DPP - Daily Practice Problems

Name :	Date :
Start Time :	End Time :
CHEWIS SYLLABUS: Analytical Chemistry: Preliminary Tests Wettests	ISTRY 60 sfor acid radicals, Wet tests for basic radicals, Volumetric Analysis.
Max. Marks : 120	Time: 60 min.
 bubble in the Response Grid provided on each page. You have to evaluate your Response Grids yourself with the health correct answer will get you 4 marks and 1 mark shall be diffused if no bubble is filled. Keep a timer in front of you and stop im The sheet follows a particular syllabus. Do not attempt the shall Refer syllabus sheet in the starting of the book for the syllabus. 	deduced for each incorrect answer. No mark will be given/ deducted mediately at the end of 60 min. eet before you have completed your preparation for that syllabus, us of all the DPP sheets. ution booklet and complete the Result Grid. Finally spend time to
questions. Each question has 4 choices (a), (b), (c) and (d), out of which ONLY ONE choice is correct.	 (d) Smells like vinegar Q.4 MnO₂ and H₂SO₄ added to NaCl, the greenish yellow gas
(a) Fe ²⁺ (b) Ni ²⁺ (c) Co ²⁺ (d) Mn ²⁺ Q.2 Which one of the following salt gives green coloured flame when the salt is tested by Pt wire? (a) Barium salt (b) Calcium salt (c) Borate (d) Lead salt Q.3 Sodium sulphite on heating with dilute HC1 liberates a gas which (a) Turns lead acetate paper black (b) Turns acidified potassium dichromate paper green	liberated will be (a) Cl ₂ (b) NH ₃ (c) N ₂ (d) H ₂ Q.5 For precipitating out group II cations, H ₂ S gas is passed through O.S. acidified with HCl, group II cations are completely removed before proceeding to analysis of group III cations. However sometimes a yellow precipitate is persistently formed even after repeatedly passing H ₂ S gas. This is due to (a) CdS (b) As ₂ S ₃ (c) AsO ₄ ³⁻ (d) S
RESPONSE GRID 1. abcd 2. abcd	3. abcd 4. abcd 5. abcd
	1 t. 107 t.

- When a mixture of solid NaCl, solid K₂Cr₂O₇ is heated 0.6 with conc. H₂SO₄, orange red vapours are obtained of which of the compound?
 - (a) Chromous chloride
- (b) Chromyl chloride
- (c) Chromic chloride
- (d) Chromic sulphate
- Q.7 A salt gives violet vapours when treated with conc. H₂SO₄,
 - (a) Cl
- (b) I-
- (c) Br~
- (d) NO₃
- Which compound is soluble in NH₄OH? **Q.8**
 - (a) PbCl₂
- (b) PbSO₄
- (c) AgCl
- (d) CaCO₃
- 0.9 Aqueous solution of a salt when treated with AgNO₃ solution gives a white precipitate which dissolves in NH₄OH. Radical present in the salt is
 - (a) Cl-
- (b) Br
- (c) I-

- (d) NO_3
- Q.10 In the test of sulphate radical, the white precipitate of sulphate is soluble in
 - (a) Conc. HCl
- (b) Conc. H₂SO₄
- (c) Conc. HNO₃
- (d) None of these
- Q.11 Na₂CO₃ cannot be used to identify
 - (a) $C \bullet_{3}^{2}$
- (b) SO_3^{2-}
- (c) S²⁻
- (d) SO_4^{2-}
- Q.12 Gas A is bubbled through slaked lime when a white precipitate is formed. On prolonged bubbling, the precipitate is dissolved. On heating the resultant solution, the white precipitate reappears with the evolution of gas B. The gases A and B respectively are
 - (a) CO₂ and CO
- (b) CO and CO₂
- (c) COandCO
- (d) CO₂ and CO₂
- Q.13 Reagent used in the qualitative analysis of IVth group is
 - (a) HCl
- (b) H₂S(alkaline)
- (c) $(NH_4)_2S$
- (d) None of these

- Q.14 Which one among the following pairs of ions cannot be separated by H₂S in dilute hydrochloric acid?
 - (a) Bi^{3+} , Sn^{4+}
- (b) Al^{3+} , Hg^{2+}
- (c) Zn^{2+} , Cu^{2+}
- (d) Ni^{2+} , Cu^{2+}
- Q.15 Which of the following changes the colour of the aqueous solution of FcCl₃?
 - (a) $K_4[Fe(CN)_6]$
- (b) H₂S
- (c) NH₄CNS
- (d) All of these
- Q.16 When HCl gas is passed through saturated solution of BaCl₂, a white ppt is obtained. This is due to
 - (a) Impurities in BaCl₂
- (b) Impurities in HCl
- (c) Precipitation of BaCl₂ (d) Formation of complex
- Q.17 Nessler's reagent is used to detect
 - (a) CrO_4^{2-}
- (b) P_{4}^{3-}
- (c) MnO_4
- (d) NH;
- Q.18 Sodium nitroprusside when added to an alkaline solution of sulphide ions produces a
 - (a) Red colouration
 - (b) Blue colouration
 - Violet colouration
 - (d) Brown colouration
- Q.19 A 100 ml solution of 0.1 N-HCl was titrated with 0.2 N-NaOH solution. The titrat ion was discontinued after adding 30 ml of NaOH solution. The remaining titration was completed by adding 0.25 N- KOH solution. The volume of KOH required for completing the titration is
 - (a) 16ml
- (b) 32ml
- (c) 35ml
- (d) 70ml
- Q.20 0.45 g of an acid (mol wt. = 90) required 20 ml of 0.5 N KOH for complete neutralization. Basicity of acid is
 - (a) l

(b) 2

(c) 3

(d) 4

RESPONSE GRID

- 6. (a)(b)(c)(d)
- 7. (a)(b)(c)(d)
- 8. abcd
- 9. (a)(b)(c)(d)
 - 10. (a)(b)(c)(d)

- 11.abcd 16.a b c d
- 12. (a) (b) (c) (d) 17. (a) (b) (c) (d)
- 13.(a)(b)(c)(d) 18.(a)(b)(c)(d)
- 14.abcd 19. (a) (b) (c) (d)
- 15. (a) (b) (c) (d)

20. (a)(b)(c)(d)

- Q.21 20 ml of a solution of a weak monobasic acid neutralizes 22.18 ml of a solution of NaOH and 20 ml of N/10 HCl neutralizes 21.5 ml of the same NaOH solution. The normality for the acid is nearly
 - (a) 10 N
- (b) 1 N
- (c) 0.10 N
- (d) 100 N

DIRECTIONS (Q.22-Q.24): In the following questions, more than one of the answers given are correct. Select the correct answers and mark it according to the following codes:

Codes:

- (a) 1, 2 and 3 are correct
- (b) 1 and 2 are correct
- 2 and 4 are correct (c)
- (d) 1 and 3 are correct
- Q.22 Which of the following statement (s) is (are) correct when a mixture of NaCl and K2Cr2O2 is gently warmed with conc. H₂SO₄?
 - (1) An orange red vapour is evolved
 - (2) The vapour when passed into NaOH solution gives a yellow solution of Na₂CrO₄
 - (3) Chromyl chloride is formed
 - (4) Chlorine gas is evolved
- Q.23 The reagents, NH₄Cl and aqueous NH₃ will precipitate
 - (1) Ca^{2+}
- (2) Al^{3+}
- (3) Bi^{3+}
- (4) Mg^{2+}

- Q.24 Which of the following substances are soluble in concentrated HNO₃?
 - (l) HgS
- (2) CuS
- (3) PbS
- (4) BaSO₄

DIRECTIONS (Q.25-Q.27): Read the passage given below and answer the questions that follows:

p-Amino-N, N-dimethylaniline is added to a strongly acidic solution of X. The resulting solution is treated with a few drops of aqueous solution of Y to yield blue coloration due to the formation of methylene blue. Treatment of the aqueous solution of Y with the reagent potassium hexacyanoferrate(II) leads to the formation of an intense blue precipitate. The precipitate dissolves on excess addition of the reagent. Similarly, treatment of the solution of Y with the solution of potassium hexacyanoferrate (III) leads to a brown coloration due to the formation of Z.

Q.25The compound X is

- (a) NaNO₃
- (b) NaCl
- (c) Na₂SO₄
- (d) Na₂S

Q.26 The compound Y is

- (a) MgCl₂
- (b) FeCl₂
- (c) FeCl₃
- (d) ZnCl₂

Q.27The compound Z is

- (a) $Mg_2[Fe(CN)_6]$
- (b) $Fe[Fe(CN)_6]$
- (c) $Fe_4[Fe(CN)_6]_3$
- (d) $K_2 Z n_3 [Fe(CN)_6]_2$

RESPONSE GRID

- 21.(a)(b)(c)(d) 22.(a)(b)(c)(d)
- 23. (a) (b) (c) (d) 24. (a) (b) (c) (d)
- 25. (a)(b)(c)(d)

- 26.(a)(b)(c)(d)
 - 27. (a) (b) (c) (d)

DIRECTIONS (Q. 28-Q.30): Each of these questions contains two statements: Statement-1 (Assertion) and Statement-2 (Reason). Each of these questions has four alternative choices, only one of which is the correct answer. You have to select the correct choice.

- (a) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (b) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (c) Statement -1 is False, Statement-2 is True.
- (d) Statement -1 is True, Statement-2 is False.

- Q.28 Statement 1 : Sb (III) is not precipitated as sulphide when in its alkaline solution H₂S is passed.
 - **Statement 2 :** In basic medium, concentration of S^{2-} ions is not enough for precipitation
- **Q.29** Statement 1: Acidified K₂Cr₂O₇ is turned green when SO₂ is passed through it.
 - Statement 2: In this reaction SO₂ acts as a reducing agent.
- **Q.30** Statement 1: A solution of BiCl₃ in conc. HCl when diluted with water gives white ppt.

Statement2: BiCl₃ in insoluble in dil. HCl

RESPONSE GRID

28.abcd

29. a b c d

30.abcd

DAILY PRACTICE PROBLEM SHEET 60 - CHEMISTRY			
Total Questions	30	Total Marks	120
Attempted		Correct	
Incorrect		Net Score	
Cut-off Score	36	Qualifying Score	56
Success Gap = Net Score — Qualifying Score			
Net Score = (Correct × 4) – (Incorrect × 1)			

DAILY PRACTICE PROBLEMS

CHEMISTRY SOLUTIONS

(60)

- (d) As Mn²⁺ has all its electrons (5) unpaired in its d-orbital, so it has extra stable configuration and requires high excitation energy and gives violet colour.
- (a) Barium salt gives green coloured flame as it has low ionization energy.
- 3. (b) $Na_2S + dil.2HCl \rightarrow 2NaCl + H_2S$ $H_2S + H_2SO_4 + K_2Cr_2O_7 \xrightarrow{acidic}$ $K_2SO_4 + Cr_2(SO_4)_3 + S$ (green)
- 4. (a) Yellowish-green gas chlorine with suffocating odour is evolved when sodium chloride mixed with manganese dioxide is heated with concentrated H₂SO₄.
 NaCl + H₂SO₄ → NaHSO₄ + HCl
 Mn●₂ + 4 HCl → MnCl₂ + 2H₂O + Cl₂ ↑
- 5. (c) This is due to presence of AsO_4^{3-} .
- 6. (b) NaCl+H₂SO₄ \rightarrow NaHS \bullet_4 + HCl $K_2Cr_2O_7 + 2H_2SO_4 \rightarrow 2KHSO_4 + 2Cr<math>\bullet_3$ + H₂O $CrO_3 + 2HCl \rightarrow CrO_2Cl_2 + H_2O$ (Orange red vapour)
- 7. (b) Iodine vapours are violet the salt must contain I⁻.
 KI+H₂S●₄ → KHS●₄ + HI
 2HI+H₂SO₄ → 1₂ ↑ +2H₂O+SO₂
 violet vapour
- 8. (c) AgCl forms complex with NH₄OH
- (a) When Cl⁻, Br⁻ and F⁻ are treated with AgNO₃ solution in presence of dilute HNO₃, corresponding silver halide is obtained which is soluble in NH₄OH, NaCN, and Na₂S₂O₃.

$$\begin{array}{c} \text{AgNO}_3 + \text{NaCl} \longrightarrow \text{AgCl} \downarrow + \text{NaNO}_3 \\ \text{white} \\ \text{AgCl} + \text{dil}.2\text{NH}_4\text{OH} \longrightarrow [\text{Ag(NH}_3)_2]\text{Cl} + 2\text{H}_2\text{O} \\ \text{complex} \end{array}$$

- 10. (d) As the sulphate radical is a strong oxidising agent, it is insoluble in acids and so detection of sulphate radical requires no other reagent.
- 11. (a) SO₃², S²⁻ and SO₄²⁻ salts form comparatively stronger acids (than H₂CO₃) in solution, hence evolve CO₂ with Na₂CO₃ solution and give effervescence, while CO₃²⁻ does not react with Na₂CO₃ solution.
- 12. (d) According to the equation,

Ca(OH)₂ +C
$$\bullet_2$$
 $\xrightarrow{\Delta}$ CaC \bullet_3 + H₂ \bullet

CaCO₃ + H₂O+CO₂ $\xrightarrow{\Delta}$ Ca(HCO₃)₂

Ca(HC \bullet_3)₂ $\xrightarrow{\Delta}$ CaO+ H₂ \bullet + 2CO₂

Hence, the gasses A and B are CO₂ and CO₂ respectively

13. (b) In presence of NH₄OH, dissociation of H₂S is remarkablyhigh H₂S \Longrightarrow 2H⁺+S²⁻

$$NH_4OH \rightarrow NH_4^+ + OH^-$$

$$OH^- + H^+ \rightarrow H_2O$$

- 14. (a) Both will precipitate as sulphide.
- 15. (d) $\operatorname{FcCl}_3 + \operatorname{K}_4[\operatorname{Fe}(\operatorname{CN})_6] \rightarrow \operatorname{Fc}_4[\operatorname{Fe}(\operatorname{CN})_6]_3$ Ferri ferrocyanide (Blue)

$$2\text{FeCl}_3 + 3\text{II}_2\text{S} \rightarrow \text{Fe}_2\text{S}_3 + 6\text{HCl}$$

$$3NH_4CNS + FeCl_3 \rightarrow Fe(CNS)_3 + 3NH_4Cl$$
(Blood red)

- 16. (c) White precipitate obtained is of BaCl₂, as the Cl⁻ ions concentration increases due to the addition of HCl, the ionic product becomes more than solubility product and thus, BaCl₂ is precipitated.
- 17. (d) Nessler's reagent gives red precipitate with NH₄⁺.

$$NH_4Cl + 2K_2[Hgl_4] + 4KOH \rightarrow$$

$$NH_2 - Hg - O - Hg - I + 7KI + KCl + 3H_2O$$

lodide of Million's base (Brown ppt)

18. (c) $Na_2S+Na_2[Fe(NO)(CN)_5] \rightarrow$ sodium nitroprussi de

19. (a) In the neutralization of acid and base $N \times V$ of both must be equivalent

$$N \times V$$
 of $HCl = 0.1 \times 100 = 10$

$$N \times V \text{ of Na OH} = 0.2 \times 30 = 6$$

as to obtain 10 N × V of base

4 N × V of base is required

$$N \times V$$
 of KOH = $0.25 \times 16 = 4$

$$\mathbf{N}_1 \mathbf{V}_1 = \mathbf{N} \times \mathbf{V} + \mathbf{N} \times \mathbf{V}$$
NaOH KOH

$$0.1 \times 100 = 0.2 \times 30 + 0.25 \times V$$

$$10 = 6 + 0.25 \text{ V}$$

$$V = \frac{400}{25} \Rightarrow V = 16 \text{ m}^{1}$$

20. **(b)** Normality=N= $\frac{W_{\Lambda} \times 1000}{Eq.wt \times V}$

$$\therefore \text{ Eq. Wt} = \frac{0.45 \times 1000}{0.5 \times 20} = 45$$

$$\therefore \text{ Basicity } = \frac{\text{Mol.Wt}}{\text{Eq.Wt}} = \frac{90}{45} = 2$$

116 DPP/ C (60)

21. (c)
$$N_1V_1 = N_2 \times V_2$$

 $N_1 \times 20 = N_2 \times 22.28$
 $N_1 = \frac{N_2 \times 22.18}{20}$...(i)

NaOH solution = HCl solution

$$N_2 \times 21.5 = \frac{1}{10} \times 20$$

$$N_2 = \frac{20}{10 \times 21.5} \qquad ...(ii)$$
by eq. (i) and (ii)
$$N_1 = \frac{20 \times 22.18}{20 \times 10 \times 21.5} = \frac{22.18}{215} = 0.1 \text{ N}$$

22. (a) Chromyl chloride test

$$4NaCl + K_2Cr_2O_7 + 3H_2SO_4 \xrightarrow{heat}$$

$$K_2SO_4 + 2Na_2SO_4 + 2CrO_2Cl_2 + 3H_2O$$

$$chromyl chloride (orange red)$$

$$4$$
NaOH + CrO₂Cl₂ \rightarrow 2NaCl +Na₂CrO₄ +2H₂O

Sod.chromate(yellow)

$$Na_2CrO_4 + (CH_3COO)_2Pb \rightarrow$$

- 23. (b) Al³⁺ (third group radical) and Ca²⁺ (fifth group radical) precipitate out as their hydroxides with NH₄Cl and aq. NH₃ (NH₄OH) which are the group reagents.
- 24. (a) HgS, CuS and PbS are soluble in conc. HNO₃. For 25-27

Reaction of Y indicates that it is Fc3+ salt.

Since the product formed (methylene blue) has sulphur in its structure, it should be supplied by the compound X which is thus Na_2S .

$$Na_2S + 2H^+ \longrightarrow H_2S + 2Na^+$$

$$FeCl_3 + H_2S \longrightarrow FeCl_2 + 2HCl + S$$

$$Mc_2N$$
 + S + H_2N NMe_2

$$\stackrel{\text{H}^+}{\longrightarrow} \stackrel{\text{Me}_2\text{N}}{\longrightarrow} \stackrel{\text{NMe}_2}{\longrightarrow} \stackrel{\text$$

25. (d)

26. (c)

27. (b)

28. (d) Statement 1 is true but statement 2 is false

Sb(III) is a basic radical of IIB group of which group

regent is H₂S is presence of dilute HC1. It is necessary

to maintain the proper hydrogen ion concentration for
the precipitation of IV group cations.

29. (a) Both statement 1 and statement 2 are correct and statement 2 is the correct explanation of statement 1.

$$K_2Cr_2O_7 + 3SO_2 + H_2SO_4 \longrightarrow$$
 $K_2SO_4 + Cr_2(SO_4)_3 + 3H_2O$
green colour

30. (d) It is due to the formation of insoluble BiOCl on hydrolysis.

$$BiCl_3 + H_2O \rightarrow BiOCl + 2HCl$$
White ppt.