Now 2 EN, But there does not exists any element so in domain N such that four 2=2	1	
		Remark Any other method give bull score		

Qn.No		Scoring Indicators	Split Score	Total Score
	(c)	(i) Yes (ii) No, because P*9=9 9*P=P >> P*9 + 9*P 1. * is not Commutative	1	2
4	(a)	$tan'x + tan'y = tan' \left(\frac{x+y}{1-xy}\right)$	1	1
		$tan'x + tan'y = tan\left(\frac{x+y}{1-xy}\right)$ $tan' \frac{1}{2} + tan' \frac{2}{11} = tan'\left(\frac{1}{2} + \frac{2}{11}\right)$ $= tan'\left(\frac{15}{20}\right) = tan'\left(\frac{3}{4}\right)$	1	3
5	(a)	$\frac{dx}{d\omega} = -2\alpha \cos \omega \cdot \sin \omega$ $\frac{dy}{d\omega} = 2b \sin \omega \cos \omega$ $\frac{dy}{d\alpha} = \frac{dy/d\omega}{d\alpha \cdot d\alpha}$ $= \frac{2b \sin \omega \cos \omega}{-2a \cos \omega \sin \omega}$	1 1 1/2	3
		$y = e^{x} \sin x$ $\frac{dy}{dx} = e^{x} \cdot \cos x + \sin x \cdot e^{x} = e^{x} \cdot \cos x + \sin x$ $\frac{d^{2}y}{dx^{2}} = e^{x} \left[-\sin x + \cos x + \cos x + \sin x \right] e^{x}$ $\frac{d^{2}y}{dx^{2}} = e^{x} \left[-\sin x + \cos x + \cos x + \sin x \right] = e^{x} \left[-\sin x + \cos x + \cos x + \sin x \right]$ $= e^{x} \left[2\cos x \right] = e^{x} \cos x$	ا ع	3

Remark formula give 1 score (5

A

6

2 0 TO 1

Qn.No		Scoring Indicators	Split Score	Total Score	
6	(a)	(ii) -1 $f(x) = 2x^{3} - 24x + 25$	1	1	
	وق	$f(x) = 6x^2 - 24$	1.		1
		f'(x) = 0	1/2		,
		$\chi^2 = 4 \implies \chi = \pm 2$	1/2	4	
		The intervals are (00,-2)(2,2),(2,0)			
		fine is decreasing in (-2,2) U(2,00)	1/2		
			/2		
	(0)	OR (iii) lot cm²/cm		1	
	(b)	(11) 10 / (10) (11)			
	رق	y			
		α Area $A = xy$	1/2		
		$\therefore \beta = \frac{\beta}{2c}$			
		Perimeter P=20c+24	1/2		c
		$P = 2x + 2\frac{A}{x}$			
		d2 22	1/2		
		$\frac{dP}{dz} = 0$	1/2		
		$\frac{dP}{dz} = 0$ $\Rightarrow 2c^2 = A : 2c = \pm \sqrt{A}$	1/2 1/2	-	
		$\frac{dP}{dx^2} = \frac{4A}{x^3}$	1/2		

- 17 °

Qn.No		Scoring Indicators	Split Score	Total Score
	at $x = \sqrt{1}$	is the	1/2	4
	least who	nimeter of the rectanger of the rectanger of the rectanger it is a square	/2	
7 (i) Scoter log	sime doc		
	Let log:	Bink = E	1/2	
		$dx = \frac{dt}{dx}$	1/2_	2
	Scota log	= $\cot x dx$ $= \cot x dx$ $= \int t dt = \int \int \frac{1}{2} dx$	2 2 1 2 1	
	Remark Any other	method give full &	we	
P	1 2 + 2x+	$dx = \frac{1}{(x+1)^2 + 1} dx$	1	2
	J	$cinc = \int \frac{1}{(x+1)^2 + 1^2} dx$ $= 6an(x+1) + 0$	- 1	
	Remark			
	formul	a give 1 Score		

Qn.No		Scoring Indicators	Split Score	Total Score	
	(C)	$\int x \cdot e^{gx} dx = x \cdot e^{gx} - \int 1 \cdot e^{gx} dx$ $= x \cdot e^{gx} - \int 1 \cdot e^{gx} dx$ $= x \cdot e^{gx} - \int 1 \cdot e^{gx} dx$ $= \frac{1}{9} e^{gx} + C$ $= \frac{1}{9} e^{gx} (9x - 1) + C$ Remark Formula give 1/2 8core	1	2	(
8		(iv) Not defined dy + 2y tanz = Sinz	1	1	
		Ay+ py = Q where p= 2tanx, Q=Sinx I.F= e Catanada	1 1/2 1/2		(
		= Seex = Seex General Solution y(IF) = SQ(IF) dx+C	1	5	(
		y seese = Sinz cosudn+C ysen = Seese+C.	1		
	f	Out $y = 0$ and $x = \frac{\pi}{3}$, Thun $c = -2$ $y = \cos x - 2\cos^2 x$	1		
,	5)	i) 0 $\vec{a} \times \vec{b} = 5\hat{i} + \hat{j} - 4\hat{k}$ Frea of parallelogram = $ \vec{a} \times \vec{b} $	1 1 1/2	2	(
		12×13/= 142	y	a	

SECOND YEAR HIGHER SECONDARY SAY/IMP. EXAMINATION, JUNE 2016. (Finalised Scheme of Valuation)

Subject: Computer Science

Code No: 2019

Qn.No	Scoring Indicators	Split Score	Total Score	
10	Let $I = \int_{0}^{T} \frac{x}{1+\sin x} dx \longrightarrow 0$ Also $I = \int_{0}^{T} \frac{T - x}{1+\sin(T - x)} = \int_{0}^{T} \frac{T - x}{1+\sin x} dx \longrightarrow 0$	1		
	$O+2 \qquad 2I = \int_{0}^{II} \frac{1}{1+\sin n} dx = \pi \int_{0}^{II} \frac{1}{1+\sin n}$	1		(
	$2I = \pi \int_{0}^{T} \frac{(1-\sin n)}{(1+\sin n)(1-\sin n)} dn = \pi \int_{0}^{T} \frac{1-\sin n}{1-\sin^{2}n} dn$ $= \pi \int_{0}^{T} \sec^{2}n dn - \pi \int_{0}^{T} \sec^{2}n \tan n dn$	1	4	
	21 = To Cann - To Seen To	1		
	$2I = 2\pi$ $I = \pi$			
	Remark write of fordar = of canada give one score			
	$\int_{a}^{b} f(x) dx = (b-a) \lim_{n\to\infty} \int_{a}^{b} f(a) + f(a+b) + + f(a+b-1)R$ $\int_{a}^{b} e^{x} dx = (a-b) \lim_{n\to\infty} \int_{a}^{b} f(a) + f(b) + f(a+b) + + f(n-1)R$	1		
	52 ex dx = (2-0) lm _ 1 [f(0)+f(b)+f(2h)+]	1/2_		

Qn.No	Scoring Indicators	Split Score	Total Score
	= 2 lim $\int_{n\to\infty} \int_{n\to\infty} \int_{n$	1 1/2_	4
11 0	a)(iii) 2	1	1
	41=49N.	I	ī
	$5\ell = 4ay \rightarrow 0$ $y^2 = 4ax \rightarrow 2$ from 0 $y = \frac{x^2}{4a}$ $2 \Rightarrow \frac{x^4}{16a^2} = 4ax$	1	

=> x=0 or x=49

Qn.No	Scoring Indicators	Split Score	Total Score	
	when x=0, y=0 when x=49, y=40 Required area = Area under the region OAB from x=0 to n=49 — Area under	1		
	the region ODB $= \int_{0}^{49} 2 \sqrt{3} \sqrt{3} 2 dx - \int_{0}^{22} \frac{2^{2}}{4a} dx$ $= \int_{0}^{3} 2 \sqrt{3} \sqrt{3} 2 \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3}$	1	5	
	$= \frac{4}{3} \sqrt{3} \left[(4a)^{3/2} - 0 \right] - \frac{1}{12} \left[(4a)^3 - 0 \right]$ $= \frac{4}{3} \sqrt{3} \cdot 8 \cdot 8 \cdot 8 \cdot 2 - \frac{1}{124} \cdot 64a^3$	1/2		
2 (a)	$= \frac{16}{3}a^{2} \text{ square unit}$ (iv) $2(\vec{a} \times \vec{b})$	1/2	.1	
(b)	$(\vec{a} \times \vec{b})^2 = (\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) = \vec{a} \cdot \vec{b} \times \vec{b} \cdot \vec{a}$ $= \vec{a} \cdot \vec{b} - \vec{a} \cdot \vec{b} \cdot (\vec{a} \times \vec{b}) = \vec{a} \cdot \vec{b} \times \vec{b} \cdot \vec{a}$ $= (\vec{a} \cdot \vec{a}) \cdot (\vec{b} \cdot \vec{b}) - (\vec{a} \cdot \vec{b})^2$ $= (\vec{a} \cdot \vec{a}) \cdot (\vec{b} \cdot \vec{b}) - (\vec{a} \cdot \vec{b})^2$	1/2	2	
	= (\vartheta \vartheta \va	1/2	٩	(
(2)	AC = 21+8] -8k = 2 (1+h]-4k) AC = 2 AB	42 42 42	2	

2 2 M

Qn.No	Scoring Indicators	Split	Total
13	(a) (iv) $2+3?+3?+3?+3?-3?$ (b) $636 = \begin{vmatrix} \overrightarrow{b1} \cdot \overrightarrow{b2} \\ \overrightarrow{b7} $	Score	Score 1
	(a) (iii) $\frac{4}{\sqrt{3}}$ units (b) Eqn. of the plane passing through (1,0) is $a(x-1)+b(y-0)+c(z+2)=0$	1	I
	Plane (1) is jet to the given planes => 2a+b-c=0>0 a-b-c=0>0	1/2_	
	Solving @ and @ we get $\frac{a}{-2} = \frac{b}{1} = \frac{c}{-3} = k$ $a = -2k, b = k, c = -3k$	1/2	3
	(0 =) - 2x + y - 3z - 4 = 0 $= > 2x - y + 3z + 4 = 0$ Remark	1/2	

-

11/12)	4.4
(12)	

Qn.No	Scoring Indicators	Split Score	Total Score	
5	(a) (b) (c) (c) (c) (c) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	3)		
	D(5,5) Remark To correct fesible region decline /2 score for each line give on Score B Any correct three corner points give full score	3		

3

Qn.No	Scoring Indicators	Split Score	Total Score	
16	(a) (iii) 4	1	1	
	(b)(i) P(A)=1/2 P(B)=1/3	1/2		
	P(A') = 1/2 $P(B') = 2/3$	1/2		
	P[the problem is solved]		2	
	= 1- P[none of there solve the problem]	1/2	7	
	=1-P[AOB]=1-P(A).P(B)	1/2		(5
	$=1-(\frac{1}{2}\times\frac{2}{3})=1-\frac{1}{3}=\frac{2}{3}$			
	(ii) P(exactly one of them solved the Problem)			
	= P(AOB LIBOB) = P(AOB)+P(AOB)	1/2		
	$= P(B) \cdot P(B) + P(A) \cdot P(B)$	1/2	2	C
	$=\frac{1}{2}, \frac{1}{3} + \frac{1}{2}, \frac{2}{3}$			
	$=\frac{1}{6}+\frac{2}{6}$	-1		
	OR - 1			
	(1) P(Success) = 3 = 1 P(faulure)=1-1/2=1/2	1/2+1/2	1	
	(ji) P(5 Success)= n(x p'9) = 32	1	2	(E
	() ()	1/2		
	(iii) P(at least 5 success)=P(5 success)+ = $6(\frac{1}{2})(\frac{1}{2}) + 1(\frac{1}{2})^6 = \frac{3}{32} + \frac{1}{64} = \frac{7}{64}$	1/2	2	

7