

Reflection of Light

When a ray of light after incidenting on a boundary separating two media comes back into the same media, then this phenomenon, is called reflection of light.

Note: \Box After reflection velocity, wavelength and frequency of light remains same but intensity decreases.

□ If light ray incident normally on a surface, after reflection it retraces the path.

If light rays, after reflection or refraction, actually meets at a point then real image is formed and if they appears to meet virtual image is formed.

Plane Mirror

The image formed by a plane mirror is virtual, erect, laterally inverted, equal in size that of the object and at a distance equal to the distance of the object in front of the mirror.

(1) **Deviation :** Deviation produced by a plane mirror and by two inclined plane mirrors.

Note : If two plane mirrors are inclined to each other at 90°, the emergent ray is antiparallel to incident ray, if it suffers one reflection from each. Whatever be the angle to incidence.

(2) **Rotation :** If a plane mirror is rotated in the plane of incidence through angle θ , by keeping the incident ray fixed, the reflected ray turned through an angle 2θ .

(3) **Images by two inclined plane mirrors :** When two plane mirrors are inclined to each other at an angle θ , then number of images (*n*) formed of an object which is kept between them.

(i)
$$n = \left(\frac{360}{\theta} - 1\right)^{1}$$
; If $\frac{360}{\theta}$ = even integer

(ii) If $\frac{360}{\theta}$ = odd integer then there are two possibilities

(a) Object is placed symmetrically (b) Object is placed asymmetrically

Note: \Box If $\theta = 0^{\circ} i.e.$ mirrors are parallel to each other so $n = \infty$ *i.e.* infinite formed.

 $n = \infty$ *i.e.* infinite images will be

placed).

ed). If $\theta = 90^{\circ}$, $n = \frac{360}{90} - 1 = 3$ If $\theta = 72^{\circ}$, $n = \frac{360}{72} - 1 = 4$ (If nothing is said object is supposed to be symmetrically (4)Other important informations (*i*) When the object moves with speed *u* towards (or away) from the plane mirror then image also moves toward (or away) with speed *u*. But relative speed of image *w.r.t.* object is 2*u*.

(ii) When mirror moves towards the stationary object with speed *u*, the image will move with speed *2u*.

(iii) A man of height *h* requires a mirror of length at least equal to h/2, to see his own complete image.

(iv) To see complete wall behind himself a person requires a plane mirror of at least one third the height of wall. It should be noted that person is standing in the middle of the room.

Example: 1A plane mirror makes an angle of 30° with horizontal. If a vertical ray strikes the mirror,
find the angle between mirror and reflected ray
(a) 30° (b) 45° (c) 60° (d) 90° Solution : (c)Since angle between mirror and normal is 90° and reflected ray (RR) makes
an angle of 30° with the normal so required angle will be $\theta = 60^{\circ}$.IR
 $\theta = 60^{\circ}$

(d) 90°

Example: 2 Two vertical plane mirrors are inclined at an angle of 60° with each other. A ray of light travelling horizontally is reflected first from one mirror and then from the other. The resultant deviation is

(a) 60° (b) 120° (c) 180° (d) 240°

- Solution: (d) By using $\delta = (360 2\theta) \implies \delta = 360 2 \times 60 = 240^{\circ}$
- *Example*: 3 A person is in a room whose ceiling and two adjacent walls are mirrors. How many images are formed

[AFMC 2002

- (a) 5 (b) 6 (c) 7 (d) 8
- Solution : (c) The walls will act as two mirrors inclined to each other at 90° and so sill form $\frac{360}{90} 1 = 3$ images of the person. Now these images with object (Person) will act as objects for the ceiling mirror and so ceiling will form 4 images as shown. Therefore total number of images

formed = 3 + 4 = 7

(c) 75°

Three images by walls

Note : \Box The person will see only six images of himself $(I_1, I_2, I_3, I', I', I')_3$

Example: 4 A ray of light makes an angle of 10° with the horizontal above it and strikes a plane mirror which is inclined at an angle θ to the horizontal. The angle θ for which the reflected ray becomes vertical is

- *Example*: 5 A ray of light incident on the first mirror parallel to the second and is reflected from the second mirror parallel to first mirror. The angle between two mirrors is
- (a) 30° (b) 60° Solution : (b) From geometry of figure $\theta + \theta + \theta = 180^{\circ}$ $\Rightarrow \theta = 60^{\circ}$
- **Example:** 6 A point object is placed mid-way between two plane mirrors distance 'a' apart. The plane mirror forms an infinite number of images due to multiple reflection. The distance between the nth order image formed in the two mirrors is

(a) na (b) 2na (c) na/2 (d) n^2a

Solution: (b)

From above figure it can be proved that seperation between *n*th order image formed in the two mirrors = 2na

Example: 7 Two plane mirrors P and Q are aligned parallel to each other, as shown in the figure. A light ray is incident at an angle of θ at a point just inside one end of A. The plane of incidence coincides with the plane of the figure. The maximum number of times the ray undergoes reflections (including the first one) before it emerges out is

Tricky example: 1

A small plane mirror placed at the centre of a spherical screen of radius R. A beam of light is falling on the mirror. If the mirror makes n revolution, per second, the speed of light on the screen after reflection from the mirror will be

(a) $\Delta m R$	(b) $2\pi nR$	(c) $\frac{nR}{m}$	(d) $\frac{nR}{m}$
		2π	4π

Solution : (a) When plane mirror rotates through an angle θ , the reflected ray rotates through an angle 2θ . So spot on the screen will make 2n revolution per second

:. Speed of light on screen $v = \omega R = 2\pi (2n)R = 4\pi nR$

Curved Mirror

It is a part of a transparent hollow sphere whose one surface is polished.

(1) Some definitions :

- (i) **Pole (P)**
- (ii) Centre of curvature (C)
- (iii) Radius of curvature (R)
- (iv) Principle axis
- (v) Focus (F)
- (vi) Focal length (f)

- : Mid point of the mirror
- : Centre of the sphere of which the mirror is a part.
- : Distance between pole and centre of curvature.

 $(R_{\text{concave}} = -ve, R_{\text{convex}} = +ve, R_{\text{plane}} = \infty)$

- : A line passing through *P* and *C*.
- : An image point on principle axis for which object is at $\,\infty\,$
- : Distance between *P* and *F*.

Reflection of Light 7

(vii) Relation between f and R :		$f = \frac{R}{2} (f_{\text{concare}} = -ve, f_{\text{convex}} = +ve, f_{\text{plane}} = \infty)$
(viii) Power	:	The converging or diverging ability of mirror
(ix) Aperture		: Effective diameter of light reflecting area.
		Intensity of image \propto Area \propto (Aperture) ²
(x) Focal plane	:	A plane passing from focus and perpendicular to principle axis.

(2) Rules of image formation and sign convention :

Rule (i)

Rule (ii)

(3) Sign conventions :

(i) All distances are measured from the pole.

(ii) Distances measured in the direction of incident rays are taken as positive while in the direction opposite of incident rays are taken negative.

(iii) Distances above the principle axis are taken positive and below the principle axis are taken negative.

Note \Box Same sign convention are also valid for lenses.

Use following sign while solving the problem :

	Concave mirro			
Real imag	ge (u ≥ f)	- Convex mirror		
Distance of object	$u \rightarrow -$	$u \rightarrow -$	$u \rightarrow -$	
Distance of image	$v \rightarrow -$	$v \rightarrow +$	$v \rightarrow +$	
Focal length	$f \rightarrow -$	$f \rightarrow -$	$f \rightarrow +$	
Height of object	$O \rightarrow +$	$O \rightarrow +$	$O \rightarrow +$	
Height of image	$I \rightarrow -$	$I \rightarrow +$	$I \rightarrow +$	
Radius of curvature	$R \rightarrow -$	$R \rightarrow -$	$R \rightarrow +$	
Magnification	$m \rightarrow -$	$m \rightarrow +$	$m \rightarrow +$	

8 Reflection of Light

Mirror	Location of the	Location of the	<u>Magnification</u> Size of the	Nature	
	object	image	image	Real virtu al	Erect —inverte d
(a) Concave	At infinity <i>i.e.</i> $u = \infty$	At focus <i>i.e.</i> $v = f$	m << 1, diminished	Real	inverted
	Away from centre of curvature (<i>u</i> > 2 <i>f</i>)	Between f and $2f$ <i>i.e.</i> f < v < 2f	<i>m</i> < 1, diminished	Real	inverted
	At centre of curvature $u = 2f$	At centre of curvature <i>i.e.</i> $v = 2f$	m = 1, same size as that of the object	Real	inverted
<i>ă</i>)	Between centre of curvature and focus : F < u < 2f	Away from the centre of curvature $v > 2f$	<i>m</i> > 1, magnified	Real	inverted
	At focus <i>i.e.</i> $u = f$	At infinity <i>i.e.</i> $v = \infty$	$m = \infty$, magnified	Real	inverted
	Between pole and focus $u < f$	<i>v</i> > <i>u</i>	m > 1 magnified	Virtual	erect
(b) Convex	At infinity <i>i.e.</i> $u = \infty$	At focus <i>i.e.</i> , $v = f$	<i>m</i> < 1, diminished	Virtual	erect
PILIF F C	Anywhere between infinity and pole	Between pole and focus	<i>m</i> < 1, diminished	Virtual	erect

• Note : □ In case of convex mirrors, as the object moves away from the mirror, the image becomes smaller and moves closer to the focus.

□ Images formed by mirrors do not show chromatic aberration.

- □ For convex mirror maximum image distance is it's focal length.
- In concave mirror, minimum distance between a real object and it's real image is zero.

(*i.e.* when u = v = 2f)

Mirror formula and magnification

For a spherical mirror if u = Distance of object from pole, v = distance of image from pole, f = Focal length, R = Radius of curvature, O = Size of object, I = size of image, m = magnification (or linear magnification), m_s = Areal magnification, A_o = Area of object, A_i = Area of image

(1) **Mirror formula :** $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$; (use sign convention while solving the problems).

Note : \Box Newton's formula : If object distance (x_1) and image distance (x_2) are measured

from focus instead of pole then $f^2 = x_1 x_2$

(2) Magnification $\cdot m -$	Size of object
	Size of image

Linear n	Areal magnification	
Transverse	Longitudinal	Areal maginication
When a object is placed perpendicular to the principle axis, then linear magnification is called lateral or transverse magnification. It is given by $m = \frac{I}{O} = -\frac{v}{u} = \frac{f}{f-u} = \frac{f-v}{f}$ (* Always use sign convention while solving the problems)	When object lies along the principle axis then its longitudinal magnification $m = I = -(v_2 - v_1)$ $M = -\frac{1}{0} - (u_2 - u_1)$ If object is small; $m = -\frac{dv}{du} = \left(\frac{v}{u}\right)^2$ Also Length of image = $\left(\frac{v}{u}\right)^2$ Length of object (L ₀) $(L_i) = \left(\frac{f}{u-f}\right)^2 \cdot L_o$	If a 2 <i>D</i> -object is placed with it's plane perpendicular to principle axis It's Areal magnification $M_{s} = \frac{\text{Area of image } (A_{i})}{\text{Area of object } (A_{o})}$ $= \frac{ma \times mb}{ab} = m^{2}$ $\Rightarrow m_{s} = m^{2} = \frac{A_{i}}{A_{o}}$

Note : \Box Don't put the sign of quantity which is to be determined.

□ If a spherical mirror produces an image '*m*' times the size of the object (m = magnification) then u, v and f are given by the followings

$$u = \begin{pmatrix} m-1 \\ m \end{pmatrix} f, \quad v = -(m-1)f \quad \text{and} \quad f = \begin{bmatrix} m \\ m-1 \end{bmatrix} u \quad \text{(use sign convention)}$$

(3) Uses of mirrors

(i) **Concave mirror :** Used as a shaving mirror, In search light, in cinema projector, in telescope, by E.N.T. specialists etc.

(ii) **Convex mirror :** In road lamps, side mirror in vehicles *etc*.

Note : \Box Field of view of convex mirror is more than that of concave mirror.

A collection by Pradeep Kshetrapal for Physics students at genius, Maxwell and Gupta classes Only

Different graphs

Example	
Example: 10	A convex mirror of focal length f forms an image which is $1/n$ times the object. The distance of the object from the mirror is
	(a) $(n-1)f$ (b) $\left(\frac{n-1}{n}\right)f$ (c) $\left(\frac{n+1}{n}\right)f$ (d) $(n+1)f$
Solution : (a)	By using $m = \frac{f}{f - u}$
	Here $m = +\frac{1}{n}$, $f \to +f$ So, $+\frac{1}{n} = \frac{+f}{+f-u} \Rightarrow u = -(n-1)f$
Example: 11	An object 5 cm tall is placed 1 m from a concave spherical mirror which has a radius of curvature of 20 cm . The size of the image is
	(a) 0.11 cm (b) 0.50 cm (c) 0.55 cm (d) 0.60 cm
Solution : (c)	By using $\frac{I}{O} = \frac{f}{f-u}$
	Here $O + 5 \ cm$, $f = -\frac{R}{2} = -10 \ cm$, $u = -1 \ m = -100 \ cm$
	<u> </u>
	So, $+5^{-} - 10 - (-100) \implies I = -0.55 \ cm.$
Example: 12	An object of length 2.5 cm is placed at a distance of 1.5 f from a concave mirror where f is the magnitude of the focal length of the mirror. The length of the object is perpendicular to the principle axis. The length of the image is
	(a) 5 cm, erect (b) 10 cm, erect (c) 15 cm, erect (d) 5 cm, inverted
Solution : (d)	By using $\frac{I}{O} = \frac{f}{f-u}$; where $I = ?$, $O = +2.5 \text{ cm}$. $f \rightarrow -f$, $u = -1.5f$
	$ \therefore \Box^{I}_{+2.5} = \frac{-f}{-f - (-1.5f)} \implies I = -5 \text{ cm.} $ (Negative sign indicates that image is inverted.)
Example: 13	A convex mirror has a focal length <i>f</i> . A real object is placed at a distance <i>f</i> in front of it from the pole produces an image at
	(a) Infinity (b) f (c) $f/2$ (d) $2f$
Solution : (c)	By using $\frac{1}{f} = \frac{1}{v} + \frac{1}{u} \implies \frac{1}{+f} = \frac{1}{v} + \frac{1}{(-f)} \implies v = \frac{f}{-1}$
Example: 14	Two objects A and B when placed one after another infront of a concave mirror of focal length 10 cm from images of same size. Size of object A is four times that of B . If object A is placed at a distance of 50 cm from the mirror, what should be the distance of B from the mirror
	(a) 10 cm (b) 20 cm (c) 30 cm (d) 40 cm
Solution : (b)	By using $\frac{I}{O} = \frac{f}{f-u} \Rightarrow \frac{I_A}{I_B} \approx \frac{O_B}{O_A} = \frac{f-u_B}{f-u_A} \Rightarrow \frac{1}{1} \times \frac{1}{4} = \frac{-10-u_B}{-10-(-50)} \Rightarrow u = -20cm$.
Example: 15	A square of side 3 <i>cm</i> is placed at a distance of 25 <i>cm</i> from a concave mirror of focal length 10 <i>cm</i> . The centre of the square is at the axis of the mirror and the plane is normal to the axis. The area enclosed by the image of the wire is

	(a) $4 cm^2$	(b) 6 <i>cm</i> ²	(c) 16 cm^2	(d) 36 cm^2
Solution : (a)	By using $m^2 = \frac{A_i}{A_o}$; where $m^2 = \frac{A_i}{A_o}$	here $m = \frac{f}{f-u}$		
	Hence from given valu	$m = __$	$\frac{-10}{10 - (-25)} = \frac{-2}{3}$ and	$A_{o} = 9 cm^{2} \qquad \therefore$
	$A_i = \left(\frac{-2}{-3}\right)^2 \times 9 = 4cm^2$			
Example: 16	A convex mirror of foca What will be the focal l	ll length 10 <i>cm</i> is pla ength of the mirror i	ced in water. The refractiv in water	e index of water is 4/3.
	(a) 10 <i>cm</i> these	(b) 40/3 <i>cm</i>	(c) 30/4 <i>cm</i>	(d) None of
Solution : (a)	No change in focal length	, because <i>f</i> depends on	ly upon radius of curvature R	2.
Example: 17	A candle flame 3 <i>cm</i> is concave mirror be place	placed at distance of ed in order that it m	f 3 <i>m</i> from a wall. How far ay form an image of flame	from wall must a 9 <i>cm</i> high on the wall
	(a) 225 <i>cm</i>	(b) 300 <i>cm</i>	(c) 450 <i>cm</i>	(d) 650 cm
Solution : (c)	Let the mirror be place	d at a distance <i>x</i> from	n wall	ы. П ₁₁
	By using			
	$\frac{I}{O} = \frac{-v}{u} \Rightarrow \frac{-9}{+3} = \frac{-(-x)}{-(x)}$	$\Rightarrow x = -4.5n$	ı = - 450 <i>cm</i> .	3 <i>m</i> → (<i>x</i> - →
Example: 18	A concave mirror of f subtends an angle of 30	ocal length 100 <i>cm</i>)'. The diameter of th	is used to obtain the in he image of the sun will be	nage of the sun which
	(a) 1.74 <i>cm</i>	(b) 0.87 <i>cm</i>	(c) 0.435 <i>cm</i>	(d) 100 <i>cm</i>
Solution : (b)	Diameter of image of s	un $d = f\theta$	I:	mage of
	$\Rightarrow d = 100 \times \begin{pmatrix} 30\\60 \end{pmatrix} \times \begin{pmatrix} \pi\\180 \end{pmatrix}$)		$ \begin{array}{c} $
	$\Rightarrow d = 0.87 \ cm$.			
Example: 19	A thin rod of length <i>f</i> / its magnified image to	3 lies along the axis aches an end of the r	of a concave mirror of foca od. The length of the imag	al length <i>f</i> . One end of te is [MP PET 1995]
	(a) <i>f</i>	(b) $\frac{1}{2}f$	(c) 2 <i>f</i>	(d) $\frac{1}{4}f$
Solution : (b)	If end <i>A</i> of rod acts an	object for mirror the	n it's image will be A' and	$if u = 2f - \frac{f}{3} = \frac{5f}{3}$
	So by using $\frac{1}{f} = \frac{1}{v} + \frac{1}{v}$	$\frac{1}{u} \implies \frac{1}{-f} = \frac{1}{v} + \frac{1}{-f}$	$\frac{1}{\frac{5f}{3}} \implies v = -\frac{5}{2}$	$2f \longrightarrow 2f \longrightarrow A$
	\therefore Length of image = $\frac{5}{2}$	$f-2f=\frac{f}{2}$		$\begin{array}{ccc} A' & C & F \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $
Example: 20	A concave mirror is pla O be the pole of the mi a real image, also locate	aced on a horizontal rror and <i>C</i> its centre ed at <i>C</i> . If the mirror	table with its axis directed of curvature. A point obj is now filled with water, tl	l vertically upwards. Let ect is placed at <i>C</i> . It has he image will be

S

____ -

(a) Real, and will remain at CC and ∞

(b) Real, and located at a point between

(c) Virtual and located at a point between C and O (d) Real, and located at a point between C and O

- A light bulb is placed between two mirrors (plane) inclined at an angle of 60°. Number of images formed are 1. [NCERT 1980; CPMT 1996, 97; SCRA 1994; AIIMS 1997; RPMT 1999; AIEEE 2002; Orissa JEE 2003; MP PET 2004]
 - (a) 2 (b) 4 (d) 6 (c) 5

			14 Refle	ection of Light
2.	Two plane mirrors ar will be	re inclined at an angle of 72^o . Th	e number of images of a point object pla	ced between them
			[KCET (Engg. & Med.)1999; BCECE 2003]
	(a) 2	(b) 3	(c) 4	(d) 5
3.	To get three images o	of a single object, one should hav	e two plane mirrors at an angle of	[AIEEE 2003
	(a) 30°	(b) 60°	(c) 90°	(d) 120 °
4.	A man of length <i>h</i> rec	quires a mirror of length at least	equal to, to see his own complete image	[MP PET 2003
	h	(b) h	(c) h	(\mathbf{d}) h
	(a) $\frac{-}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	(u) <i>n</i>
5.	Two plane mirrors ar	e at 45° to each other. If an objec	ct is placed between them then the numb	per of images will be [MP PMT 200
Ū	(a) 5	(b) 9	(c) 7	(d) 8
6.	An object is at a dista	nce of 0.5 m in front of a plane r	nirror. Distance between the object and i	image is [CPMT 2002
	(a) $0.5 m$	(b) 1 m	(c) $0.25 m$	(d) 1.5 m
7•	A man runs towards a Kerala PET 2002]	mirror at a speed 15 m/s . The spe	eed of the image relative to the man is	[RPMT 1999;
	(a) 15 ms^{-1}	(b) 30 ms^{-1}	(c) $35 m s^{-1}$	(d) 20 ms^{-1}
8.	The light reflected by	a plane mirror may form a real i	mage	[KCET (Engg. & Med.) 2002
	(a) If the rays incide converging	ent on the mirror are diverging	(b) If the rays incident	on the mirror are
	(c) If the object is pl	aced very close to the mirror	(d) Under no circumstances	S
9.	A man is 180 <i>cm</i> tall toe to head, he uses required is	and his eyes are 10 <i>cm</i> below th a plane mirror kept at a distanc [MP PMT 1993; DPM	e top of his head. In order to see his ent e of 1 <i>m</i> from him. The minimum lengt T 2001]	tire height right from h of the plane mirror
	(a) 180 cm	(b) 90 cm	(c) 85 cm	(d) 170 <i>cm</i>
10.	A small object is plac look at its image, the	ed 10 <i>cm</i> infront of a plane mirr distance focused for your eye wi	or. If you stand behind the object 30 <i>cn</i> ll be	n from the object and
	(a) 60 <i>cm</i>	(b) 20 <i>cm</i>	(c) 40 <i>cm</i>	(d) 80 cm
11.	Two plane mirrors an hand. In how many c	e at right angles to each other. A f the images will he be seen usin	A man stands between them and combs l g his right hand	his hair with his right
	(a) None	(b) 1	(c) 2	(d) 3
12.	A man runs towards	mirror at a speed of 15 m/s . What	at is the speed of his image	[CBSE PMT 2000
	(a) 7.5 m/s	(b) $15 m/s$	(c) $30 m/s$	(d) $45 m/s$
13.	A ray of light is incide	enting normally on a plane mirro	or. The angle of reflection will be	[MP PET 2000
Ū	(a) 0°	(b) 90°	(c) Will not be reflected	(d) None of
	these		()	
14.	A plane mirror produ	ices a magnification of		[MP PMT/PET 1997
	(a) -1 and $+\infty$	(b) + 1	(c) Zero	(d) Between o
15.	When a plane mirror	is rotated through an angle θ , the	nen the reflected ray turns through the a	ngle 2 θ , then the size
Ū	of the image			[MP PAT 1996
	(a) Is doubled infinite	(b) Is halved	(c) Remains the same	(d) Becomes
16.	What should be the a and the reflected ray	ngle between two plane mirrors from the two mirrors be parallel	so that whatever be the angle of inciden to each other	ce, the incident ray
	(a) 60°	(b) 90°	(c) 120°	(d) 175°
17.	Ray optics is valid, w	hen characteristic dimensions ar	e	[CBSE PMT 1994
	(a) Of the same orde	er as the wavelength of light	(b) Much smaller than the	wavelength of light
	(c) Of the order of o	ne millimeter	(d) Much larger than the wa	avelength of light
18.	It is desired to photo which is at a distance	graph the image of an object place of 4.5 <i>m</i> from the mirror should	ced at a distance of 3 <i>m</i> from the plane n l be focussed for a distance of	nirror. The camera
	(a) 3 <i>m</i>	(b) 4.5 m	(c) 6 m	(d) 7.5 <i>m</i>

<u>30%</u>

Two plane mirrors are parallel to each other an spaced 20 cm apart. An object is kept in between them at 15 cm 19. from A. Out of the following at which point an image is not formed in mirror A (distance measured from mirror A)

(a) 15 cm (b) 25 cm (c) 45 cm (d) 55 cm

- Two plane mirrors A and B are aligned parallel to each other, as shown in the figure. A light ray is incident at an 20. angle of 30° at a point just inside one end of A. The plane of incidence coincides with the plane of the figure. The maximum number of times the ray undergoes reflections (including the first one) before it emerges out is
 - (a) 28
 - (b) 30
 - (c) 32
 - (d) 34
- A point source of light B is placed at a distance L in front of the centre of a mirror of width d hung vertically on a 21. wall. A man walks in front of the mirror along a line parallel to the mirror at a distance 2L from it as shown. The greatest distance over which he can see the image of the light source in the mirror is
 - (a) d/2(b) *d* (c) 2d (d) 3d
- The figure shows two rays A and B being reflected by a mirror and going as A' and B'. The mirror is 22.
 - (a) Plane (b) Concave
 - (c) Convex (d) May be any spherical mirror

2√\$m

0.2m

An object is initially at a distance of 100 cm from a plane mirror. If the mirror approaches the object at a speed of 23. 5 cm/s, then after 6 s the distance between the object and its image will be

(a) 60 cm (b) 140 cm (c) 170 cm

(c) 0.25 m

(d) 150 cm

(d) 0.80 m

An object placed in front of a plane mirror is displaced by 0.4 m along a straight line at an angle of 30° to mirror 24. plane. The change in the distance between the object and its image is

(a) 0.20 m

by mirror M_2 from it are

(a) 2 mm, 8 mm, 18 mm

2 mm, 18 mm, 28 mm

2 mm, 18 mm, 22 mm

26.

(b) (c)

(b) 0.40 m

- A ray of light travels from A to B with uniform speed. On its way it is reflected by the surface XX'. The path 25. followed by the ray to take least time is
 - (a) 1 (b) 2
 - (d) 4 (c) 3

• 0

1h

(d) 2 mm, 18 mm, 58 mm

27. A plane mirror is placed at the bottom of the tank containing *a* liquid of refractive index μ . *P* is a small object at a height *h* above the mirror. An observer *O*-vertically above *P* outside the liquid see *P* and its image in the mirror. The apparent distance between these two will be

- (c) $\frac{2n}{\mu-1}$
- **28.** One side of a glass slab is silvered as shown. A ray of light is incident on the other side at angle of incidence $i = 45^{\circ}$. Refractive index of glass is given as 1.5. The deviation of the ray of light from its initial path when it comes out of the slab is
 - (a) 90°
 - (b) 180°
 - (c) 120°
 - (d) 45°
- **29.** If an object moves towards a plane mirror with a speed v at an angle θ to the perpendicular to the plane of the mirror, find the relative velocity between the object and the image
 - (a) v
 - (b) 2v
 - (c) $2v\cos\theta$
 - (d) $2v\sin\theta$
- **30.** Figure shows a cubical room *ABCD* will the wall *CD* as a plane mirror. Each side of the room is 3*m*. We place a camera at the midpoint of the wall *AB*. At what distance should the camera be focussed to photograph an object placed at *A*
 - (a) 1.5 m (b) 3 m
 - (c) 6 m

(d) More than 6 m

(d) $h \mid 1 + \downarrow \downarrow$

Reflection of light at spherical surface

(d) None

of

Basic Level

(c) Plane

31. A man having height 6 *m*, want to see full height in mirror. They observe image of 2*m* height erect, then used mirror is **[J & K CET 2004]**

(a) Concave (b) Convex these

- **32.** An object of length 6*cm* is placed on the principal axis of a concave mirror of focal length *f* at a distance of 4*f*. The length of the image will be **[MP PET 2003**]
- (a) 2 cm(b) 12 cm(c) 4 cm(d) 1.2 cm33. Convergence of concave mirror can be decreased by dipping in
(a) Water(b) Oil(c) Both(d)None of these
- 34. In an experiment of find the focal length of a concave mirror a graph is drawn between the magnitudes of *u* and *v*. The graph looks like

			1	Reflection of Light	17
35.	An object 2.5 <i>cm</i> high is pla of the image is	ced at a distance of 10 <i>cm</i> from a c	concave mirror of radius of cur	vature 30 <i>cm</i> The siz	ze
	(a) 9.2 cm	(b) 10.5 <i>cm</i>	(c) 5.6 <i>cm</i>	[BVP 200 (d) 7.5 cm	93]
36.	A diminished virtual image (a) Plane mirror parabolic mirror	can be formed only in (b) A concave mirror	(c) A convex mirror	(d) Concave-	[MP PMT 2002
37.	A point object is placed at a	distance of 30 <i>cm</i> from a convex r	nirror of focal length 30 <i>cm</i> . Th	ne image will form at	[JIPMER 2002
	(a) Infinity behind the mirror	(b) Focus	(c) Pole	(d) 15	ст
38.	The focal length of a convex	mirror is 20 <i>cm</i> its radius of curva	ature will be		[MP PMT 2001
	(a) 10 <i>cm</i>	(b) 20 <i>cm</i>	(c) 30 cm	(d) 40 cm	
39.	A concave mirror of focal position of the object when	length 15 <i>cm</i> forms an image ha the image is virtual will be	ving twice the linear dimension	ons of the object. The	he
	(a) 22.5 <i>cm</i>	(b) 7.5 <i>cm</i>	(c) 30 <i>cm</i>	(d) 45 cm	
40.	Under which of the followin diminished and virtual	g conditions will a convex mirror	of focal length <i>f</i> produce an im	age that is erect,	
				[AMU (Engg.) 200	01]
	(a) Only when $2f > u > f$	(b) Only when $u = f$	(c) Only when $u < f$	(d) Always	
41.	A concave mirror gives an image to be real, the focal le	image three times as large as the ength should be	object placed at a distance of	20 <i>cm</i> from it. For t [SCRA]	he 1 998; JIPMER 2
	(a) 10 <i>cm</i>	(b) 15 <i>cm</i>	(c) 20 <i>cm</i>	(d) 30 cm	
4 2 ,	A point object is placed at a mirror. If the object is move	distance of 10 <i>cm</i> and its real ima ed by 0.1 <i>cm</i> towards the mirror, th	age is formed at a distance of 20 he image will shift by about	o <i>cm</i> from a concave	
	(a) 0.4 <i>cm</i> away from the r	nirror	(b) 0.4 <i>cm</i> towards the m	nirror	
	(c) $0.8 \ cm$ away from the r	mirror	(d) 0.8 <i>cm</i> towards then	hirror	
43 .	The minimum distance bet	ween the object and its real image	for concave mirror is		[RPMT 1999
	(a) <i>f</i>	(b) 2 <i>f</i>	(c) <i>4f</i>	(d) Zero	
44 •	An object is placed at 20 <i>cn</i>	<i>i</i> from a convex mirror of focal len	gth 10 <i>cm</i> . The image formed b	by the mirror is	[JIPMER 1999
	(a) Real and at 20 <i>cm</i> from	n the mirror	(b) Virtual and at 20 <i>cm</i>	from the mirror	
	(c) Virtual and at $20/3$ cm	from the mirror	(d) Real and at $20/3 cm$	from the mirror	
45.	An object is placed 40 <i>cm</i> f	rom a concave mirror of focal leng	th 20 <i>cm</i> . The imageformed is	[MP PET 1986;]	MP PMT/PET 19
	(a) Real, inverted and sam	ie in size	(b) Real, inverted and sm	aller	
	(c) Virtual, erect and large	r	(d) Virtual, erect and sma	ller	
46.	Match List I with List II and List I	l select the correct answer using th	he codes given below the lists List II		[SCRA 1998
	(Position of the object)		(Magnification)		
	(I) An object is placed at fo	cus before a convex mirror	(A) Magnification is	$-\infty$	
	(II) An object is placed at c	entre of curvature before a concav	ve mirror (B) Magnification is	0.5	
	(III) An object is placed at f	focus before a concave mirror	(C) Magnification is	+ 1	
	(IV) An object is placed at (centre of curvature before a conve	x mirror (D) Magnification is	-1	
	Codes		(E) Maginication is (J.33	
	(a) I-B, II-D, III-A, IV-E III-D, IV-C	(b) I-A, II-D, III-C, IV-B	(c) I-C, II-B, III-A, IV-E	(d) I-B, II-	-Е,
47.	In a concave mirror experi	ment, an object is placed at a dista	ance x_1 from the focus and the	e image is formed at a	1
	distance x_2 from the focus.	The focal length of the mirror wou	ld be		
	(a) $x_1 x_2$	(b) $\sqrt{x_1 x_2}$	(c) $\frac{x_1 + x_2}{2}$	(d) $\sqrt{\frac{x_1}{x_2}}$	
48.	Which of the following form	ns a virtual and erect image for all	positions of the object		[IIT-JEE 1996
	(a) Convex lens mirror	(b) Concave lens	(c) Convex mirror	(d) Concave	
49 .	A convex mirror has a focal image at	length <i>f</i> . A real object is placed at	a distance f in front of it from	the pole produces an	1

[MP PAT 1996]

			18 Re	flection of Light	
	(a) Infinity	(b) <i>f</i>	(c) $f/2$	(d) 2 <i>f</i>	
50.	Radius of curvature of conc distance is	ave mirror is 40 <i>cm</i> and the size [AFMC 1995]	e of image is twice as that of objec	t, then the object	
	(a) 60 cm	(b) 20 <i>cm</i>	(c) 40 <i>cm</i>	(d) 30 cm	
1.	All of the following stateme	ents are correct except		[]	Aanipal MEE 1995
	(a) The magnification pro	duced by a convex mirror is alv	vays less than one		
	(b) A virtual, erect, same-	sized image can be obtained us	ing a planemirror		
	(c) A virtual, erect, magni	fied image can be formed using	g a concave mirror		
	(d) A real, inverted, same-	-sized image can be formed usin	ng a convex mirror		
2.	distance is	[AFMC 1995]	e of object is twice as that of imag	e, then the image	
	(a) 10 <i>cm</i>	(b) 20 <i>cm</i>	(c) 40 <i>cm</i>	(d) 30 cm	
3.	If an object is placed 10 cm	in front of a concave mirror of	focal length 20 <i>cm</i> , the imagewil	l be	[MP PMT 1995
	(a) Diminished, upright, v Diminished, inverted,	rirtual (b) real (d) Enlarged, upright, real	Enlarged, upright, virtua	l (c)	
4.	An object 1 <i>cm</i> tall is placed a [SCRA 1994]	4 <i>cm</i> in front of a mirror. In or	der to produce an upright image c	of 3 <i>cm</i> height one n	eeds
	(a) Convex mirror of radia <i>cm</i>	us of curvature 12 <i>cm</i>	(b) Concave mirror of rac	lius of curvature 12	2
	(c) Concave mirror of rad	ius of curvature 4 <i>cm</i>	(d) Plane mirror of heig	ht 12 c <i>m</i>	
5.	The image formed by a con	vex mirror of a real object is la	rger than the object		[CPMT 1994
	(a) When $u < 2f$ value of u	(b) When $u > 2f$	(c) For all values of u	(d) For	no
6.	An object 5 cm tall is place	d 1 m from a concave spherical	mirror which has a radius of curv	rature of 20 <i>cm</i> . The	2
	size of the image is]
	(2) 0.11 cm	(b) $a = a m$	$(a) 0 \varepsilon \in cm$	[MP PEI 1]	9931
7.	A virtual image three time	s the size of the object is obtain	ned with a concave mirror of rad	ius of curvature 36	cm
/•	The distance of the object f	rom the mirror is			cint.
	(a) 5 cm	(b) 12 <i>cm</i>	(c) 10 <i>cm</i>	(d) 20 <i>cm</i>	
8.	Given a point source of light	it, which of the following can pr	roduce a parallel beam of light		[CPMT 1974
	(a) Convex mirror		(b) Concave mirror		
	(c) Concave lens 90°		(d) Two plane mirrors in	clined at an angle o	f
9.	A convex mirror is used to	form the image of an object. Th	en which of the following statem	ents is wrong	
	(a) The images lies betwee	en the pole and the focus	(b) The image is diminish	ned in size	
_	(c) The images is erect		(d) The image is real		.1.
0.	A boy stands straight infrom $\frac{1}{1}$ the fiber weath wight The	nt of a mirror at a distance of 3	o <i>cm</i> away from it. He sees his ere	ect image whose hel	ignt
	is \underline{m} of his real height. The 5	e mirror ne is using is			
	(a) Plane mirror convex mirror	(b) Convex mirror	(c) Concave mirror	(d) Plano-	
61.	For the largest distance of	the image from a concave mirr	or of focal length 10 <i>cm</i> , the object	should be kept at	
		(a) 10 cm (b) In	finite (c) 40 cm	(d) 60 <i>cm</i>	
2.	A dentist uses a small mirro curvature of the mirror is	or that gives a magnification of 4	when it is held 0.60 <i>cm</i> from a to	ooth. The radius of	
	(a) 1.60 cm (convex) (convex)	(b) 0.8 <i>cm</i> (concave)	(c) 1.60 <i>cm</i> (concave)	(d) 0.8	ст
3.	A dice is placed with its on curvature of a concave mir	e edge parallel to the principal a ror. Then the image has the sha	axis between the principal focus a	and the centre of the	2
	(a) Cube	(b) Cuboid	(c) Barrel shaped	(d) Spherica	վ
		· ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

Advance Level

6

				10110001011 01 2.g.t 2)
64.	A short linear object of ler of the mirror. The size of t	igth <i>l</i> lies along the axis of a co the image is approximately equ	oncave mirror of focal length f at a saal to	distance <i>u</i> form the pole [IIT 1988; BHU 2003
	(a) $l\left(\frac{u-f}{f}\right)^{1/2}$	(b) $l \left(\frac{u-f}{f} \right)^2$	(c) $l \left(\frac{f}{u-f} \right)^{1/2}$	(d) $l \left(\frac{f}{t - f} \right)^2$
65.	A point object is moving of it is at a distance of 60 <i>cm</i>	on the principal axis of a conca from the mirror, its velocity is	ve mirror of focal length 24 <i>cm</i> tov s 9 <i>cm/sec</i> . What is the velocity of	wards the mirror. When the image at that instant
	(a) 5 cm/sec towards the towards the mirror	mirror	(b)	4 cm/sec
	(c) 4 <i>cm/sec</i> away from t	he mirror	(d) 9 <i>cm/sec</i> away from	the mirror
66.	A convex mirror of focal le object from the mirror is	ength 10 <i>cm</i> forms an image w	hich is half of the size of the object	t. The distance of the
	(a) 10 cm	(b) 20 <i>cm</i>	(c) $5 cm$	(d) 15 <i>cm</i>
67.	A concave mirror is used t magnification of 16 is desi	to focus the image of a flower of the distance of the flower	on a nearby well 120 <i>cm</i> from the f from the mirror should be	lower. If a lateral
	(a) 8 cm	(b) 12 <i>cm</i>	(c) 80 <i>cm</i>	(d) 120 <i>cm</i>
68.	A thin rod of 5 <i>cm</i> length and magnified and one en	is kept along the axis of a conc id touches the rod. Its magnifie	ave mirror of 10 <i>cm</i> focal length su cation will be	uch that its image is real
	(a) 1	(b) 2	(c) 3	(d) 4
69.	A luminous object is place formed in two mirrors co mirror, is	ed 20 <i>cm</i> from surface of a cor incide. If plane mirror is at a	nvex mirror and a plane mirror is s distance of 12 <i>cm</i> from object, the	set so that virtual images en focal length of convex
	(a) 5 cm	(b) 10 <i>cm</i>	(c) 20 <i>cm</i>	(d) 40 <i>cm</i>
70.	A rear mirror of a vehicle 10 <i>cm</i> . If the eye of driver	is cylindrical having radius of is assumed to be at large dista	curvature 10 <i>cm</i> . The length of arc nce, from the mirror, then the field	e of curved surface is also d of view in radian is
	(a) 0.5	(b) 1	(c) 2	(d) 4
71.	A vehicle has a driving m	irror of focal length 30 cm. A	Another vehicle of dimension $2 \times$	$4 \times 1.75 m^3$ is 9 <i>m</i> away
	from the mirror of first ve	hicle. Position of the second ve	ehicle as seen in the mirror of first	vehicle is
	(a) 30 cm			
	(b) 60 cm			
	(c) 90 cm		9m	
	(d) 9 cm			
72.	A cube of side $2 m$ is place face Q at a distance of $5 n$ of P and Q are	ed in front of a concave mirror <i>i</i> from the mirror. The distanc	or focal length $1m$ with its face P are between the images of face P and	at a distance of 3 <i>m</i> and d <i>Q</i> and height of images
	(a) 1 m, 0.5 m, 0.25 m		- 9m -	- \
	(b) 0.5 <i>m</i> , 1 <i>m</i> , 0.25 <i>m</i>		2m	P
	(c) $0.5 m, 0.25 m, 1m$			~ 3m→
	(d) $0.25 m, 1m, 0.5 m$			L ^E
73.	A concave mirror of radiu <i>cm</i> . The mirror faces upw	s of curvature 60 <i>cm</i> is placed vards with its axis vertical. Sola	at the bottom of ar light falls normally on the surfac	ht of 20 ce of water and the image
	of the sun is formed. If a	$u_w = \frac{4}{3}$ then with the observer	r in air, the distance of the image f	rom the surface of water
	is			
	(a) 30 cm below	(b) 10 <i>cm</i>	(c) 7.5 <i>cm</i> above	(d) 7.5 <i>cm</i>
74.	A concave mirror forms as (a) The radius of curvatu	n image of the sun at a distanc are of this mirror is 6 <i>cm</i>	e of 12 <i>cm</i> from it	

- (b) To use it as a shaving mirror, it must be held at a distance of 8-10 cm from the face
- (c) If an object is kept at a distance of 12 *cm* from it, the image formed will be of the same size as the object
- (d) All the above a alternatives are correct

A small piece of wire bent into an L shape with upright and horizontal portions of equal lengths, is placed with the 75. horizontal portion along the axis of the concave mirror whose radius of curvature is 10 cm. If the bend is 20 cm from the pole of the mirror, then the ratio of the lengths of the images of the upright and horizontal portions of the wire is

(b) 3:1

(d) 2:1

As the position of an object (*u*) reflected from a concave mirror is varied, the position of the image (*v*) also varies. 76. By letting the *u* changes from 0 to $+\infty$ the graph between *v* versus *u* will be

77.

b

(c) 1:3

78. A concave mirror has a focal length 20 cm. The distance between the two positions of the object for which the image size is double of the object size is

(a) 20 cm

(c) 30 cm (d) 60 cm (b) 40 cm A concave mirror of focal length 10 cm and a convex mirror of focal length 15 cm are placed facing each other 40 79. cm apart. A point object is placed between the mirrors, on their common axis and 15 cm from the concave mirror. Find the position and nature of the image produced by the successive reflections, first at concave mirror and then at convex mirror

(c) 6 cm (d) 8 cm (a) 2 cm (b) 4 cm

Answer Sheet

	_	_	_	_	_									_	_	_	_	_	_
1	2	3	4	5	6	7	8	9	10	-11	12	13	14	15	16	17	18	19	20
c	c	c	С	c	b	b	b	b	с	b	b	a	b	с	b	d	d	с	b
21	22	23	24	25	26	2 7	28	29	30	31	32	33	34	35	36	3 7	38	39	40
d	a	b	b	с	с	b	a	с	d	b	a	d	с	d	с	d	d	b	d
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	5 7	58	59	60
b	a	d	с	а	a	b	b, c	с	d	d	a	b	b	d	с	b	b	d	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78		
a	c	b	d	с	a	a	a	a	b	a	d	с	b	b	a	a	с		

The bending of the ray of light passing from one medium to the other medium is called refraction.

Snell's law

The ratio of sine of the angle of incidence to the angle of refraction (r) is a constant called refractive index

i.e.
$$\frac{\sin i}{\sin r} = \mu$$
 (a constant). For two media, Snell's law can be written as $_{1}\mu_{2} = \frac{\mu_{2}}{\mu} = \frac{\sin i}{\sin r}$

 $\Rightarrow \mu_1 \times \sin i = \mu_2 \times \sin r$ *i.e.* $\mu \sin \theta = \text{constant}$

Also in vector form : $\hat{i} \times \hat{n} = \mu(\hat{r} \times \hat{n})$

Refractive Index

Refractive index of a medium is that characteristic which decides speed of light in it. It is a scalar, unit less and dimensionless quantity

.(1) **Types :** It is of following two types

Absolute refractive index	Relative refractive index
(i) When light travels from air to any transparent medium then R.I. of medium <i>w.r.t.</i> air is called it's absolute R.I. <i>i.e.</i> $\mu_{\text{arr medium}} = \frac{c}{v}$	(i) When light travels from medium (1) to medium (2) then R.I. of medium (2) <i>w.r.t.</i> medium (1) is called it's relative R.I. <i>i.e.</i> $\mu_1 = \mu_2 = \nu_1 - \nu_1 - \nu_2$ (where v_1 and v_2 are the $\mu_1 = v_2$ speed of light in medium 1 and 2 respectively).
(ii) Some absolute R.I.	(ii) Some relative R.I.(a) When light enters from water to glass :

22 Reflection of Light

(i) Nature of the media of incidence and refraction.

(ii) Colour of light or wavelength of light.

(iii) Temperature of the media : Refractive index decreases with the increase in temperature.

(3) Principle of reversibility of light and refraction through several media :

Refraction Through a Glass Slab and Optical Path

(1) Lateral shift

The refracting surfaces of a glass slab are parallel to each other. When a light ray passes

through a glass slab it is refracted twice at the two parallel faces and finally emerges out parallel to it's incident direction *i.e.* the ray undergoes no deviation $\delta = 0$. The angle of emergence (e) is equal to the angle of incidence (*i*)

The Lateral shift of the ray is the perpendicular distance between the incident and the emergent ray, and it is given by $MN = t \sec r \sin (i - r)$

Normal shift

Normal shift
$$OO' = x = \left(1 - \frac{1}{\mu}\right)t$$

Or the object appears to be shifted towards the slab by the distance x

(2)Optical path :

It is defined as distance travelled by light in vacuum in the same time in which it travels a given path length in a medium.

Note : \Box Since for all $\mu > 1$, so optical path length (μx) is always greater than the media

geometrical path length (x).

194949494949

Note $: \square$ If a beaker contains various immisible liquids as shown then

Apparent depth of bottom =
$$\frac{d_1 + d_2 + d_3 + \dots}{\mu_1 + \mu_2 + \mu_3}$$
 μ_1
 μ_2
 μ_3 μ_3 μ_4
 μ_4
 μ_2
 μ_3 μ_3 μ_4
 μ_4
 μ_2
 μ_3 μ_4
 μ_4
 μ_3 μ_4
 μ_4
 μ_3 μ_4
 μ_4
 μ_3 μ_4
 μ_4
 μ_4
 μ_3 μ_4
 μ_4
 μ_4
 μ_4
 μ_3 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_3 μ_4
 μ_4 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 μ_4
 $\mu_$

Total Internal Reflection

When a ray of light goes from denser to rarer medium it bends away from the normal and as the angle of incidence in denser medium increases, the angle of refraction in rarer medium also increases and at a certain angle, angle of refraction becomes 90°, this angle of incidence is called critical angle (*C*).

When Angle of incidence exceeds the critical angle than light ray comes back in to the same medium after reflection from interface. This phenomenon is called Total internal reflection (TIR).

(ii) Nature of the pair of media : Greater the refractive index lesser will be the critical angle. Note : \Box When a light ray travels from denser to rarer medium, then deviation of the ray is (a) For (glass- air) pair $\rightarrow C_{glass} = 42^{\circ}$ (b) For (water-air) pair $\rightarrow C_{water} = 49^{\circ}$ $\delta = \pi - 2\theta \Rightarrow \delta \rightarrow \max$ when $\theta \rightarrow \min = C$

(c) For (diamond-air) pair i.e. $\partial_{max} = (\pi^2 - 2C)$: $C_{diamont} = 24^{\circ}$

(1) Dependence of critical angle

(iii) Temperature : With temperature rise refractive index of the material decreases therefore critical angle increases.

(2) Examples of total internal reflection (TIR)

(ii) Brilliance of diamond : Due to repeated internal reflections diamond sparkles.

(iii) **Optical fibre :** Optical fibres consist of many long high quality composite glass/quartz fibres. Each fibre consists of a core and cladding. The refractive index of the material of the core (μ_1) is higher than that of the cladding (μ_2) .

When the light is incident on one end of the fibre at a small angle, the light passes inside, undergoes repeated total internal reflections along the fibre and finally comes out. The angle of incidence is always larger than the critical angle of the core material with respect to its cladding. Even if the fibre is bent, the light can easily travel through along the fibre

A bundle of optical fibres can be used as a 'light pipe' in medical and optical examination. It can also be used for optical signal transmission. Optical fibres have also been used for transmitting and receiving electrical signals which are converted to light by suitable transducers.

(iv) **Field of vision of fish (or swimmer) :** A fish (diver) inside the water can see the whole world through a cone with.

(v) **Porro prism :** A right angled isosceles prism, which is used in periscopes or binoculars. It is used to deviate light rays through 90 ° and 180 ° and also to erect the image.

Example

Reflection of Light 27

(d) 1.33

$$\therefore \qquad \underset{g \ \omega \ \omega}{\mu \times \mu} = \sin i \qquad \Rightarrow \mu = \frac{1}{s} = \frac{1}{\sin i}$$

Example: **6** The ratio of thickness of plates of two transparent mediums *A* and *B* is 6 : 4. If light takes equal time in passing through them, then refractive index of *B* with respect to *A* will be

Solution: (b) By using $t = \frac{\mu x}{t}$

$$\Rightarrow \frac{\mu_B}{\mu_A} = \frac{x_A}{x_B} = \frac{6}{4} \Rightarrow \qquad _A \mu_B = \frac{3}{2} = 1.5$$

Example: 7 A ray of light passes from vacuum into a medium of refractive index μ , the angle of incidence is found to be twice the angle of refraction. Then the angle of incidence is

(a)
$$\cos^{-1}(\mu/2)$$
 (b) $2\cos^{-1}(\mu/2)$ (c) $2\sin^{-1}(\mu)$ (d)
 $2\sin^{-1}(\mu/2)$

Solution: (b) By using
$$\mu = \frac{\sin i}{\sin r} \Rightarrow \mu = \frac{\sin 2r}{\sin r} = \frac{2 \sin r \cos r}{\sin r}$$
 ($\sin 2\theta = 2 \sin \theta \cos \theta$)
 $\Rightarrow r = \cos^{-1} \begin{pmatrix} \mu \\ 2 \end{pmatrix}$. So, $i = 2r = 2 \cos^{-1} \begin{pmatrix} \mu \\ 2 \end{pmatrix}$

Example: 8 A ray of light falls on the surface of a spherical glass paper weight making an angle α with the normal and is refracted in the medium at an angle β . The angle of deviation of the emergent ray from the direction of the incident ray is

(a)
$$(\alpha - \beta)$$
 (b) $2(\alpha - \beta)$ (c) $(\alpha - \beta)/2$

(d)
$$(\alpha + \beta)$$

Solution: (b) From figure it is clear that
$$\triangle OBC$$
 is an isosceles triangle,
Hence $\angle OCB = \beta$ and emergent angle is α
Also sum of two in terior angles = exterior angle
 $\therefore \delta = (\alpha - \beta) + (\alpha - \beta) = 2(\alpha - \beta)$

(d) 2.5

 $\mu_2 =$

 $\mu_1 = 3$

Example: 9 A rectangular slab of refractive index μ is placed over another slab of refractive index 3, both slabs being identical in dimensions. If a coin is placed below the lower slab, for what value of μ will the coin appear to be placed at the interface between the slabs when viewed from the top

Solution: (c)

(a) 1.8 (b) 2 (c) 1.5
Apparent depth of coin as seen from top
$$=\frac{x}{\mu_1} + \frac{x}{\mu_2} = \frac{x}{\mu_1}$$

 $\Rightarrow \frac{1}{\mu_1} + \frac{1}{\mu_2} = 1 \Rightarrow \frac{1}{3} + \frac{1}{\mu_1} = 1 \Rightarrow \mu = 1.5$

- Example: 10 A coin is kept at bottom of an empty beaker. A travelling microscope is focussed on the coin from top, now water is poured in beaker up to a height of 10 cm. By what distance and in which direction should the microscope be moved to bring the coin again in focus
 (a) 10 cm up ward
 (b) 10 cm down ward
 (c) 2.5 cm up wards
 (d) 2.5 cm down wards
- Solution: (c) When water is poured in the beaker. Coin appears to shift by a distance $d = \frac{h}{4} = \frac{10}{4} = 2.5 cm$

Hence to bring the coil again in focus, the microscope should be moved by 2.5 cm in upward direction.

$$\Rightarrow \sin \theta > \sin C \qquad \Rightarrow \sin \theta > \frac{1}{\omega \mu_g}$$

$$\Rightarrow \sin \theta > \frac{1}{9/8} \qquad \Rightarrow \sin \theta > \frac{8}{9}$$

Example: 15

- When light is incident on a medium at angle *i* and refracted into a second medium at an angle r, the graph of sin *i* vs sin r is as shown in the graph. From this, one can conclude that
 - (a) Velocity of light in the second medium is 1.73 times the velocity of light in the I medium
 - (b) Velocity of light in the I medium is 1.73 times the velocity in the II medium
 - (c) The critical angle for the two media is given by $\sin i_c = \frac{1}{\sqrt{3}}$

(d) $\sin i_c = \frac{1}{2}$

From graph tan 30 ° = $\frac{\sin r}{\sin i} = \frac{1}{\mu_2} \Rightarrow \mu_2 = \sqrt{3} \Rightarrow \frac{\mu_2}{\mu_1} = \frac{v_1}{v_2} = 1.73 \Rightarrow v_1 = 1.75 v_2$ *Solution:* (b, c)

Also from
$$\mu = \frac{1}{\sin C} \Rightarrow \sin C = \frac{1}{Rarer \mu_{Denser}} \Rightarrow \sin C = \frac{1}{\frac{1}{1}\mu_2} = \frac{1}{\sqrt{3}}$$

- **Example: 16** A beam of light consisting of red, green and blue colours is incident on a right angled prism. The refractive indices of the material of the prism for the above red, green and blue wavelength are 1.39, 1.44 and 1.47 respectively. The prism will
 - (a) Separate part of red colour from the green and the blue colours
 - (b) Separate part of the blue colour from the red and green colours

- (c) Separate all the colours from one another
- (d) Not separate even partially any colour from the other two colours

At face AB, i = 0 so r = 0, *i.e.*, no refraction will take place. So light will be incident on face Solution: (a) AC at an angle of incidence of 45°. The face AC will not transmit the light for which $i > \theta_C$,

i.e., $\sin i > \sin \theta_C$

 $\sin 45^{\circ} > (1/\mu)$ i.e., $\mu > \sqrt{2} (= 1.41)$ or

Now as $\mu_R < \mu$ while μ_G and $\mu_B > \mu$, so red will be transmitted through the face AC while green and blue will be reflected. So the prism will separate red colour from green and blue.

An air bubble in a glass slab $(\mu = 1.5)$ is 6 *cm* deep when viewed from **Example: 17** one face and 4 cm deep when viewed from the opposite face. The thickness of the glass plate is (a) 10 cm (b) 6.67 cm (c) 15 cm (d) None of

theseSolution: (c)Let thickness of slab be t and distance of air bubble from one side is
$$x$$
6 cm4 ci

When viewed from side (1):
$$1.5 = \frac{x}{6} \Rightarrow x = 9cm$$

When viewed from side (2): $1.5 = \frac{(t-x)}{4} \Rightarrow 1.5 = \frac{(t-9)}{4} \Rightarrow t = 15cm$
Side 1

Air bubble õ

Side 2

 μ_1 = Refractive index of the medium from which light rays are coming (from object).

 μ_2 = Refractive index of the medium in which light rays are entering.

u = Distance of object, v = Distance of image, R = Radius of curvature

Refraction formula : $\frac{\mu_2 - \mu_1}{R} = \frac{\mu_2}{v} - \frac{\mu_1}{u}$ (use sign convention while solving the problem)

Note $: \Box$ Real image forms on the side of a refracting surface that is opposite to the

object, and virtual image forms on the same side as the object.

 $\Box \text{ Lateral (Transverse) magnification } m = \frac{I}{O} = \frac{\mu_1 v}{\mu_2 u}.$

Specific Example

In a thin spherical fish bowl of radius 10 cm filled with water of refractive index 4/3 there is a small fish at a distance of 4 cm from the centre C as shown in figure. Where will the image of fish appears, if seen from E

Lens

Lens is a transparent medium bounded by two refracting surfaces, such that at least one surface is spherical.

(1) Type of lenses

Convex lens	s (Converges	the light rays)	Concave lens (Diverges the light rays)			
\bigcirc						
Double convex	Plano convex	Concavo convex	Double concave	Plane concave	Convexo concave	
Thick at middle			Thin at middle			
It forms real and	virtual images be	oth	It forms only virtual images			

(2)Some definitions

 C_1 , C_2 – Centre of curvature, R_1 , R_2 – Radii of curvature

(i) **Optical centre (***O***) :** A point for a given lens through which light ray passes undeviated (Light ray passes undeviated through optical centre).

Not \Box Second principle focus is the principle focus of the lens.

 \Box When medium on two sides of lens is same then $|F_1| = |F_2|$.

 \square If medium on two sides of lens are not same then the ratio of two focal lengths

μ1	μ2

(iii) **Focal length** (*f*) : Distance of second principle focus from optical centre is called focal length

 $f_{\text{convex}} \rightarrow \text{positive}, \quad f_{\text{concave}} \rightarrow \text{negative}, \quad f_{\text{plane}} \rightarrow \infty$

(iv) Aperture : Effective diameter of light transmitting area is called aperture.

Intensity of image \propto (Aperture)²

(v) **Power of lens** (*P*) : Means the ability of a lens to converge the light rays. Unit of power is Diopter (*D*).

 $P = \frac{1}{f(m)} = \frac{100}{f(cm)}; P_{\text{convex}} \rightarrow \text{positive}, P_{\text{concave}} \rightarrow \text{negative}, P_{\text{plane}} \rightarrow \text{zero}.$

Note : Thick lens Thin lens $P \uparrow f \downarrow R \downarrow$ $P \downarrow f \uparrow R \uparrow$

Lens	Location of the object	Location of the image	Nature of image			
			Magnificatio n	<u>Real</u> virtual	<u>Erect</u> inverted	
Convex	At infinity <i>i.e.</i> $u = \infty$	At focus <i>i.e.</i> $v = f$	<i>m</i> < 1 diminished	Real	Inverted	
	Away from $2f$ <i>i.e.</i> $(u > 2f)$	Between <i>f</i> and 2 <i>f</i> <i>i.e. f</i> < <i>v</i> < 2 <i>f</i>	<i>m</i> < 1 diminished	Real	Inverted	

(2) Image formation by lens

Reflection of Light 33

	At $2f$ or $(u = 2f)$	At $2f i.e. (v = 2f)$	m = 1 same size	Real	Inverted
	Between f and $2f$ <i>i.e.</i> $f < u < 2f$	Away from $2f i.e.$ (v > 2 f)	<i>m</i> > 1 magnified	Real	Inverted
	At focus <i>i.e.</i> $u = f$	At infinity <i>i.e.</i> $v = \infty$	$m = \infty$ magnified	Real	Inverted
	Between optical centre and focus, $u < f$	At a distance greater than that of object $v > u$	m > 1 magnified	Virtual	Erect
Concave	At infinity <i>i.e.</i> $u = \infty$	At focus <i>i.e.</i> $v = f$	<i>m</i> < 1 diminished	Virtual	Erect
	Anywhere between infinity and optical centre	Between optical centre and focus	<i>m</i> < 1 diminished	Virtual	Erect

Not □ Minimum distance between an object and it's real image formed by a convex lens is
 4*f*. □ Maximum image distance for concave lens is it's focal length.

(4)Lens maker's formula

The relation between f, μ , R_1 and R_2 is known as lens maker's formula and it is $\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$

Equiconvex lens	Plano convex lens	Equi concave lens	Plano concave lens
$R_1 = R$ and $R_2 = -R$	$R_1 = \infty, R_2 = -R$	$R_1 = -R$, $R_2 = +R$	$R_1 = \infty$, $R_2 = R$
$f = \frac{R}{2(\mu - 1)}$	$f = \frac{R}{(\mu - 1)}$	$f = -\frac{R}{2(\mu - 1)}$	$f = \frac{R}{2(\mu - 1)}$
for $\mu = 1.5$, $f = R$	for $\mu = 1.5$, $f = 2R$	for $\mu = 1.5 f = -R$	for $\mu = 1.5, f = -2R$

(5)Lens in a liquid

Focal length of a lens in a liquid (f_l) can be determined by the following formula

 $\frac{f_l}{f_a} = \frac{(_a \mu_g - 1)}{(_l \mu_g - 1)}$ (Lens is supposed to be made of glass).

Note : \Box Focal length of a glass lens ($\mu = 1.5$) is *f* in air then inside the water it's focal length is 4*f*.

 \Box In liquids focal length of lens increases (\uparrow) and it's power decreases (\downarrow).

(6)Opposite behaviour of a lens

In general refractive index of lens (μ_L) > refractive index of medium surrounding it (μ_M).

(7) Lens formula and magnification of lens

(i) Lens formula : $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$; (use sign convention)

(ii) Magnification : The ratio of the size of the image to the size of object is called magnification.

(a) Transverse magnification : $m = \frac{I}{O} = \frac{v}{u} = \frac{f}{f+u} = \frac{f-v}{f}$ (use sign convention while solving the problem)

the problem)

(b) Longitudinal magnification : $m = \begin{matrix} I = v_2 - v_1 \\ O \\ u_2 - u_1 \end{matrix}$. For very small object

$$m = \frac{dv}{du} = \begin{pmatrix} v \\ u \end{pmatrix}^2 = \begin{pmatrix} f \\ f + u \end{pmatrix}^2 = \begin{pmatrix} f - v \\ -f \end{pmatrix}^2$$

(c) Areal magnification : $m_s = \frac{A_i}{A_o} = m^2 = \left(\frac{f}{f+u}\right)^2$, (A_i = Area of image, A_o = Area of object)

(8) Relation between object and image speed

If an object move with constant speed (V_o) towards a convex lens from infinity to focus, the image will move slower in the beginning and then faster. Also $V_i = \left| \begin{pmatrix} f \\ (f+u) \end{pmatrix}^2 \right|^2$. V_o

(9)Focal length of convex lens by displacement method

(i) For two different positions of lens two images $(I_1 \text{ and } I_2)$ of an object is formed at the same location.

(10) Cutting of lens

(i) A symmetric lens is cut along optical axis in two equal parts. Intensity of image formed by each part will be same as that of complete lens.

(ii) A symmetric lens is cut along principle axis in two equal parts. Intensity of image formed by each part will be less compared as that of complete lens.(aperture of each part is $\frac{1}{\sqrt{2}}$ times that of complete lens)

(ii) In case when two thin lens are in contact : Combination will behave as a lens, which have more power or lesser focal length.

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} \qquad \qquad \begin{array}{c} F = \\ \hline f_1 f_2 \\ f_1 + f_2 \end{array} \qquad \qquad \text{and} \qquad P = P_1 + P_2$$

(iii) If two lens of equal focal length but of opposite nature are in contact then combination will behave as a plane glass plate and $F_{\text{combination}} = \infty$

(iv) When two lenses are placed co-axially at a distance *d* from each other then equivalent focal length (*F*).

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} \frac{d}{f_1 f_2} \quad \text{and} \quad P = \frac{P}{1} + \frac{P}{2} + \frac{P}{1} \frac{dP}{2} P_{12}$$

(v) Combination of parts of a lens :

(12) Silvering of lens

On silvering the surface of the lens it behaves as a mirror. The focal length of the silvered lens is $\frac{1}{F} = \frac{2}{f_l} + \frac{1}{f_l}$ where f_l = focal length of lens from which refraction takes place (twic

 f_m = focal length of mirror from which reflection takes place.

(i) Plano convex is silver

Μ

$$f_{m} = \frac{R}{2}, f_{l} = \frac{R}{(\mu - 1)}$$
 so $F = \frac{R}{2\mu}$

(ii) Double convex lens is silvered

Since
$$f_l = \frac{R}{2(\mu - 1)}, f_m = \frac{R}{2}$$

So $F = \frac{R}{2(2\mu - 1)}$

Not Similar results can be obtained for concave lenses.

(13) Defects in lens

(*i*) **Chromatic aberration :** Image of a white object is coloured and blurred because μ (hence *f*) of lens is different for different colours. This defect is called chromatic aberration.

Removal : To remove this defect *i.e.* for Achromatism we use two or more lenses in contact in place of single lens.

Mathematically condition of Achromatism is : $\omega_1 + \omega_2 = 0$ or $\omega_f = -\omega_f$ $f_1 + f_2 = 0$ or $\omega_f = -\omega_f$

Note : Component lenses of an achromatic doublet cemented by canada blasam because

it is transparent and has a refractive index almost equal to the refractive of the glass. (ii) **Spherical aberration :** Inability of a lens to form the point image of a point object on the axis is called Spherical aberration.

In this defect all the rays passing through a lens are not focussed at a single point and the image of a point object on the axis is blurred.

Removal : A simple method to reduce spherical aberration is to use a stop before and infront of the lens. (but this method reduces the intensity of the image as most of the light is cut off). Also by using plano-convex lens, using two lenses separated by distance d = F - F', using crossed lens.

Note $: \square$ Marginal rays : The rays farthest from the principal axis.

Paraxial rays : The rays close to the principal axis.

- □ Spherical aberration can be reduced by either stopping paraxial rays or marginal rays, which can be done by using a circular annular mask over the lens.
- □ Parabolic mirrors are free from spherical aberration.

(iii) **Coma :** When the point object is placed away from the principle axis and the image is received on a screen perpendicular to the axis, the shape of the image is like a comet. This defect is called Coma.

It refers to spreading of a point object in a plane \perp to principle axis.

Removal : It can be reduced by properly designing radii of curvature of the lens surfaces. It can also be reduced by appropriate stops placed at appropriate distances from the lens.

(iv) **Curvature :** For a point object placed off the axis, the image is spread both along and perpendicular to the principal axis. The best image is, in general, obtained not on a plane but on a curved surface. This defect is known as Curvature.

Removal : Astigmatism or the curvature may be reduced by using proper stops placed at proper locations along the axis.

(v) **Distortion :** When extended objects are imaged, different portions of the object are in general at different distances from the axis. The magnification is not the same for all portions of the extended object. As a result a line object is not imaged into a line but into a curve.

(vi) **Astigmatism :** The spreading of image (of a point object placed away from the principal axis) along the principal axis is called Astigmatism.

. .

violet and g photograph	reen colours. The reason for this is that our eye is most sensitive between blue and red colours, while the nic plates are most sensitive between violet and green colours.					
Convex	optical centre Exactly at centre of lens nvex and equiconcave Exactly at centre of lens co-concave and concavo-convex Outside the glass position opprover and plane concave On the pole of annual curface					
 Composite lens : If a lens is made of several materials then Number of images formed = Number of materials used Here no. of images = 5 						
Example						
Example: 18	A thin lens focal length f_1 and its aperture has diameter d . It forms an image of intensity I . Now the central part of the aperture upto diameter $d/2$ is blocked by an opaque paper. The focal length and image intensity will change to					
	(a) $\frac{f}{2}$ and $\frac{I}{2}$ (b) f and $\frac{I}{4}$ (c) $\frac{3f}{4}$ and $\frac{I}{2}$ (d) f and $\frac{3I}{4}$ d is blocked i.e. 1.					
<i>Solution:</i> (d)	Centre part of the aperture up to diameter $\frac{1}{2}$ is blocked <i>i.e.</i> $\frac{1}{4}$ th area is blocked $\left(A = \frac{\pi d^2}{4}\right)$. Hence remaining area $A' = \frac{3}{4}A$. Also, we know that intensity ∞ Area \Rightarrow					
Example: 19	$\frac{I'}{I} = \frac{A'}{A} = \frac{3}{4} \implies I' = \frac{3}{4}$ Focal length doesn't depend upon aperture. The power of a thin convex lens ($_a\mu_g = 1.5$) is + 5.0 <i>D</i> . When it is placed in a liquid of refractive index μ_g then it behaves as a concave lens of local length 100 cm. The refractive					
	index of the liquid $_{a}\mu_{l}$ will be					
Solution: (a)	(a) 5/3 (b) 4/3 (c) $\sqrt{3}$ (d) 5/4 By using $\frac{f_l}{f_a} = \frac{a\mu_g - 1}{l\mu_g - 1}$; where $\mu_l = \frac{\mu_g}{\mu_l} = \frac{1.5}{\mu_l}$ and $f_a = \frac{1}{P} = \frac{1}{5} = 20 \text{ cm}$					
	$\Rightarrow \frac{-100}{20} = \frac{1.5 - 1}{\frac{1.5}{\mu_l} - 1} \qquad \mu_l = 5 / 3$					
Example: 20	A double convex lens made of a material of refractive index 1.5 and having a focal length of 10 <i>cm</i> is immersed in liquid of refractive index 3.0. The lens will behave as [NCERT 1973]					
	(a) Diverging lens of focal length 10 <i>cm</i>(b) Diverging lens of focal length 10 / 3 <i>cm</i>					
	(c) Converging lens of focal length $10 / 3 cm$ (d) Converging lens of focal length $30 cm$					
Solution: (a)	By using $\frac{f_l}{f} = \frac{a \mu_g - 1}{\mu - 1} \Rightarrow \frac{f_l}{\pm 10} = \frac{1.5 - 1}{1.5} \Rightarrow f_l = -10 \ cm$ (i.e. diverging lens) $a = \frac{l}{g} = \frac{1.5 - 1}{3} = \frac{1.5 - 1}{$					
Example: 21	Figure given below shows a beam of light converging at point P . When a concave lens of focal length 16 cm is introduced in the path of the beam at a place O shown by dotted line, the beam converges at a distance x from the lens. The value x will be equal to					
	(a) 12 cm					
	(b) 24 cm $\rightarrow p$					
,	$\begin{array}{c} 0 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array}$					

.

17

(c) 35 cm
(d) 48 cm
Solution: (d) From the figure shown it is clear that
For lens:
$$u = 12 cm$$
 and $v = x = 7$
By using $\frac{1}{f} - \frac{1}{v} - \frac{1}{u}$ $\Rightarrow \frac{1}{1+6} - \frac{1}{x}$ $\frac{1}{1+2} \Rightarrow x = 48 cm$.
Example: 22
A convex lens of focal length $40 cm$ is an contact with a concave lens of focal length $25 cm$.
The power of combination is
(a) $-1.5 D$ (b) $-6.5 D$ (c) $+6.5 D$ (d) $+6.67 D$
Solution: (a) By using $\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$ $\Rightarrow \frac{1}{F} = \frac{1}{1+40} + \frac{1}{-25}$
 $\Rightarrow F = -\frac{200}{5} cm$, hence $P = \frac{100}{f(cm)} = \frac{100}{-200/3} = -1.5 D$
Example: 23
A combination of two this lenses with focal lengths f_1 and f_2 respectively forms an image
of distant object at distance 60 cm when lenses are in contact. The position of this image
shifts by 30 cm towards the combination when two lenses are separated by 10 cm. The
corresponding values of f_1 and f_2 are
(a) 30 cm, $-60 cm$ (b) 20 cm, $-30 cm$ (c) $15 cm, -20 cm$ (d) 12 cm, $-15 cm$
Solution: (b) Initially $F = 60 cm$ (Focal length of combination)
Hence by using $\frac{1}{F} = \frac{1}{f_1} \frac{1}{f_2} \Rightarrow \frac{1}{f_1} = \frac{1}{f_2} = \frac{1}{f_2} \frac{1}{f_1} \frac{1}{f_2} = 0$
 $\frac{1}{g} = \frac{1}{f_1} + \frac{1}{f_1} \frac{1}{f_1} \frac{1}{f_2} = -16$
 $\frac{1}{g} = \frac{1}{f_1} + \frac{1}{f_1} \frac{1}{f_2} = -16$
 $\frac{1}{g} = \frac{1}{f_1} + \frac{1}{f_1} \frac{1}{f_1} \frac{1}{f_2} = -16$
 $\frac{1}{g} = \frac{1}{f_1} \frac{1}{f_1} \frac{1}{f_1} \frac{1}{f_2} = -10$
 $\frac{1}{g} = \frac{1}{f_1} \frac{1}{f_1} \frac{1}{f_1} \frac{1}{f_2} \frac{1}{f_1} \frac{1}{f_2} = -10$
 $\frac{1}{g} = \frac{1}{f_1} \frac{1}{f_1} \frac{1}{f_1} \frac{1}{f_1} \frac{1}{f_2} = -10$
 $\frac{1}{g} = \frac{1}{f_1} \frac{1}{f_1} \frac{1}{f_1} \frac{1}{f_2} \frac{1}{f_2} \frac{1}{f_1} \frac{1}{f_1} \frac{1}{f_2} \frac{1}{f_2} \frac{1}{f_1} \frac{1}{f_2} \frac{1}{f_$

- -

RA 1998

A convex lens forms a r height of the image in bo (a) 16 cm By using $O = \sqrt{I_1 I_2}$ A convex lens produces of the object from the len (a) $\left(\frac{m+1}{m}\right)f$ By using $m = \frac{f}{f+u}$ he An air bubble in a glass eye when looked along d is (a) 1.2 cm By using $\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$ where $u = ?$, $v = -1$ c $\frac{1}{-1} - \frac{1.5}{u} = \frac{1 - 1.5}{(-2)}$ The sun's diameter is 1.4	real image of an observed image of an observed by the cases be 8 c (b) 8 cm $\Rightarrow O = \sqrt{8 \times 2} =$ a real image m times (b) $(m-1)f$ ere $-m = \frac{(+f)}{(+f) + u}$ sphere having 4 c liameter. If $_{a}\mu_{g} = 1$ [CPMT 2002 (b) 3.2 cm m, $\mu_{1} = 1.5$, μ_{2} $\Rightarrow u = -\frac{6}{5} = -1$	ject for its two different <i>n</i> and 2 <i>cm</i> , then heigh (c) 4 <i>cm</i> = 4 <i>cm</i> es the size of the object $\binom{(c)}{\left(\frac{m-1}{m}\right)}f$ $\Rightarrow -\frac{1}{m} = \frac{f+u}{f} = 1 + \frac{u}{f}$ <i>n</i> diameter appears 1 <i>c</i> .5, the distance of bubb (c) 2.8 <i>cm</i> = 1, <i>R</i> = -2 <i>cm</i> . 2 <i>cm</i> .	at positions on a series of the object is (d) 2 cm (d) 2 cm What will be the difference of the object is (e) (f) 2 cm What will be the difference of the object is (f) 2 cm (f) 2 cm (g) 2 cm	reen. If KCET (Engg./Med.) 2 stance [JIPMER 2002 1
By using $O = \sqrt{I_1 I_2}$ A convex lens produces of the object from the lend (a) $\left(\frac{m+1}{m}\right)f$ By using $m = \frac{f}{f+u}$ here An air bubble in a glass eye when looked along do is (a) 1.2 cm By using $\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$ where $u = ?$, $v = -1$ c $\frac{1}{-1} - \frac{1.5}{u} = \frac{1 - 1.5}{(-2)}$ The sun's diameter is 1.4	$\Rightarrow O = \sqrt{8 \times 2} =$ a real image <i>m</i> times (b) $(m-1)f$ ere $-m = \frac{(+f)}{(+f) + u}$ sphere having 4 cc liameter. If $_a\mu_g = 1$ [CPMT 2002 (b) 3.2 cm $m, \mu_1 = 1.5, \mu_2$ $\Rightarrow u = -\frac{6}{5} = -1$	$(c) f(m)$ es the size of the object $(c) \left(\frac{m-1}{m}\right)f$ $\Rightarrow -\frac{1}{m} = \frac{f+u}{f} = 1 + \frac{u}{f}$ n diameter appears 1 c .5, the distance of bubble $(c) 2.8 \ cm$ $= 1, R = -2 \ cm.$ 2 cm.	What will be the dia (d) $\frac{m+1}{f}$ $\frac{u}{f} \Rightarrow u = -\left(\frac{m+1}{m}\right)$. Joint from surface near ble from refracting so (d) 1.6 c $\mu_2 = 1$	stance [JIPMER 2002 1
A convex lens produces of the object from the length (a) $\left(\frac{m+1}{m}\right)^f$ By using $m = \frac{f}{f+u}$ here An air bubble in a glass eye when looked along do is (a) 1.2 cm By using $\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$ where $u = ?$, $v = -1$ c $\frac{1}{-1} - \frac{1.5}{u} = \frac{1 - 1.5}{(-2)}$ The sun's diameter is 1.4	a real image <i>m</i> times (b) $(m-1)f$ ere $-m = \frac{(+f)}{(+f) + u}$ sphere having 4 cc liameter. If $_{a}\mu_{g} = 1$ [CPMT 2002 (b) 3.2 cm $m, \mu_{1} = 1.5, \mu_{2}$ $\Rightarrow u = -\frac{6}{5} = -1$	es the size of the object $(c) \left(\frac{m-1}{m}\right)f$ $\Rightarrow -\frac{1}{m} = \frac{f+u}{f} = 1 + \frac{u}{f}$ <i>n</i> diameter appears 1 <i>c</i> .5, the distance of bubble (c) 2.8 <i>cm</i> = 1, <i>R</i> = -2 <i>cm</i> .	What will be the dia (d) $\frac{m+1}{f}$ $\frac{u}{f} \Rightarrow u = -\left(\frac{m+1}{m}\right)$. Justice means the from surface nears (d) 1.6 c $\mu_2 = 1$	stance [JIPMER 2002 1 f rest to urface m
(a) $\left(\frac{m+1}{m}\right)^f$ By using $m = \frac{f}{f+u}$ he An air bubble in a glass eye when looked along d is (a) 1.2 cm By using $\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{-R}$ where $u = ?$, $v = -1$ c $\frac{1}{-1} - \frac{1.5}{u} = \frac{1 - 1.5}{(-2)}$ The sun's diameter is 1.4	(b) $(m-1)f$ ere $-m = \frac{(+f)}{(+f) + u}$ sphere having 4 contained for the formula of the fo	(c) $\left(\frac{m-1}{m}\right)f$ $\Rightarrow -\frac{1}{m} = \frac{f+u}{f} = 1 + \frac{u}{f}$ <i>n</i> diameter appears 1 <i>c</i> .5, the distance of bubb (c) 2.8 <i>cm</i> = 1, $R = -2$ <i>cm</i> . 2 <i>cm</i> .	(d) $\frac{m+1}{f}$ $\frac{u}{f} \Rightarrow u = -\left(\frac{m+1}{m}\right). f$ f from surface near ble from refracting s (d) 1.6 c $\mu_2 = 1$	f cest to urface
By using $m = \frac{f}{f+u}$ he An air bubble in a glass eye when looked along d is (a) 1.2 cm By using $\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$ where $u = ?$, $v = -1$ c $\frac{1}{-1} - \frac{1.5}{u} = \frac{1 - 1.5}{(-2)}$ The sun's diameter is 1.4	$\operatorname{ere} - m = \frac{(+f)}{(+f) + u}$ sphere having 4 contained for the formula of th	$\Rightarrow -\frac{1}{m} = \frac{f+u}{f} = 1 + \frac{u}{f}$ <i>n</i> diameter appears 1 <i>c</i> .5, the distance of bubb (c) 2.8 <i>cm</i> = 1, <i>R</i> = -2 <i>cm</i> . 2 <i>cm</i> .	$\frac{u}{f} \Rightarrow u = -\left(\frac{m+1}{m}\right). j$ is m from surface near ble from refracting s (d) 1.6 c $\frac{\mu_2 = 1}{C_2}$	f rest to urface cm
An air bubble in a glass eye when looked along d is (a) 1.2 cm By using $\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$ where $u = ?$, $v = -1$ c $\frac{1}{-1} - \frac{1.5}{u} = \frac{1 - 1.5}{(-2)}$ The sun's diameter is 1.4	sphere having 4 cc liameter. If $_{a} \mu_{g} = 1$ [CPMT 2002 (b) 3.2 cm $m, \mu_{1} = 1.5, \mu_{2}$ $\Rightarrow u = -\frac{6}{5} = -1$	n diameter appears 1 <i>c</i> .5 , the distance of bubl (c) 2.8 <i>cm</i> = 1 , <i>R</i> = - 2 <i>cm</i> .	m from surface near ble from refracting st (d) 1.6 c $\mu_2=1$ $\mu_1=1.5$	rest to urface em
is (a) 1.2 cm By using $\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$ where $u = ?$, $v = -1$ c $\frac{1}{-1} - \frac{1.5}{u} = \frac{1 - 1.5}{(-2)}$ The sun's diameter is 1.4	[CPMT 2002 (b) 3.2 cm $m, \mu_1 = 1.5, \mu_2$ $\Rightarrow u = -\frac{6}{5} = -1$	(c) 2.8 cm = 1, R = - 2 cm. 2 cm.	(d) 1.6 c $\mu_2=1$ $\mu_1=1.5$ C $\mu_2=1$	em
(a) 1.2 cm By using $\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$ where $u = ?, v = -1 c$ $\frac{1}{-1} - \frac{1.5}{u} = \frac{1 - 1.5}{(-2)}$ The sun's diameter is 1.4	(b) 3.2 cm $m, \mu_1 = 1.5, \mu_2$ $\Rightarrow u = -\frac{6}{5} = -1$	(c) 2.8 cm = 1, R = - 2 cm. 2 cm.	(d) 1.6 c $\mu_2=1$ $\mu_1=1.5$ C Q $\mu_2=1$	em K
By using $\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$ where $u = ?$, $v = -1c$ $\frac{1}{-1} - \frac{1.5}{u} = \frac{1 - 1.5}{(-2)}$ The sun's diameter is 1.4	$m, \mu_1 = 1.5, \mu_2$ $\Rightarrow u = -\frac{6}{5} = -1$	= 1, R = - 2 cm.		~ 7
v u where $u = ?$, $v = -1c$ $\frac{1}{-1} - \frac{1.5}{u} = \frac{1 - 1.5}{(-2)}$ The sun's diameter is 1.4	$m, \mu_1 = 1.5, \mu_2$ $\Rightarrow u = -\frac{6}{5} = -1$	= 1, R = - 2 cm.		
where $u = ?$, $v = -1c$ $\frac{1}{-1} - \frac{1.5}{u} = \frac{1 - 1.5}{(-2)}$ The sun's diameter is 1.4	$m, \mu_1 = 1.5, \mu_2 \\ \Rightarrow u = -\frac{6}{5} = -1$	= 1, R = -2 cm. 2 cm.		
$\frac{1}{-1} - \frac{1.5}{u} = \frac{1 - 1.5}{(-2)}$ The sun's diameter is 1.4	$\Rightarrow u = -0$ 5 = -1	2 cm.	\rightarrow	
The sun's diameter is 1.4			$\begin{array}{c} \downarrow v = 1cm \\ R = 2cm \end{array}$	
image, formed by a conv	$4 \times 10^9 m$ and its disternal tens of focal lenses of focal lenses of the second sec	tance from the earth is th 2 <i>m</i> will be	$10^{11}m$. The diameter	r of its
(a) 0.7 <i>cm</i> point image)	(b) 1.4 <i>cm</i>	(c) 2.8 <i>cm</i>	(d) Zero) (i.e.
From figure		Sun 🔨	\land	
$\frac{D}{d} = \frac{10^{11}}{2} \implies d = \frac{2 \times 1}{12}$	$\frac{1.4 \times 10^9}{10^{11}} = 2.8 \ cm.$	(D)	a a a a a a a a a a	(d) Jmage
Two point light sources put in between them fro the same place	are 24 <i>cm</i> apart. V om one source so t	/here should a convex l hat the images of both	lens of focal length 9 the sources are for	<i>cm</i> be med at
(a) 6 cm	(b) 9 <i>cm</i>	(c) 12 <i>cm</i>	(d) 15 cr	n
The given condition will (<i>i.e.</i> it lies under the foc that $u > f$ (<i>i.e.</i> it lies beyon	l be satisfied only is us). The other sour ond the focus).	one source (S_1) placed ce (S_2) is placed on the	on one side such that other side of the ler	at <i>u < f</i> ns such
If <i>S</i> is the object for lens $\frac{1}{2}$	then $\frac{1}{f} = \frac{1}{-y} - \frac{1}{-y}$	$\frac{1}{-x} \Rightarrow \frac{1}{y} = \frac{1}{x} - \frac{1}{f}$	(i)	
	then $1 = 11$	$\frac{1}{y} = \frac{1}{y} = \frac{1}{f} - \frac{1}{(2)}$	$\frac{1}{(4-x)}$ (ii)	S_2
]	If S is the object for lens 1 If S is the object for lens 2	If S is the object for lens then $1 = \frac{1}{f} - \frac{1}{-y}$ If S is the object for lens then $1 = \frac{1}{f} - \frac{1}{-y}$ If S is the object for lens then $1 = \frac{1}{f} - \frac{1}{-y}$	that $u > f$ (i.e. if hes beyond the focus). If S is the object for lens then $1 = \frac{1}{f} - \frac{1}{-y}$ $\xrightarrow{-x} \Rightarrow \frac{1}{y} = \frac{1}{x} - \frac{1}{f}$ If S is the object for lens then $1 = \frac{1}{f} - \frac{-1}{-y}$ $\xrightarrow{-(24-x)} \Rightarrow \frac{1}{y} = \frac{1}{f} - \frac{-1}{(24-x)}$	that $u > f$ (i.e. if here beyond the focus). If S is the object for lens then $1 = \frac{1}{f} - \frac{1}{-y}$ $\frac{1}{-x} \Rightarrow \frac{1}{y} = \frac{1}{x} - \frac{1}{f}$ (i) If S is the object for lens then $1 = \frac{1}{f} - \frac{1}{-y}$ $\frac{1}{-(24-x)} \Rightarrow \frac{1}{y} = \frac{1}{f} - \frac{1}{(24-x)}$ (ii) $I_1 = \frac{1}{y} = \frac{1}{y} - \frac{1}{y} = \frac{1}{y} = \frac{1}{y} - \frac{1}{y} = \frac{1}{y} = \frac{1}{y} - \frac{1}{y} = \frac{1}{y} = \frac{1}{y} + \frac{1}{y} = $

From equation (i) and (ii)

$$\frac{1}{x} - \frac{1}{f} = \frac{1}{f} - \frac{1}{(24 - x)} \Longrightarrow \frac{1}{x} + \frac{1}{(24 - x)} = \frac{2}{f} = \frac{2}{9} \Longrightarrow x^2 - 24x + 108 = 0$$

On solving the equation $x = 18 \ cm$, 6 cm

Example: 35 There is an equiconvex glass lens with radius of each face as *R* and $_a \mu_g = 3/2$ and

 $_{a}\mu_{w} = 4/3$. If there is water in object space and air in image space, then the focal length is

(a)
$$2R$$
 (b) R (c) $3R/2$ (d) R^2

Solution: (c) Consider the refraction of the first surface *i.e.* refraction from rarer medium to denser medium

$$\frac{\mu - \mu}{\frac{2}{R} = \frac{1}{-u} + \frac{2}{v_1} \Rightarrow v_1 \qquad \underbrace{\left(\frac{3}{2}\right) - \left(\frac{4}{2}\right)}_{R} = \frac{3}{2} \frac{4}{v_1} + \underbrace{\frac{3}{2}}_{R} \Rightarrow v_1 = 9R$$

Now consider the refraction at the second surface of the lens *i.e.* refraction from denser medium to rarer medium

 3 *R* . This is equal to the focal length of the lens.

The image will be formed at a distance do $\frac{2}{2}$

Tricky example: 4

A luminous object is placed at a distance of 30 *cm* from the convex lens of focal length 20 *cm*. On the other side of the lens. At what distance from the lens a convex mirror of radius of curvature 10 *cm* be placed in order to have an upright image of the object coincident with it

Tricky example: 5

A convex lens of local length 30 cm and a concave lens of 10 cm focal length are placed so as to have the same axis. If a parallel beam of light falling on convex lens leaves concave lens as a parallel beam, then the distance between two lenses will be

Prism

Prism is a transparent medium bounded by refracting surfaces, such that the incident surface (on which light ray is incidenting) and emergent surface (from which light rays emerges) are plane and non parallel.

(1) Refraction through a prism

 $A = r_1 + r_2 \text{ and } i + e = A + \delta$ For surface $AC \ \mu = \frac{\sin i}{\sin r_1}$;

i – Angle of incidence, e – Angle of emergence, A – Angle of prism or refracting angle of prism, r_1 and r_2 – Angle of refraction, δ – Angle of For surface $AB \ \mu = \frac{\sin r_2}{2}$

(2) Deviation through a prism

For thin prism $\delta = (\mu - 1)A$. Also deviation is different for different colour light *e.g.* $\mu_R < \mu_V$ $\mu_{\text{Flint}} > \mu_{\text{Crown}}$ so $\delta_F > \delta_C$ so $\delta_R < \delta_V$. And

44 Reflection of Light

$$e = \sin^{-1} \left[\frac{\sin(A - C)}{\sin C} \right]$$
(ii) $r = \frac{A}{2}$ and $i = \frac{A + \delta_m}{2}$
(iii) $\mu = \frac{\sin i}{\sin A/2}$ or $\mu = \frac{\sin \frac{A + \delta_m}{2}}{\sin A/2}$

<u>Note</u> : \Box If $\delta_m =$ then $\mu = 2 \cos A / 2$

(3) Normal incidence on a prism

If light ray incident normally on any surface of prism as shown

(4) Grazing emergence and TIR through a prism

When a light ray falls on one surface of prism, it is not necessary that it will exit out from the prism. It may or may not be exit out as shown below

5. Dispersion through a prism

The splitting of white light into it's constituent colours is called dispersion of light.

(i) Angular dispersion (θ) : Angular separation between extreme colours *i.e.*

 $\theta = \delta_V - \delta_R = (\mu_V - \mu_R)A \text{ It depends upon } \mu \text{ and } A.$ (ii) Dispersive power (ω): $\omega = \frac{\theta}{\delta_y} = \frac{\mu_V - \mu_R}{\mu_y - 1}$ where $\left\{ \begin{array}{l} \mu_V = \mu_V + \mu_R \\ \eta_V = \frac{\mu_V + \mu_R}{2} \end{array} \right\}$

 \Rightarrow It depends only upon the material of the prism *i.e.* μ and it doesn't depends upon angle of prism A

Note : \Box Remember $\omega_{\text{Flint}} > \omega_{\text{Crown}}$.

(5) Combination of prisms

Two prisms (made of crown and flint material) are combined to get either dispersion only or deviation only.

Scattering of Light

Molecules of a medium after absorbing incoming light radiations, emits them in all direction. This phenomenon is called Scattering.

(1) According to scientist Rayleigh : Intensity of scattered light $\propto \frac{1}{2^4}$

(2) Some phenomenon based on scattering: (i) Sky looks blue due to scattering.

(ii) At the time of sunrise or sunset it looks reddish. (iii) Danger signals are made from red.

(3) Elastic scattering : When the wavelength of radiation remains unchanged, the

scattering is called elastic.

(4) Inelastic scattering (Raman's effect) : Under specific condition, light can also suffer inelastic scattering from molecules in which it's wavelength changes.

Rainbow

Rainbow is formed due to the dispersion of light suffering

refraction and TIR in the droplets present in the atmosphere.

(1) **Primary rainbow :** (i) Two refraction and one TIR. (ii) Innermost arc is violet and outermost is red. (iii) Subtends an angle of 42 ° at the eye of the observer. (iv) More bright

(2) **Secondary rainbow :** (i) Two refraction and two TIR. (ii) Innermost arc is red and outermost is violet.

(iii) It subtends an angle of 52.5 ° at the eye. (iv) Comparatively less bright.

Colours

Colour is defined as the sensation received by the eye (cone cells of the eye) due to light coming from object.

(1) Types of colours

(2) **Colours of object :** The perception of a colour by eye depends on the nature of object and the light incident on it.

Colours of opaque object	Colours of transparent object
(i) Due to selective reflection.	(i) Due to selective transmission.
(ii) A rose appears red in white light because it reflects red colour and absorbs all remaining colours.	(ii) A red glass appears red because it absorbs all colours, except red which it transmits.
(iii) When yellow light falls on a bunch of flowers, then yellow and white flowers looks yellow. Other flowers looks black.	(iii) When we look on objects through a green glass or green filter then green and white objects will appear green while other black.

Not A hot object will emit light of that colour only which it has observed when it was heated.

Spectrum

The ordered arrangements of radiations according to wavelengths or frequencies is called Spectrum. Spectrum can be divided in two parts (I) Emission spectrum and (II) Absorption spectrum.

(1) **Emission spectrum :** When light emitted by a self luminous object is dispersed by a prism to get the spectrum, the spectrum is called emission spectra.

Continuous emission spectrum	Line emission spectrum	Band emission spectrum
(i) It consists of continuously varying wavelengths in a definite wavelength range.	(i) It consist of distinct bright lines.	(iii) It consist of district bright bands.
(ii) It is produced by solids, liquids and highly compressed gases heated to high temperature.	(ii) It is produced by an excited source in atomic state.	(ii) It is produced by an excited source in molecular state.
(iii) <i>e.g.</i> Light from the sun, filament of incandescent bulb, candle flame <i>etc.</i>	(iii) <i>e.g.</i> Spectrum of excited helium, mercury vapours, sodium vapours or atomic hydrogen.	(iii) <i>e.g.</i> Spectra of molecular H_2 , <i>CO</i> , <i>NH</i> ₃ etc.

(2) **Absorption spectrum :** When white light passes through a semi-transparent solid, or liquid or gas, it's spectrum contains certain dark lines or bands, such spectrum is called absorption spectrum (of the substance through which light is passed).

(i) Substances in atomic state produces line absorption spectra. Polyatomic substances such as H_2 , CO_2 and $KMnO_4$ produces band absorption spectrum.

(ii) Absorption spectra of sodium vapour have two (yellow lines) wavelengths $D_1(5890 \text{ Å})$ and $D_2(5896 \text{ Å})$

Note : □ If a substance emits spectral lines at high temperature then it absorbs the same lines at low temperature. This is Kirchoff's law.

(3) **Fraunhoffer's lines :** The central part (photosphere) of the sun is very hot and emits all possible wavelengths of the visible light. However, the outer part (chromosphere) consists of vapours of different elements. When the light emitted from the photosphere passes through the chromosphere, certain wavelengths are absorbed. Hence, in the spectrum of sunlight a large number of dark lines are seen called Fraunhoffer lines.

(i) The prominent lines in the yellow part of the visible spectrum were labelled as *D*-lines, those in blue part as *F*-lines and in red part as *C*-line.

(ii) From the study of Fraunhoffer's lines the presence of various elements in the sun's atmosphere can be identified *e.g.* abundance of hydrogen and helium.

(4) **Spectrometer :** A spectrometer is used for obtaining pure spectrum of a source in laboratory and calculation of μ of material of prism and μ of a transparent liquid.

It consists of three parts : Collimator which provides a parallel beam of light; Prism Table for holding the prism and Telescope for observing the spectrum and making measurements on it.

The telescope is first set for parallel rays and then collimator is set for parallel rays. When prism is set in minimum deviation position, the spectrum seen is pure spectrum. Angle of prism (A) and angle of minimum deviation (δ_m) are measured and μ of material of prism is calculated using prism formula. For μ of a transparent liquid, we take a hollow prism with thin glass sides. Fill it with the liquid and measure (δ_m) and A of liquid prism. μ of liquid is calculated using prism formula.

(5) Direct vision spectroscope : It is an instrument used to observe pure spectrum. It produces dispersion without deviation with the help of *n* crown prisms and (n-1) flint prisms alternately arranged in a tabular structure.

For no deviation $n(\mu - 1)A = (n - 1)(\mu' - 1)A'$.

The angle of prism is $(\cos 41^{\circ} = 0.75)$

When light rays are incident on a prism at an angle of 45°, the minimum deviation is Example: 36 obtained. If refractive index of the material of prism is $\sqrt{2}$, then the angle of prism will be (c) 50° (a) 30° (b) 40° (d) 60°

Solution: (d)

 $\mu = \frac{\sin i}{\sin \frac{A}{2}} \qquad \sqrt{2} = \frac{\sin 45}{\sin \frac{A}{2}} \Rightarrow \sin \frac{A}{2} = \frac{\sqrt{2}}{\sqrt{2}} = \frac{1}{2} \Rightarrow \frac{A}{2} = 30^{\circ} \Rightarrow A = 60^{\circ}$ Example: 37 Angle of minimum deviation for a prism of refractive index 1.5 is equal to the angle of prism.

Reflection of Light **49**

(a)
$$62^{\circ}$$
 (b) 44°
Solution: (c) Given $\delta_{n} = A$, then by using $\mu = \frac{\sin \frac{A+\delta_{n}}{2}}{\sin \frac{A}{2}} = \frac{-2}{\sin \frac{A+\delta_{n}}{2}}$ (d) 31°
 $\sin \frac{A}{2} = 2\cos \frac{A}{2} = 2\cos \frac{A}{2}$
 $\int 1.5 = 2\cos \frac{A}{2} = 0.75 = \cos^{A} = \frac{2}{2}.41^{\circ} = \frac{A}{2} = \frac{A}{2} = \frac{3}{2}$.
Example: 38 Angle of glass prism is 60° and refractive index of the material of the prism is 1.414, then what will be the angle of incidence, so that ray should pass symmetrically through prism (a) $38^{\circ}61^{\circ}$ (b) $35^{\circ}35^{\circ}$ (c) 45° (d) $53^{\circ}8^{\circ}$
Solution: (c) incident ray and emergent ray are symmetrical in the cure, when prism is in minimum deviation position.
Hence in this condition $\mu = \frac{\sin i}{2} = \sin i - \mu \sin \left(\frac{A}{2}\right) \Rightarrow \sin i - 1.414 \times \sin 30^{\circ} - \frac{1}{\sqrt{2}} \Rightarrow i = 45^{\circ}$
Example: 39 A prism $(\mu = 1.5)$ has the refracting angle of 30°. The deviation of a monochromatic ray incident normally on its one surface will be (sin 48 " 36 - 0.75)
(a) $18^{\circ}36^{\circ}$ (b) $20^{\circ}30^{\circ}$ (c) 18° (d) $22^{\circ}1^{\circ}$
Solution: (a) By using $\mu = \frac{\sin i}{\sin a} \Rightarrow 1.5 = \frac{\sin i}{\sin 30} \Rightarrow \sin i = 0.75 \Rightarrow i = 48^{\circ}36^{\circ}$
Also from $\delta = i - A \Rightarrow \delta = 48^{\circ}36^{\circ} 30^{\circ} = 18^{\circ}36^{\circ}$
Example: 40 Angle of a prism is go^o and its refractive index is $\frac{2}{3}$ and one of the surface is silvered. At what angle of incidence, a ray should be incident on one surface so that after reflection from the silvered surface, it rareas its path
(a) 30° (b) 60° (c) 45° (d) $\sin^{-1}\sqrt{1.5}$
Solution: (c) This is the case when light ray is falling normally an second surface.
Hence by using $\mu = \frac{\sin i}{\sin A} = \sqrt{2} = \frac{\sin i}{\sin 30^{\circ}} \Rightarrow \sin i = \sqrt{2} \times \frac{1}{2} \Rightarrow i = 45^{\circ}$
Example: 41 The refracting angle of prism is A and refractive index of material of prism is $\cos \frac{1}{4} \sqrt{1.5}$
Solution: (d) By using $\mu = \frac{\sin A + \delta_m}{\frac{\sin A}{2}} \Rightarrow \cos \frac{A}{2} = \frac{\sin A + \delta_m}{\frac{\sin A}{2}} \Rightarrow \frac{\cos A}{2} = \frac{\sin A + \delta_m}{\frac{\sin A}{2}} = \frac{\sin A + \delta_m}{\frac{\cos A}{2}} = \frac{\sin A}{2} = \frac{\cos A}{2}$

_

_

Solution: (d) Given that $A = 60^{\circ}$ and $i = e = \frac{3}{4} = \frac{3}{4} \times \frac{60}{4} = 45^{\circ}$

By using $i + e = A + \delta \Longrightarrow 45 + 45 = 60 + \delta \Longrightarrow \delta = 30^{\circ}$

Example: 43 *PQR* is a right angled prism with other angles as 60° and 30°. Refractive index of prism is 1.5. *PQ* has a thin layer of liquid. Light falls normally on the face *PR*. For total internal reflection, maximum refractive index of liquid is

(a) 1.4

- (b) 1.3
- (c) 1.2

(d) 1.6

Solution: (c) For TIR at $PQ \ \theta < C$

From geometry of figure $\theta = 60$ *i.e.* $60 > C \Rightarrow \sin 60 > \sin C$

$$\Rightarrow \frac{\sqrt{3}}{2} > \frac{\mu_{Liquid}}{\mu_{\Pr\,ism}} \Rightarrow \mu_{Liquid} < \frac{\sqrt{3}}{2} \times \mu_{\Pr\,ism} \Rightarrow \mu_{Liquid} < \frac{\sqrt{3}}{2} \times 1.5 \Rightarrow \mu_{Liquid} < 1.3 \; .$$

- Example: 44 Two identical prisms 1 and 2, each will angles of 30°, 60° and 90° are placed in contact as shown in figure. A ray of light passed through the combination in the position of minimum deviation and suffers a deviation of 30°. If the prism 2 is removed, then the angle of deviation of the same ray is [PMT (Andhra) 1995]
 - (a) Equal to 15°
 - (b) Smaller than 30°
 - (c) More than 15°
 - (d) Equal to 30°
- Solution: (a) $\delta = (\mu 1)A$ as A is halved, so δ is also halves
- **Example: 45** A prism having an apex angle 4° and refraction index 1.5 is located in front of a vertical plane mirror as shown in figure. Through what total angle is the ray deviated after reflection from the mirror

(a)
$$176^{\circ}$$
 (b) 4°
(c) 178° (d) 2°

(c) 178° (d) $\delta_{\text{Pr ism}} = (\mu - 1)A = (1.5 - 1)4^{\circ} = 2^{\circ}$

Solution: (c)

:. $\delta_{Total} = \delta_{Prism} + \delta_{Mirror} = (\mu - 1)A + (180 - 2i) = 2^{\circ} + (180 - 2 \times 2) = 178^{\circ}$

Example: 46A ray of light is incident to the hypotenuse of a right-angled prism
after travelling parallel to the base inside the prism. If μ is the refractive index of the
material of the prism, the maximum value of the base angle for which light is totally
reflected from the hypotenuse is**[EAMCET**
2003]

(a)
$$\sin \left(\frac{1}{\mu}\right)$$
 (b) $\tan \left(\frac{1}{\mu}\right)$ (c) $\sin \left(\frac{\mu-1}{\mu}\right)$ (d) $\cos \left(\frac{1}{\mu}\right)$

Solution: (d)

If α = maximum value of vase angle for which light is totally reflected from hypotenuse. (90 – α) = *C* = minimum value of angle of incidence an hypotenuse for *TIR*

$$\sin(90 - \alpha) = \sin C = \frac{1}{\cancel{\mu}} \alpha = \cos -1 \left(\frac{1}{\cancel{\mu}}\right)$$

Example: **4**7 If the refractive indices of crown glass for red, yellow and violet colours are 1.5140, 1.5170 and 1.5318 respectively and for flint glass these are 1.6434, 1.6499 and 1.6852 respectively, then the dispersive powers for crown and flint glass are respectively

Reflection of Light **51**

(a) 0.034 and 0.064 (b) 0.064 and 0.034 (c) 1.00 and 0.064 (d) 0.034 and 1.0
Solution: (a)
$${}^{\omega}_{Crown} = \frac{\mu_{r} - \mu_{r}}{\mu_{r} - 1} = \frac{1.5318 - 1.5140}{(1.5170 - 1)} = 0.034$$
 and
 ${}^{\omega}_{Pim} = \frac{\mu_{r} - \mu_{r}}{\mu_{r} - 1} = \frac{1.6852 - 1.6434}{1.6499 - 1} = 0.064$
Example: 48 Flint glass prism is joined by a crown glass prism to produce dispersion without deviation.
The refractive indices of these for mean rays are 1.602 and 1.500 respectively. Angle of
prism of flint prism is 10°, then the angle of prism for crown prism will be
(a) 12° 2.4' (b) 12° 4' (c) 1.24° (d) 12°
Solution: (a) For dispersion without deviation
 $\frac{A_{C_{c}}}{A_{F}} = \frac{(\mu_{F} - 1)}{(\mu_{C} - 1)} \stackrel{A}{\to} \frac{1.602 - 1}{(1.500 - 1)} \stackrel{A}{\to} = 12.04° = 12° 2.4'$
Tricky example: 6
An achromatic prism is made by crown glass prism ($A_{C} = 19°$) and flint glass prism
 $(A_{F} = 6°) \cdot \text{If } C\mu_{F} = 1.5 \text{ and } F\mu_{F} = 1.66$, then resultant deviation for red coloured ray will be
(a) 1.04° (b) 5° (c) 0.96° (d) 13.5°
Solution : (d) For achromatic combination $w_{C} = w_{F} \Rightarrow [(\mu_{r} - \mu_{r})A]_{C} = -[(\mu_{r} - \mu_{r})A]_{F}$
 $\Rightarrow [\mu_{r}A]_{C} + [\mu_{r}A]_{C} + [\mu_{r}A]_{F} = 1.5 + 6 \times 1.66 = 38.5$
Resultant deviation $\delta = [(\mu_{r} - 1)A]_{C} + [(\mu_{r} - 1)A]_{F}$
 $= [\mu_{r}A]_{C} + [\mu_{r}A]_{C} + [\mu_{r}A]_{C} + (\mu_{r}A]_{F} = 38.5 - (19 + 6) = 13.5°$
Tricky example: 7
The light is incident at an angle of 60° on a prism of which the refracting angle of prism is
30°. The refractive index of material of prism will be
(a) $\sqrt{2}$ (b) $2\sqrt{3}$ (c) 2 (d) $\sqrt{3}$
Solution : (d) By using $i + e - A + \delta \Rightarrow 60 + e = 30 + 30 \Rightarrow e = 0$.
Hence ray will emerge out normally so by using the formula
 $\mu = \frac{\sin A}{\sin 30} = \sqrt{3}$

Optical Instruments

(1) **Eye lens :** Over all behaves as a convex lens of $\mu = 1.437$

(2) **Retina :** Real and inverted image of an object, obtained at retina, brain sense it erect.

(3) Yellow spot : It is the most sensitive part, the image formed at yellow spot is brightest.

(4) Blind spot : Optic nerves goes to brain through blind spot. It is not sensitive for light.

(5) **Ciliary muscles** – Eye lens is fixed between these muscles. It's both radius of curvature can be changed by applying pressure on it through ciliary muscles.

(6) **Power of accomodation :** The ability of eye to see near objects as well as far objects is called power of accomodation.

Note : D When we look distant objects, the eye is relaxed and it's focal length is largest.

(7) **Range of vision :** For healthy eye it is 25 cm (near point) to ∞ (far point).

A normal eye can see the objects clearly, only if they are at a distance greater than 25 *cm*. This distance is called Least distance of distinct vision and is represented by *D*.

(8) **Persistence of vision :** Is 1/10 *sec. i.e.* if time interval between two consecutive light pulses is lesser than 0.1 *sec.*, eye cannot distinguish them separately.

(9) **Binocular vision :** The seeing with two eyes is called binocular vision.

(10) **Resolving limit :** The minimum angular displacement between two objects, so that

they are just resolved is called resolving limit. For eye it is $1 = \left(\frac{1}{60}\right)^{\circ}$.

Specific Example

A person wishes to distinguish between two pillars located at a distances of 11 *Km*. What should be the minimum distance between the pillars.

Solution : As the limit of resolution of eye is
$$\left(\frac{1}{60}\right)^{o}$$

(11)Defects in eye

Myopia (short sightness)	Hypermetropia (long sightness)		
(i) Distant objects are not seen clearly but nearer objects are clearly visible.	(i) Distant objects are seen clearly but nearer object are not clearly visible.		
(ii) Image formed before the retina.	(ii) Image formed behind the retina.		
Retion	Retine		
(iii) Far point comes closer.	Near point moves away		
(iv) Reasons :	(iv) Reasons :		
(a) Focal length or radii of curvature of lens reduced or power of lens increases.	(a) Focal length or radii of curvature of lens increases or power of lens decreases.(b) Distance between eye lens and retina decreases.		
(b) Distance between eve lens and retina increases.			
(v) Removal : By using a concave lens of suitable focal length.	(v) Removal : By using a convex lens.		
(vi) Focal length :	(vi) Focal length :		
(a) A person can see upto distance $\rightarrow x$	(a) A person cannot see before distance $\rightarrow d$		
wants to see $\rightarrow \infty$, so	wants to see the object place at distance $\rightarrow D$		
focal length of used lens $f = -x = -$ (defected far point)	so $f = dD d$		
(b) A person can see upto distance $\rightarrow x$	- <i>D</i>		
wants to see distance $\rightarrow y (y > x)$			
so $f = \frac{xy}{x - y}$			

Presbyopia : In this defect both near and far objects are not clearly visible. It is an old age disease and it is due to the loosing power of accommodation. It can be removed by using bifocal lens.

Astigmatism : In this defect eye cannot see horizontal and vertical lines clearly, simultaneously. It is due to imperfect spherical nature of eye lens. This defect can be removed by using cylindrical lens (Torric lenses).

Microscope

(iii)

It is an optical instrument used to see very small objects. It's magnifying power is given by

Visual angle with instrument
$$(\beta)$$

 $= \frac{1}{\text{Visual angle when object is placed}} = \frac{1}{\text{Visual angl$

(1)Simple miscroscope

(i) It is a single convex lens of lesser focal length.

(ii) Also called magnifying glass or reading lens.

(iii) Magnification's, when final image is formed at D and ∞ (i.e. m_D and m_{∞})

$$m_D = \left(1 + \frac{D}{f} \right)_{\text{max}}$$
 and $m_{\infty} = \left(\frac{D}{f} \right)_{\text{min}}$

Note :
$$m_{\text{max}} - m_{\text{min}} = 1$$

□ If lens is kept at a distance *a* from the eye then $m_D = 1 + \frac{D-a}{f}$ and $m_\infty = \frac{D-a}{f}$

(2) Compound microscope

(i) Consist of two converging lenses called objective and eye lens.

(ii) $f_{\text{eyelens}} > f_{\text{objective}}$ and (diameter) $_{\text{evelens}} > (\text{diameter})_{\text{objective}}$

(iii) Final image is magnified, virtual and inverted.

(iv) u_0 = Distance of object from objective (*o*),

 v_0 = Distance of image (*A'B'*) formed by objective from objective, u_e = Distance of *A'B'* from eye lens, v_e = Distance of final image from eye lens, f_0 = Focal length of objective, f_e = Focal length of eye lens.

Magnification:
$$m_{D} = -\frac{v_{0}}{u_{0}} \left(\frac{1}{1+} \frac{D}{f_{e}} \right) = -\frac{f_{0}}{(u_{0} - f_{0})} \left(\frac{1}{1+} \frac{D}{f_{e}} \right) = -\frac{(v_{0} - f_{0})}{f_{0}} \left(1 + \frac{D}{f_{e}} \right)$$
$$m_{\infty} = -\frac{v_{0}}{u_{0}} \frac{D}{F_{e}} \left(u - \frac{-f_{0}}{0} \int \frac{D}{f_{0}} \right) \left(\frac{-f_{0}}{f_{e}} \right) = -\frac{(v_{0} - f_{0})}{f_{0}} \frac{D}{F_{e}}$$

Length of the tube (i.e. distance between two lenses)

When final image is formed at *D*; $L_D = v_0 + u_e = \frac{u_0 f_0}{u_0 - f}$ $D_{D} f_e + D$

When final images is formed at ∞ ; $L_{\infty} = v_0 + f_e = \underbrace{u_0 f_0}_{0 - f_0} f_e$

Note : $\Box n_{\infty} = \frac{(L_{\infty} - f_0 - f_e)D}{f_0 f_e}$

- \Box For maximum magnification both f_0 and f_e must be less.
- $\square m = m_{\text{objective}} \times m_{\text{eyelens}}$
- □ If objective and eye lens are interchanged, practically there is no change in magnification.

(3) **Resolving limit and resolving power :** In reference to a microscope, the minimum distance between two lines at which they are just distinct is called Resolving limit (*RL*) and it's reciprocal is called Resolving power (*RP*)

$$R.L. = \frac{\Box \lambda}{2\mu \sin \theta} \text{ and } R.P. = \frac{2\mu \sin \theta}{\lambda} \Longrightarrow R.P. \propto \frac{1}{\lambda}$$

 λ = Wavelength of light used to illuminate the object,

 μ = Refractive index of the medium between object and objective,

 θ = Half angle of the cone of light from the point object, $\mu \sin \theta$ = Numerical aperture.

Note : \Box Electron microscope : electron beam($\lambda \approx 1 \mathring{A}$) is used in it so it's *R.P.* is approx 5000

f_e

times more than that of ordinary microscope ($\lambda \approx 5000 \text{ Å}$)

Telescope

By telescope distant objects are seen.

(1)Astronomical telescope

(i) Used to see heavenly bodies.

(ii) $f_{\text{objective}} > f_{\text{eyelens}}$ and $d_{\text{objective}} > d_{\text{eyelens}}$.

- (iii) Intermediate image is real, inverted and small.
- (iv) Final image is virtual, inverted and small.

(v) Magnification :
$$m_D = -\frac{f_0}{f_e} \begin{pmatrix} 1 + f_e \\ D \end{pmatrix}$$
 and $m_{\infty} = -\frac{f_0}{f_e} \begin{pmatrix} 1 + f_e \\ D \end{pmatrix}$

(vi) Length :
$$L_D = f_0 + u_e = f_0 + \frac{f_e D}{f_e + D}$$
 and $L_{\infty} = f_0 + f_e$

(2) Terrestrial telescope

(i) Used to see far off object on the earth.

(ii) It consists of three converging lens : objective, eye lens and erecting lens.

(iii) It's final image is virtual erect and smaller.

(iv) Magnification :
$$m_D = \frac{e^f}{f_e} \begin{bmatrix} f & f \\ & D \end{bmatrix}$$
 and

v = D to ∞

(v) Length :
$$L_D = f_0 + 4f + u_e = f_0 + 4f + \frac{f_e D}{f_e + D}$$
 and $L_{\infty} = f_0 + 4f + f_e$

(3) Galilean telescope

(i) It is also a terrestrial telescope but of much smaller field of view.(ii) Objective is a converging lens while eye lens is diverging lens.

(iii) Magnification :
$$m = \frac{f_0}{f_e} \left(\frac{1 - f_e}{D} \right)$$
 and $m = \frac{f_0}{f_e}$

(*iv*) Length : $L_D = f_0 - u_e$ and $L_{\infty} = f_0 - f_e$

(4) Resolving limit and resolving power

Smallest angular separations ($d\theta$) between two distant objects, whose images are separated in the telescope is called resolving limit. So resolving limit $d\theta = \frac{1.22\lambda}{a}$

and resolving power $(RP) = \frac{1}{d\theta} = \frac{a}{1.22\lambda} \Rightarrow R.P. \propto \frac{1}{\lambda}$ where a = aperture of objective.

Note :Minimum separation (d) between objects, so they can just resolved by a telescope is –

 $d = \frac{r}{R.P.}$ where r = distance of objects from telescope.

(5) Binocular

If two telescopes are mounted parallel to each other so that an object can be seen by both the eyes

simultaneously, the arrangement is called 'binocular'. In a binocular, the length of each tube is reduced by using a set of totally reflecting prisms which provided intense, erect image free from lateral inversion. Through a binocular we get two images of the same object from different angles at same time. Their superposition gives the perception of depth also along with length and breadth, *i.e.*, binocular vision gives proper three-dimensional (3*D*) image.

- S As magnifying power is negative, the image seen in astronomical telescope is truly inverted, i.e., left is turned right with upside down simultaneously. However, as most of the astronomical objects are symmetrical this inversion does not affect the observations.
- * Objective and eye lens of a telescope are interchanged, it will not behave as a microscope but object appears very small.
- The a telescope, if field and eye lenses are interchanged magnification will change from (f_o / f_e) to (f_e / f_o) , i.e., it will change from m to (1/m), i.e., will become $(1/m^2)$ times of its initial value.
- ^(*) As magnification for normal setting as (f_o / f_e) , so to have large magnification, f_o must be as large as practically possible and f_e small. This is why in a telescope, objective is of large focal length while eye piece of small.
- The a telescope, aperture of the field lens is made as large as practically possible to increase its resolving power as resolving power of a telescope $\propto (D/\lambda)^*$. Large aperture of objective also helps in improving the brightness of image by gathering more light from distant object. However, it increases aberrations particularly spherical.
- ${}^{\mbox{\tiny GP}}$ For a telescope with increase in length of the tube, magnification decreases.
- The case of a telescope if object and final image are at infinity then : $m = \int_{0}^{f_{o}} D$

$$a = \frac{f_o}{f_e} = \frac{D}{d}$$

- ^{CP} If we are given four convex lenses having focal lengths $f_1 > f_2 > f_3 > f_4$. For making a good telescope and microscope. We choose the following lenses respectively. Telescope $f_1(o), f_4(e)$ Microscope $f_4(o), f_3(e)$
- If a parrot is sitting on the objective of a large telescope and we look towards (or take a photograph) of distant astronomical object (say moon) through it, the parrot will not be seen but the intensity of the image will be slightly reduced as the parrot will act as obstruction to light and will reduce the aperture of the objective.

Example

Example: 1	A man can see the objects upto a distance of one metre from his eyes. For correcting his eye sight so that he can see an object at infinity, he requires a lens whose power is					
		or				
	A man can see upto 1 objects will be	oo <i>cm</i> of the distant obje	ect. The power of the len	s required to see far		
				[MP PMT 1993, 2	2003	
	(a) $+0.5 D$	(b) +1.0 D	(c) $+2.0 D$	(d) –1.0 <i>D</i>		
Solution: (d)	$f = -(\text{defected far point}) = -100 \text{ cm}$. So power of the lens $P = \frac{100}{f} = \frac{100}{-100} = -1D$					
Example: 2 A man can see clearly up to 3 <i>metres</i> . Prescribe a lens for his spectacles so thup to 12 <i>metres</i>				hat he can see clearly		
				[DPMT 2002]		
	(a) $-3/4 D$	(b) 3 <i>D</i>	(c) $-1/4 D$	(d) – 4 <i>D</i>		
Solution: (c)	By using $f = \frac{xy}{x-y} \Rightarrow$	$f = \frac{3 \times 12}{3 - 12} = -4 m$. Hence	power $P = \frac{1}{f} = -\frac{1}{2}\frac{D}{4}$			
Example: 3	The diameter of the ey from	ve-ball of a normal eye is a	bout 2.5 <i>cm</i> . The power	of the eye lens varies		
	(a) 2 <i>D</i> to 10 <i>D</i> <i>D</i>	(b) 40 <i>D</i> to 32 <i>D</i>	(c) $9 D$ to $8 D$	(d) 44 <i>D</i> to 40		

Solution: (c)	Given that $f_o = 1 \ cm$	$f_e = 5 \ cm$, $m_{\infty} = 45$				
	By using $m_{\infty} = \frac{(L_{\infty} - m_{\infty})^2}{m_{\infty}^2}$	$\frac{f_o - f_e}{f_o f_e} \Longrightarrow 45 = \frac{(L_{\infty} - 1 - f_e)}{f_o f_e}$	$\frac{-5) \times 25}{1 \times 5} L \qquad _{\infty} =$	15 cm		
Example: 9	If the focal lengths o and the object is put infinity, then magnif	f objective and eye lens 1.25 <i>cm</i> away from th ying power of the micro	of a microscope are le objective lens and scope is	1.2 <i>cm</i> and 3 the final im	<i>cm</i> respectively age is formed at	
	(a) 150	(b) 200	(c) 250		(d) 400	
Solution: (b)	Given that $f_o = 1.2 cm$	$m, f_e = 3 \ cm, u_o = 1.25$	ст			
	By using $m_{\infty} = -\frac{1}{(u_o)}$	$\frac{f_o}{f_o} \cdot \frac{D}{f_e} \Rightarrow m_{\infty} = -\frac{1}{(1-1)}$	$\frac{1.2}{.25-1.2)} \times \frac{25}{3} = -20$	0.		
Example: 10	The magnifying pow lenses is 54 <i>cm</i> . The f (<i>a</i>) 6 <i>cm</i> and 48 <i>cm</i> 8 <i>cm</i>	ver of an astronomical local length of eye lens a (b) 48 <i>cm</i> and 6	telescope is 8 and t and objective lens wi <i>cm</i> (c) 8 <i>cm</i> an	he distance b ill be respecti d 64 <i>cm</i>	between the two vely [MP PMT 1991; (d) 64 <i>cm</i> and	CPMT 1991
Solution: (a)	Given that $m_{\infty} = 8$ ar	nd $L_{\infty} = 54$				
	By using $ m_{\infty} = \frac{f_o}{f_e}$	and $L_{\infty} = f_o + f_e$ we get	$f_o = 6 \ cm$ and $f_e = 6$	48 cm .		
Example: 11	If an object subtend eyepiece of focal leng eye piece will be	angle of 2° at eye wh gth $f_o = 60 \text{ cm}$ and $f_e = 5$ [UPSEAT 2001]	en seen through tel 5 cm respectively th	escope having an angle subt	g objective and end by image at	
	(a) 16°	(b) 50°	(c) 24°		(d) 10°	
Solution: (c)	By using $\frac{\beta}{\alpha} = \frac{f_o}{f_e} \Rightarrow$	$ \begin{array}{c} \beta \\ \beta \\ 20 \end{array} \stackrel{60}{=} \begin{array}{c} 5 \end{array} \Rightarrow \beta = 24^{\circ} $				
Example: 12	The focal lengths of the telescope when	the lenses of an astrono a the image is formed at	omical telescope are t the least distance o	50 <i>cm</i> and 5 f distinct visio	<i>cm.</i> The length on is	
	(a) 45 cm	(b) 55 cm	(c) $\frac{275}{6}$ cm	1	(d) $\frac{325}{6}$ cm	
Solution: (d)	By using $L_D = f_o + u_e$	$=f_{o} + \frac{f_{e}D}{f_{e} + D} = 50 + \frac{5}{(5)}$	$(x + 25) = \frac{325}{6} cm$			
Example: 13	The diameter of moo seen through a teles respectively, then the	on is $3.5 \times 10^{3} km$ and i cope whose focal lengt angle subtended by the	ts distance from the h for objective and e moon on the eye w $(c) = 20^{\circ}$	earth is 3.8 eye lens are a ill be approxi	$\times 10^{5}$ km. If it is 4 m and 10 cm mately (d) 25°	
Solution: (b)	The angle subt	ended by the	moon on the	obiective	of telescope	
$\alpha = \frac{3.5 \times 10^3}{3.8 \times 10^5} =$	$=\frac{3.5}{3.8}\times10^{-2}$ rad				Ĩ	
	Also $m = \frac{f_o}{f_e} = \frac{\beta}{\alpha} \Rightarrow$	$\frac{400}{10} \stackrel{\beta}{=} \Rightarrow \beta = 40 \ \alpha$	$\Rightarrow \beta = 40 \times \frac{3.5 \times 10^3}{3.8 \times 10^5}$	$\frac{180}{\pi} = 20^{\circ}$		
Example: 14	A telescope has an kilometre from two or resolved by the telescope telesco	objective lens of 10 c objects. The minimum o cope, when the mean w	em diameter and is distance between the ravelength of light is	situated at ese two object 5000 Å, is of	a distance one ts, which can be the order of	
	(a) 0.5 <i>m</i>	(b) 5 m	(c) 5 mm		(d) 5 <i>cm</i>	
<i>Solution:</i> (b)	Suppose minimum o	listance between object	ts is x and their dista	ince from tele	scope is r	
1 22 3	50	Res $(5000 - 10^{-10})$ (1 1	solving		limit	
$d\theta = \frac{1.22\lambda}{a} = \frac{x}{r}$	$r \Rightarrow x = \frac{1.22\lambda \times r}{a} = \frac{1.2}{a}$	$\frac{22 \times (5000 \times 10^{-10}) \times (1 \times 10^{-10})}{(0-1)}$	$\frac{0^{-1}}{10^{-3}} = 6.1 \times 10^{-3} m =$	6.1 <i>mm</i>		
	TT T.1 1 1					

Hence, It's order is $\approx 5 mm$.

_ ___

_

_

_ _

Example: 15 A compound microscope has a magnifying power 30. The focal length of its eye-piece is 5 *cm*. Assuming the final image to be at the least distance of distinct vision. The magnification produced by the objective will be

(a) +5 (b) -5 (c) +6 (d) -6
Magnification produced by compound microscope
$$m = m_o \times m_e$$

Solution (b)

where
$$m_o = ?$$
 and $m_e = \begin{vmatrix} \begin{pmatrix} & D \\ 1 + f \\ e \end{pmatrix} = 1 + 5 = 6 \Rightarrow 30 = -m_o \times 6 \Rightarrow m_o = -5$.

Tricky Example 1 : A man is looking at a small object placed at his least distance of distinct vision. Without changing his position and that of the object he puts a simple microscope of magnifying power 10 X and just sees the clear image again. The angular magnification obtained is

(a) 2.5 (b) 10.0 (c) 5.0 (d) 1.0
Solution : (d) Angular magnification
$$= \frac{\beta}{\alpha} = \frac{\tan \beta}{\tan \alpha} = \frac{I/D}{O/D} = \frac{I}{O}$$

Since image and object are at the same position $I = \frac{v}{O} = 1 \Rightarrow$ Angular magnification = 1

Since image and object are at the same position, $\frac{1}{O} = \frac{1}{2} \Rightarrow$ Angular magnification = 1

Tricky Example 2: A compound microscope is used to enlarge an object kept at a distance 0.03m from it's objective which consists of several convex lenses in contact and has focal length 0.02m. If a lens of focal length 0.1m is removed from the objective, then by what distance the eye-piece of the microscope must be moved to refocus the image

(a) 2.5 cm (b) 6 cm (c) 15 cm (d) 9 cm
Solution : (d) If initially the objective (focal length
$$F_o$$
) forms the image at distance v_o then
 $v_o = \frac{u_o f_o}{u_o - f_o} = \frac{3 \times 2}{3 - 2} = 6$ cm
Now as in case of lenses in contact $\frac{1}{F_o} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3} + \frac{1}{f_3} + \frac{1}{F_o} \left\{ \text{where } \frac{1}{F_o^+} = \frac{1}{f_2} + \frac{1}{f_3} + \frac{1}{f_3} \right\}$
So if one of the lens is removed, the focal length of the remaining lens system
 $\frac{1}{F_o^+} = \frac{1}{f_0} - \frac{1}{f_1} - \frac{1}{2} \Rightarrow F' = 2.5 \text{ cm}$
This lens will form the image of same object at a distance v'_o such that $v'_o = \frac{u_o F'_o}{u_o - F'_o} = \frac{3 \times 2.5}{(3 - 2.5)} = 15$ cm
So to refocus the image, eye-piece must be moved by the same distance through which the image

Assignment

Uuman	010
питап	eue

[MP PET 2003

- Near and far points of human eye are 6.
 - а. 25 cm and infinite 50 cm

formed by the objective has shifted *i.e.* 15 - 6 = 9 cm.

- (d) 0 cm and 25 cm
- [EAMCET (Med.) 1995; MP PET 2001; Bihar CECE 2004
- (b) 50 *cm* and 100 *cm*

(c) 25 cm and

A defective eye cannot see close objects clearly because their image is formed 7.

- On the eye lens a.
- (c) On the retina

- (b) Between eye lens and retina
- (d) Beyond retina

						Reflection	of Light 61	
	8.	Retina of eye a	cts like of camera					[AFMC 2003
		a.	Shutter (d) None	(b) of th	Film nese	(c)	Lens	
	9. things at a	A person who distance of 30 <i>cm</i>	can see things most clea 1. What should be the fo	arly at a distance o cal length of the sp	of 10 <i>cm</i> . Requires pectacles	s spectacles to e	enable him to	see clearly [BHU 2003
	a. 15 cm	(concave)	(b) 15 <i>cm</i> (convex)	(c)	10 <i>cm</i>	(d) ()	
	10.	An astronaut i	is looking down on eart	th's surface from a	a space shuttle at	an altitude of	400 <i>km</i> . Ass	uming
	that the a	stronaut's pupil	diameter is 5 <i>mm</i> and	d the wavelength	n of visible light	is 500 <i>nm</i> . Th	e astronaut	
	will be able	e to resolve linea	r object of the size of ab	out			I	[AIIMS 2003
	(a) 0.5 m		(b) 5 <i>m</i>	(c)	50 m	(d) 5	00 m	
	11.	A person uses a	a lens of power $+3D$ to r	normalise vision. N	Vear point of hype	ermetropic eve i	S	[CPMT 2002
	(a) 1 <i>m</i>	Ĩ	(b) 1.66 m	(c)	2 m	(d)	0.66 m	-
	12. 2000 Å and	The separation d 3000 Å respecti	n between two microsco ively, then	ppic particles is m	easured P_A and P	P_B by two differ	ent lights of f	wavelength AIEEE 2002
	(a) $P_A > P_A$	B	(b) $P_A < P_B$	(c)	$P_A < 3 / 2P_B$	(d)	$P_A = P_B$	
8 7.	To remove approxima	myopia (short sig tely	ghtedness) a lens of pow	ver 0.66 <i>D</i> is requi	red. The distant p	oint of the eye	s	
	(-) 100		(h) 1- 0				[M	IP PMT 2001
88	(a) $100 cm$	n uffering from 'pre	(D) 150 CM	(C)	50 cm	(a)	25 cm נע	AD DET 2001
00.	(a) A cond	cave lens	should use	(b).	A convex lens		L	MI I EI 2001
	(c) A bifo	cal lens whose lov	ver portion is convex	(d)	A bifocal lens who	ose upper portio	on is	
	convex		-					
89.	The resolvi	ing limit of health	ıy eye is about			[MP PET 1999	RPMT 1999;	AIIMS 2001
	(a) 1'		(b) 1"	(c)	1 ⁰	(d)	$\frac{1}{60}$	
90.	A person u	ses spectacles of	power + 2D. He is suffer	ringfrom			[]	AP PET 2000
	(a) Short	sightedness or my	yopia	(b)	Long sightedness	s or hypermetro	opia	
	(c) Presbyc	opia		(d)	Astigmatism		F orm o	
91.	I ne nyper	metropia is a			Tana aida dafaat		[CBS	SE PMT 2000
	(a) Short-s	ion due to old age	2	(0) (d)	None of these			
92.	A man can	not see clearly th	e objects beyond a dist	ance of 20 <i>cm</i> fro	m his eyes. To see	e distant object	s clearly he	D DMT 0000
	(a) 100 cm	n convex	(b) 100 <i>cm</i> concave	e (c)	20 <i>cm</i> convex	(d)	20 cm	1 1 1 1 2 0 0 0
93.	An eye spe concave let	cialist prescribes ns of focal length	spectacles having a com 25 <i>cm</i> . The power of this	bination of convex s lens combinatior	x lens of focal leng 1 in diopters is	gth 40 <i>cm</i> in cor [IIT 199	ntact with a 7 Cancelled ;	DPMT 2000
	(a) + 1.5		(b) –1.5	(c)	+6.67	(d)	-6.67	
94 .	Two parall be seen sep	el pillars are 11 <i>ki</i> parately will be	<i>m</i> away from an observe	er. The minimum (distance between	the pillars so th	at they can [RPET 1997;	RPMT 2000
	(a) 3.2 m		(b) 20.8 <i>m</i>	(c)	91.5 m	(d)	183 m	
95.	A person c	annot see objects	clearly beyond 2.0 <i>m</i> . T	'he power of lens r	equired to correct	t his vision will	be	
				[MP	PMT/PET 1998; J	IPMER 2000; 1	KCET (Engg./	'Med.) 2000
	(a) $+ 2.0$	D	(b) $-1.0 D$	(c)	+ 1.0 D	(d)	– 0.5 D	
96.	When obje	cts at different di	stances are seen by the e	eye, which of the fo	ollowing remains o	constant	[]	IP PMT 1999
	(a) The fo	cal length of the e	eye lens	(b)	The object distar	nce from the ey	elens	
	(c) The ra	an of curvature o	t the eye lens	(d)	The image distan	nce from the ey	eiens	

			62 Re	flection of Light
9 7.	A person wears glasses of po will be	ower $-2.0 D$. The defect of the eye	e and the far point of the perso	n without the glasses
	(a) Nearsighted, 50 cm	(b) Farsighted, 50 <i>cm</i>	(c) Nearsighted, 250 cm	[MP PMT 1999 a (d)
08	A porson is suffering from the	a defect estigmatism. Its main re	ason is	
90.	(a) Distance of the eye lensdecreased	from retina is increased	(b) Distance of the eye lea	ns from retina is
	(c) The cornea is not spher decreased	ical	(d) Power of accommoda	tion of the eye is
99.	Myopia is due to			[AFMC 1996
	(a) Elongation of eye ball		(b) Irregular change in fo	ocal length
	(c) Shortening of eye ball		(d) Older age	
100.	Human eye is most sensitive	e to visible light of the wavelength	1	[CPMT 1996
	(a) 6050 <i>Å</i>	(b) 5500 <i>Å</i>	(c) 4500 Å	(d) 7500Å
101.	Match the List I with the Lis	st II from the combinations shown	n	[ISM Dhanbad 1994
	(I) Presbiopia	(A) Sphero-cylindrical lens		
	(II) Hypermetropia	(B) Convex lens of proper po	wer may be used close to the e	ye
	(III) Astigmatism	(C) Concave lens of suitable f	focal length	
	(IV) Myopia	(D) Convex spectacle lens of	suitable focal length	
	(a) I-A; II-C; III-B; IV-D III-C; IV-B	(b) I-B; II-D; III-C; IV-A	(c) I-D; II-B; III-A; IV-C	C (d) I-D; II-A;
102.	The human eye has a lens w	hich has a		[MP PET 1994
	(a) Soft portion at its centre	e	(b) Hard surface	
	(c) Varying refractive index	K	(d) Constant refractive in	dex
103.	A man with defective eyes ca of the lens to be used will be	annot see distinctly object at the	distance more than 60 <i>cm</i> from	om his eyes. The power [MP PMT 1994]
	(a) $+ 60D$	(b) $-60D$	(c) $-1.66D$	(d) $\frac{1}{1.66}$
104.	A person's near point is 50 c	em and his far point is 3 m. Powe	r of the lenses he requires for	
	(i)Reading and	(ii) For seeing distant stars a	re	[MP PMT 1994
	(a) – 2 <i>D</i> and 0.33 <i>D</i> 3 <i>D</i>	(b) $2D$ and $-0.33D$	(c) $-2D$ and $3D$	(d) 2 <i>D</i> and –
105.	The focal length of a simplification distance of distinct vision (the convex lens used as a mag $(D = 25 cm)$, the object must be	nifier is 10 <i>cm</i> . For the imaplaced away from the lens at	ge to be formed at a a distance of [CPMT 1991
	(a) 5 <i>cm</i>	(b) 7.14 <i>cm</i>	(c) 7.20 <i>cm</i>	(d) 16.16 <i>cm</i>
106.	A person is suffering from r focal length of lens he should	nyopic defect. He is able to see o d use to see clearly the object pla	clear objects placed at 15 <i>cm</i> . ced60 <i>cm</i> away	What type and of what [MP PMT 1991
	(a) Concave lens of 20 cm f	ocal length	(b) Convex lens of 20 cm	n focallength
105	(c) Concave lens of 12 cm for	ocal length	(d) Convex lens of 12 cm	tocal length
107.	a lens of focal length	arry when it is at a distance of 1 m	<i>terre</i> only. If ne wisnes to see a	[MP PET 1990
108	(a) +100 cm	(b) $-100 cm$	(c) +50 cm	(d) $-50 \ cm$
108.	<i>cm</i> with relaxed vision, focal	l length of the lens required will b	be	[MP PMT 1989
465	(a) 45 cm	(b) $-20 cm$	(c) $-12 cm$	(d) $30 cm$
109.	A person can see clearly obje the lens he shall require is	ects at 100 <i>cm</i> distance. If he wai	its to see objects at 40 cm dista	Ince, then the power of [MP PET 1989
	(a) $+1.5 D$	(b) $-1.5 D$	(c) $+3.0 D$	(d) $-3.0 D$

				Refle	ection of Light 6 3	3
110.	If the distance of the far point become	for a myopia patient is doubled	, the fo	ocal length of the lens requ	uired to cure it will	[MP PET 1989
	(a) Half		(b)	Double		
	(c) The same but a convex leaconcave lens	ns		(d)	The same but a	
111.	Image is formed for the short	sighted person at				[AFMC 1988
	(a) Retina not formed at all	(b) Before retina	(c)	Behind the retina	(d) Image is	5
112.	A man who cannot see clearly	beyond 5 <i>m</i> wants to see stars cle	early. H	Ie should use a lens of foca	al length	
					[MP H	PET/PMT 1988
	(a) – 100 <i>metre</i>	(b) $+5 metre$	(c)	– 5 metre	(d) Very large	
113.	Far point of myopic eye is 250	<i>cm</i> , then the focal length of the le	ens to l	be used will be	[CPMT 198	6; DPMT 2002
	(a) $+ 250 \ cm$	(b) – 250 <i>cm</i>	(c)	+ 250/9 cm	(d) $-250/9 cm$	
114.	One can take pictures of objec	ts which are completely invisible	to the e	eye using camera film whi	ch are invisible to	[MNR 1985
	(a) Ultra-violet rays rays	(b) Sodium light	(c)	Visible light	(d) Infra-red	
115.	In human eye the focussing is	done by				[CPMT 1983
	(a) To and fro movement of e	eye lens	(b)	To and fro movement of t	he retina	
	(c) Change in the convexity of fluids	of the lens surface	(d)	Change in the refractive in	ndex of the eye	
116.	The minimum light intensity t	that can be perceived by the eye is	s about	$\pm 10^{-10}$ watt / metre 2 . The n	umber of photons	
	of wavelength 5.6×10^{-7} met	<i>re</i> that must enter per second the	e pupil	of area 10^{-4} met	re^2 for vision, is	
	approximately equal to $(h-6)$	$(6 \times 10^{-34} ioula - sec)$	1 1		, -	INCERT 1089
	approximately equal to $(n - 0)$.0×10 <i>Joure</i> – scc)				INCERT 1902
	(a) 3×10^2 photons photons	(b) 3×10^6 photons	(c)	3×10 ⁴ photons	(d) 3×10^{5}	
117.	A far sighted man who has los paper. The reason will be	t his spectacles, reads a book by l	ooking	through a small hole (3-4	<i>mm</i>) in a sheet of	[CPMT 1977
	(a) Because the hole produce	s an image of the letters at a long	er dista	ance		
	(b) Because in doing so, the f	ocal length of the eye lens is effect	tively in	ncreased		
	(c) Because in doing so, the f(d) None of these	ocal length of the eye lens is effect	tively d	lecreased		
118.	The maximum focal length of	the eye-lens of a person is greater	r than i	its distance from the retin	a. The eyeis	
	(a) Always strained in lookin	g at an object	(b)	Strained for objects at larg	ge distances only	
	(c) Strained for objects at sho	ort distances only	(d)	Unstrained for all distance	es	
119.	The focal length of a normal e	ye-lens is about				
	(a) 1 mm	(b) 2 cm	(c)	25 cm	(d) 1	
120.	The distance of the eve-lens fr	com the retina is x . For normal ev	e. the r	naximum focal length of t	he eve-lens is	
	(a) $-r$	(b) < r	(c)	>r	(d) - 2r	
101	(u) = x	llongth 1 m oon aloorly soo hovo	nd 1m	~ A	(u) = 2x	
121,	(a) If he is ferrighted	(b) If he is a second block			(d) In an de of	
	(a) If he is farsighted these cases	(b) If he is nearsignted	(c)	IT his vision is normal	(d) In each of	
122.	The near point of a person is 5	50 <i>cm</i> and the far point is 1.5 <i>m</i> . T	The spe	ectacles required for reading	ng purpose and for	
	(a) $+2D, -\begin{pmatrix} 2\\ - \end{pmatrix}D$ $-\begin{pmatrix} 2\\ - \end{pmatrix}D+2D$	(b) $+ \begin{pmatrix} 2 \\ -3 \end{pmatrix} D - 2D$	(c)	$-2D, + \begin{pmatrix} 2 \\ - \\ 4 \\ 3 \end{pmatrix} D$	(d)	
	$\left(\overline{3}\right)$					

123.	A man, wearing glasses of power $+2D$ can read clearly a book placed at a distance of 40 cm from the eye. The power of the lens required so that he can read at 25 cm from the eye is					
	(a) $+4.5 D$	(b) +4.0 <i>D</i>	(c) $+3.5 D$	(d) +3.0 <i>D</i>		
124.	A person can see clearly betw	ween 1 m and 2 m . His corrective le	enses should be			
	(a) Bifocals with power -0 . +3.0 <i>D</i>	5D and additional $+3.5D$	(b) Bifocals with power −1	.o <i>D</i> and additional		
	(c) Concave with power 1.0	D	(d) Convex with power 0.	5 D		
125.	While reading the book a m holding the page at 25 <i>cm</i> . eye sight	an keeps the page at a distance of What is the nature of spectacles of	f 2.5 <i>cm</i> from his eye. He wan one should advice him to use	ts to read the book by to completely cure his		
	(a) Convex lens of focal leng	gth 25 <i>cm</i>	(b) Concave lens of focal le	ength 25 <i>cm</i>		
	(c) Convex lens of focal leng	gth 2.5 <i>cm</i>	(d) Concave lens of focal l	ength 2.5 <i>cm</i>		
126.	The blades of a rotating fan	can not be distinguished from eac	h other due to			
	(a) Parallex vision	(b) Power of accommodation	(c) Persistence of vision	(d) Binocular		
127.	Aperture of the human eye is limit of the eye is nearly	s 2 <i>mm</i> . Assuming the mean wave	length of light to be 5000\AA , th	ne angular resolution		
	(a) 2 minutes	(b) 1 minute	(c) 0.5 <i>minute</i>	(d) 1.5 minutes		
128.	If there had been one eye of	the man, then				
	(a) Image of the object wou	lld have been inverted	(b) Visible region would h	ave decreased		
	(c) Image would have not b	een seen three dimensional	(d) (b) and (c) both			
129.	A man can see the object bet used, the near point will be a	ween 15 <i>cm</i> and 30 <i>cm</i> . He uses the at	e lens to see the far objects. Th	en due to the lens		
	(a) $\frac{10}{3}$ cm	(b) 30 <i>cm</i>	(c) 15 <i>cm</i>	(d) $\frac{100}{3}cm$		
130.	A presbyopic patient has nea seeing distant objects is	ar point as 30 <i>cm</i> and far point as	40 <i>cm</i> . The dioptric power for	the corrective lens for		
	(a) 40 <i>D</i>	(b) 4 D	(c) $2.5 D$	(d) 0.25 <i>D</i>		
131.	A man swimming under clea	ar water is unable to see clearly be	cause			
	(a) The size of the aperture	decreases	(b) The size of the aperture	e increases		
	(c) The focal length of eye	ens increases	(d) The focal length of eye	lens decreases		
132.	from	a and eye-lens in a normal eye is a	2.0 <i>cm</i> . The accommodated po	ower of eye lens range		
	(a) $45 D$ to $50 D$	(b) $50 D$ to $54 D$	(c) 10 <i>D</i> to 16 <i>D</i>	(d) 5 <i>D</i> to 8 <i>D</i>		
133.	If the eye is taken as a spher	ical ball of radius 1 <i>cm</i> , the range	of accommodated focal length	of eye-lens is		
	(a) 1.85 cm to 2.0 cm 2.0 cm	(b) 1.0 <i>cm</i> to 2.8 <i>cm</i>	(c) 1.56 <i>cm</i> to 2.5 <i>cm</i>	(d) 1.6 <i>cm</i> to		
134.	A person cannot read print read at 20 <i>cm</i> from his eye in	ed matter within 100 <i>cm</i> from hi f the distance between the eye lens	is eye. The power of the correst and the correcting lens is 2 <i>cr</i>	cting lens required to nis		
	(a) 4.8 <i>D</i>	(b) 1.25 <i>D</i>	(c) $4.25 D$	(d) $4.55 D$		
135.	A student having $-1.5 D$ spe divisions in the laboratory. maximum magnifying powe	ectacles uses a lens of focal length The least distance of distinct vi r he gets with spectacles on is	n 5 <i>cm</i> as a simple microscope sion without glasses is 20 <i>cm</i>	e to read minute scale a for the student. The		
	(a) 6	(b) 9	(c) 5	(d) 4		
				Microscope		
-						

			Refle	ection of Light 65
136.	In a compound microscope th	ne object of f_o and eyepiece of f_e ar	e placed at distance <i>L</i> such that <i>L</i>	equals [Kerala PMT 2004
	(a) $f_o + f_e$		(b) $f_o - f_e$	
	(c) Much greater than f_o or f_o lengths	ē	(d) Need not depend either va	alue of focal
137.	In a simple microscope, if the	e final image is located at infinity t	hen its magnifying power is	[CPMT 1985; MP PMT 2004
	(a) $\frac{25}{f}$	(b) $\frac{D}{25}$	(c) $\frac{f}{25}$	(d) $\frac{f}{D^{+1}}$
138.	In a simple microscope, if the magnifying power is	e final image is located at 25 <i>cm</i> fr	om the eye placed close to the ler	ns, then the
	25		C C C C C C C C C C C C C C C C C C C	[BVP 2003]
	(a) $\frac{25}{f}$	(b) $1 + \frac{25}{f}$	(c) $\frac{f}{25}$	(d) $\frac{f}{25}$ + 1
139.	The maximum magnification distance of distinct vision is a	n that can be obtained with a 25 <i>cm</i>)	convex lens of focal length 2.5	<i>cm</i> is (the least [MP PET 2003
	(a) 10	(b) 0.1	(c) 62.5	(d) 11
140.	In a compound microscope, t	he intermediate image is	[IIT-JEH	E (Screening) 2000; AIEEE 2003
	(a) Virtual, erect and magnified	fied	(b)	Real, erect and
	(c) Real, inverted and magnitude	ified	(d) Virtual, erect and reduced	
141.	A compound microscope has 100. The magnifying power o	two lenses. The magnifying powe f the other lens is	r of one is 5 and the combined ma	agnifying power is [Kerala PMT 2002
	(a) 10	(b) 20	(c) 50	(d) 25
142.	Wavelength of light used in a	n optical instrument are $\lambda_1 = 400$	0 Å and $\lambda_2 = 5000$ Å, then ratio	of their respective
	resolving power (correspondi	ng to λ_1 and λ_2) is		[AIEEE 2002
	(a) 16:25	(b) 9:1	(c) 4:5	(d) 5:4
143.	The angular magnification of	a simple microscope can be incre	ased by increasing	[Orissa JEE 2002
	(a) Focal length of lens lens	(b) Size of object	(c) Aperture of lens	(d) Power of
144. The magnification produced by the objective lens and the eye lens of a correspectively. The magnifying power of this microscope is			ye lens of a compound microsc	ope are 25 and 6 Manipal MEE 1995; DPMT 2002
	(a) 19	(b) 31	(c) 150	(d) $\sqrt{150}$
145.	The length of the compound neve lens is 5 <i>cm</i> , then the objective	microscope is 14 <i>cm.</i> The magnify ect distance for objective lens will	ing power for relaxed eye is 25. If be	the focal length of [Pb. PMT 2002
	(a) 1.8 <i>cm</i>	(b) 1.5 <i>cm</i>	(c) 2.1 <i>cm</i>	(d) 2.4 <i>cm</i>
146.	The magnifying power of a sin distinct vision is 25 <i>cm</i>	mple microscope is 6. The focal le	ngth of its lens in <i>metres</i> will be,	if least distance of [MP PMT 2001
	(a) 0.05	(b) 0.06	(c) 0.25	(d) 0.12
147.	Relative difference of focal lea	ngths of objective and eye lens in	the microscope and telescope is g	given as
				[MH CET (Med.) 2001
	(a) It is equal in both more in any one	(b) It is more in telescope	(c) It is more in microscope	(d) It may be
148.	Three objective focal lengths combining these two, the mag	Three objective focal lengths (f_o) and two eye piece focal lengths (f_e) are available for a compound microscope. By combining these two, the magnification of microscope will be maximum when [RPMT 2c]		
	(a) $f_o = f_e$	(b) $f_o >> f_e$	(c) f_o and f_e both are small	(d) $f_o >> f_e$
149.	If the red light is replaced by microscope	blue light illuminating the object	in a microscope the resolving pov	wer of the

[DCE 2001

				66 Reflection of	of Light	
	(a) Decreases (b) I unchanged	ncreases	(c) Gets halved	(d)	Remains	
150.	In case of a simple microscope, the o	bject is placed at				[UPSEAT 2000
	(a) Focus f of the convex lens (b) f the lens and f	A position between <i>f</i> and 2 <i>f</i>	(c) Beyond 2 <i>f</i>	(d)	Between	
151.	In a compound microscope cross-wir	res are fixed at the point			[EAMC	ET (Engg.) 2000
	(a) Where the image is formed by th	e objective	(b) Where the in	nage is formed by t	he eye-piec	e
	(c) Where the focal point of the obje	ctive lies	(d) Where the fo	cal point of the eye	e-piece lies	
152.	The length of the tube of a microscop 1.0 <i>cm</i> . The magnifying power of the	pe is 10 <i>cm</i> . The focal length microscope is about	ns of the objective	e and eye lenses ar	e 0.5 <i>cm</i> ai	nd [MP PMT 2000
	(a) 5 (b) 2	23	(c) 166	(d)	500	
153.	Least distance of distinct vision is 25	cm. Magnifying power of sir	mple microscope	of focal length 5 <i>cn</i>	ı is	
				[EAMCET ((Engg.) 199	5; Pb. PMT 1999
	(a) 1/5 (b) g	5	(c) 1/6	(d)	6	
154.	The objective of a compound microso	cope is essentially				[SCRA 1998
	(a) A concave lens of small focal lengaperture	A concave lens of small focal length and small aperture (b) Convex lens of small focal length and large erture				
	(c) Convex lens of large focal length aperture	and large aperture	(d) Convex lens of small focal length and small		1	
155.	For relaxed eye, the magnifying powe	er of a microscope is			I	CBSE PMT 1998
	(a) $-\frac{v_o}{u} \times f$ (b)	$\begin{array}{ccc} v_o & f_e \\ -u & imes D \end{array}$	$\begin{array}{cc} u_o & D \\ \text{(c)} & v & \times f \end{array}$	(d)	$\begin{array}{c} u_o(D) \\ \hline v \times -f \end{array}$	-
	o e	0	0 e		o (e	,
156.	A person using a lens as a simple mic	proscope sees an				[AIIMS 1998
	(a) Inverted virtual image		(b) Inverted real	magnified image		
	(c) Upright virtual image		(d) Upright real	magnified image		
157.	The focal length of the objective lens	of a compound microscope is	S	[CPMT 198	5; MNR 198	36; MP PET 1997
	(a) Equal to the focal length of its eye piece (b) Less than the focal length of eye piece					
	(c) Greater than the focal length of ϵ	eye piece	(d) Any of the above three			
158.	To produce magnified erect image of a far object, we will be required along with a convex lens, is					
		- 1			[MNR 198	83; MP PAT 1996
	(a) Another convex lens (b) (Concave lens	(c) A plane mir	ror (d)	A conca	ve
159.	An object placed 10 <i>cm</i> in front of a lens has an image 20 <i>cm</i> behind the lens. What is the power of the lens (in <i>diontres</i>)					
						[MP PMT 1995
	(a) 1.5 (b) 3	3.0	(c) – 15.0	(d)	+15.0	
160.	Resolving power of a microscope dep	ends upon				[MP PET 1995
	(a) The tocal length and aperture of the eye lens eye lens		(b) The focal lengths of the objective and the			
	(c) The apertures of the objective an object	d the eye lens	(d) The wavelen	gth of light illumin	ating the	
161.	If the focal length of the objective len	s is increased then				[MP PMT 1994
	(a) Magnifying power of microscope will increase but that of telescope will decrease					
	(b) Magnifying power of microscope and telescope both will increase					
	(c) Magnifying power of microscope and telescope both will decrease					

				Reflection of Light 67		
	(d) Magnifying power of mic	croscope will decrease but that of t	telescope will increase			
162.	If in compound microscope m_1 and m_2 be the linear magnification of the objective lens and eye lens respectively,					
	then magnifying power of the	e compound microscope will be	-	[CPMT 1985;	; KCET 1994	
	(a) $m_1 - m_2$	(b) $\sqrt{m_1 + m_2}$	(c) $(m_1 + m_2)/2$	(d) $m_1 \times m_2$		
163.	The magnifying power of a m	icroscope with an objective of 5 1	<i>nm</i> focal length is 400. The	e length of its tube is 20		
	<i>cm</i> . Then the focal length of the	he eye-piece is	-	[M	IP PMT 1991	
	(a) 200 <i>cm</i>	(b) 160 <i>cm</i>	(c) 2.5 <i>cm</i>	(d) 0.1 <i>cm</i>		
164.	In a compound microscope, if	f the objective produces an image	I_o and the eye piece produc	es an image I_e , then		
				[].	IP PET 1990	
	(a) I_o is virtual but I_e is real both virtual	(b) I_o is real but I_e is virtual	(c) I_o and I_e are both re-	(d) I_o and I_e are		
165.	In an electron microscope if t	he potential is increased from 20	kV to 80 kV , the resolving p	power of the microscope		
	will change from <i>R</i> to			[CPI	MT 1988, 89	
	(a) <i>R</i> /4	(b) 4 <i>R</i>	(c) 2 <i>R</i>	(d) <i>R</i> /2		
166.	When the length of a microsco	ope tube increases, its magnifying	gpower		[MNR 1986	
	(a) Decreases decrease or increase	(b) Increases	(c) Does not change	(d) May		
167.	An electron microscope is sup	perior to an optical microscope in		I	[CPMT 1984	
	(a) Having better resolving po	ower	(b) Being easy to hand	e		
	(c) Low cost		(d) Quickness of observ	vation		
168.	In a compound microscope m	agnification will be large, if the fo	ocal length of the eye piece is	5	[CPMT 1984	
	(a) Large that of objective	(b) Smaller	(c) Equal to that of obj	ective (d) Less than		
169. An electron microscope gives better resolution than optical microscope because				I	[CPMT 1982	
	(a) Electrons are abundant		(b) Electrons can be foc	used nicely		
	(c) Effective wavelength of el	lectron is small	(d) None of these			
170.	A man is looking at a small ob puts a simple microscope of n	oject placed at his near point. With nagnifying power 5X before his ey	hout altering the position of ves. The angular magnificat	his eye or the object, he ion achieved is		
	(a) 5	(b) 2.5	(c) 1	(d) 0.2		
171.	The focal length of the objecti	ive of a compound microscope is	f_0 and its distance from	the eyepiece is <i>L</i> . The		
	object is placed at a distance <i>u</i> from the objective. For proper working of the instrument					
	(a) $L < u$	(b) $L > u$	(c) $f_0 < L < 2 f_0$	(d) $L > 2f_0$		
172.	Find the maximum magnifyi <i>diopter</i> lens as the eyepiece a 25 <i>cm</i>	ng power of a compound micros nd the separation 30 <i>cm</i> between	cope having a 25 <i>diopter</i> 1 the two lenses. The least d	ens as the objective, a 5 istance for clear vision is		
	(a) 8.4	(b) 7.4	(c) 9.4	(d) 10.4		
173.	The focal length of the objecti between them is 30 <i>cm</i> . If the the objective is	ive and the eye-piece of a microsc e image seen by the eye is 25 <i>cm</i>	ope are 2 <i>cm</i> and 5 <i>cm</i> resp from the eye-piece, the dis	ectively and the distance stance of the object from		
	(a) 0.8 <i>cm</i>	(b) 2.3 <i>cm</i>	(c) 0.4 <i>cm</i>	(d) 1.2 <i>cm</i>		
174.	The focal length of objective power for relaxed eye is 45, th	e and eye-piece of a microscope nen length of the tube is	are 1 <i>cm</i> and 5 <i>cm</i> respec	tively. If the magnifying		
	(a) 6 cm	(b) 9 cm	(c) 12 <i>cm</i>	(d) 15 <i>cm</i>		

175.	A microscope has an ob between objective and e eye is	bjective of focal length 1.5 <i>cm</i> and eye-piece is 25 <i>cm</i> . What is the appr	an eye-piece of focal leng oximate value of magnific	gth 2.5 <i>cm</i> . If the distance cation produced for relaxed			
	(a) 75	(b) 110	(c) 140	(d) 25			
176.	The magnifying power of relaxed eye. A microscop power of the microscope	of a microscope is generally marked pe marked 10X is used by an old r for the old man with his eyes compl	ed as 10 <i>X</i> , 100 <i>X</i> , etc. These markings are for a normal man having his near point at 40 <i>cm</i> . The magnifying pletely relaxed is				
	(a) 10	(b) 18	(c) 12	(d) 16			
177.	If the focal length of ob from the objective lens a	jective and eye lens are 1.2 <i>cm</i> and nd the final image is formed at infin	3 <i>cm</i> respectively and the ity. The magnifying power	object is put 1.25 <i>cm</i> away of the microscope is			
	(a) 150	(b) 200	(c) 250	(d) 400			
178.	A compound microscope object glass is now sligh distant image again	A compound microscope is adjusted for viewing the distant image of an object, the distance of the object from the object glass is now slightly increased, what re-adjustment of the instrument would be necessary for obtaining a distant image again					
	(a) Objective should be moved away from the eye-piece (b) Eye-piece should be moved towards the objective						
	(c) Both should be mov other	red towards each other	(d) Both should be	e moved away from each			
179.	When the object is self-l	uminous, the resolving power of a m	icroscope is given by the ex	pression			
	(a) $\frac{2\mu\sin\theta}{\lambda}$	(b) $\frac{\mu \sin \theta}{\lambda}$	(c) $\frac{2\mu\cos\theta}{\lambda}$	(d) $\frac{2\mu}{\lambda}$			
180.	In a compound microsco	ope, maximum magnification is obtai	ined when the final image				
	(a) Is formed at infinity		(b) Is formed at the le	east of distinct vision			
	(c) Coincides with the c	bject	(d) Coincides with th	e objective lens			
181.	How should people wear	ring spectacles work with a microsco	ре				
	(a) They should keep or	n wearing their spectacles					
	(b) They should take of	f their spectacles					
	(c) They may keep on y	vearing or take off their spectacles. It	makes no difference				
	(d) They cannot use a n	nicroscope at all					
				Telescope			
182.	The focal length of the of 5 <i>cm</i> . The length of the t	bjective and eyepiece of an astronom elescope should be	ical telescope for normal a	djustments are 50 <i>cm</i> and [MP PMT 2004			
0	(a) 50 cm	(b) 55 cm	(c) 60 cm	(d) 45 cm			
183.	The resolving power of a covered, the resolving po	in astronomical telescope is 0.2 <i>seco</i> ower will be	nds. If the central half por	tion of the objective lens is [MP PMT 2004]			
_	(a) 0.1 sec	(b) 0.2 sec	(c) 1.0 sec	(d) 0.6 sec			
184.	If F_o and F_e are the fo power will be	cal length of the objective and eye-pi	ece respectively of a telesco	ope, then its magnifying			
	[CPMT 1977, 8	32, 97, 99, 2003; SCRA 1994; KCET (Engg./Med.) 1999; Pb. PM	IT 2000; BHU 2001; BCECE 2003, 2004			
	(a) $F + F_{o}$	(b) $F \underset{o}{\times} F_{e}$	(c) F/F_{o}	(d) $\frac{1}{2} (F + F)_{e}$			

185. The length of an astronomical telescope for normal vision (relaxed eye) (f_o = focal length of objective lens and f_e =
focal length of eye lens) is**[EAMCET (Med.) 1995; MP PAT 1996; CPMT 1999; BVP 2003**

				Reflection of Light 69		
	(a) $f_{o} \times f_{e}$	(b) $\frac{f_o}{f_e}$	(c) $f + f_{o}$	(d) $f - f_{e}$		
186.	A telescope of diameter between two stars whose	2 <i>m</i> uses light of wavelength 50 e image is just resolved by this t	$\cos \delta$ for viewing stars. The mini- relescope is	mum angular separation [MP PET 2003]		
	(a) $4 \times 10^{-4} rad$ rad	(b) $0.25 \times 10^{-6} rad$	(c) $0.31 \times 10^{-6} rad$	(d) 5.0×10^{-3}		
187.	The aperture of the obje	ctive lens of a telescope is made	e large so as to	[AIEEE 2003; KCET 2003		
	(a) Increase the magnitude telescope	fying power of the telescope	(b) Increase the resolv	ing power of the		
	(c) Make image aberra objects	tion less	(d)	Focus on distant		
188.	The distance of the moo separation of two points	on from earth is $3.8 \times 10^5 km$. The on the moon that can be resolved	he eye is most sensitive to light of red by a 500 <i>cm</i> telescope will be	wavelength 5500 Å. The [AMU (Med.) 2002		
	(a) 51 <i>m</i> above	(b) 60 m	(c) 70 m	(d) All of the		
189.	To increase both the res	olving power and magnifying po	ower of a telescope	[Kerala PET 2002; KCET (Engg.) 2002		
	(a) Both the focal lengt	h and aperture of the objective	has to be increased			
	(b) The focal length of	the objective has to be increased	d			
	(c) The aperture of the	objective has to be increased				
10.0	(d) The wavelength of I	ight has to be decreased	1 1 1	1		
190.	The focal lengths of the magnifying power of the	e objective and eye lenses of a t e telescope will be	elescope are respectively 200 <i>cm</i> [M	and 5 <i>cm</i> . The maximum IP PMT/PET 1998; JIPMER 2001, 2002		
	(a) - 40	(b) - 48	(c) - 60	(d) – 100		
191.	A telescope has an objective and between the objective and	ective of focal length 50 <i>cm</i> an a. The telescope is focussed for ad the eye-piece is	d an eye piece of focal length 5 r distinct vision on a scale 200	<i>cm</i> . The least distance of <i>cm</i> away. The separation		
	(a) 75 cm	(b) 60 <i>cm</i>	(c) 71 <i>cm</i>	[Kerala PET 2002 (d) 74 cm		
192.	In a laboratory four con	vex lenses L_1, L_2, L_3 and L_4	of focal lengths 2, 4, 6 and 8cm	respectively are available.		
	Two of these lenses form	n a telescope of length 10 <i>cm</i> and	d magnifying power 4. The objecti	ve and eye lenses are [MP PMT 2001		
	(a) L_2, L_3	(b) L_1, L_4	(c) L_3, L_2	(d) L_4, L_1		
193.	Four lenses of focal length $+$ 15 cm , $+$ 20 cm , $+$ 150 cm and $+$ 250 cm are available for making an astronomical telescope. To produce the largest magnification, the focal length of the eveniese should					
	be			[CPMT 2001; AIIMS 2001		
	(a) $+ 15 cm$	(b) $+20 cm$	(c) $+ 150 cm$	(d) $+ 250 cm$		
104.	In a terrestrial telescope	\sim the focal length of objective is	$500 \ cm$ of inverting lens is $5 \ cm$	and of evelens is $6 \ cm$ If		
1940	the final image is at 30 c	<i>cm</i> , then the magnification will	be	[DPMT 2001		
	(a) 21	(b) 12	(c) 18	(d) 15		
195.	The focal lengths of the the final image is forme distinct vision	objective and the eyepiece of an ed at a distance of 30 <i>cm</i> from	a astronomical telescope are 20 cm	n and 5 <i>cm</i> respectively. If on between the lenses for [BHU (Med.) 2000		
	(a) 32.4 <i>cm</i>	(b) 42.3 <i>cm</i>	(c) 24.3 <i>cm</i>	(d) 30.24 <i>cm</i>		
196.	Resolving power of refle	ecting type telescope increases w	vith	[DPMT 2000		
	(a) Decrease in wavele	ngth of incident light	(b) Increase in waveler	ngth of incident light		
	(c) Increase in diamete	r of objective lens	(d) None of these			
197.	A planet is observed by an astronomical refracting telescope having an objective of focal length 16 m and an eye- piece of focal length $2cm$					
	(a) The distance betwe	en the objective and the eve-pie	ece is 16.02 <i>m</i>			
	(b) The angular magnit	fication of the planet is 800				
		· · · · · · · · · · · · · · · · · · ·				
	(c) The image of the planet is	inverted				
--	--	--	---	---	--	--
	(d) All of the above					
198.	The astronomical telescope con	nsists of objective and eye-piece. T	'he fo	cal length of the objective	is [AIIMS 10	998; BHU 2000
-	(a) Equal to that of the eve-pi	ece	(b)	Greater than that of the e	ve-piece	
	(c) Shorter than that of the ey piece	ve-piece	(d)	Five times shorter that	n that of the ey	e-
199.	The diameter of the objective resolving power of the telescop	of a telescope is <i>a</i> , the magnifying is	ng po	wer is <i>m</i> and wavelength	of light is λ . Th	e [MP PMT 2000
	(a) $(1.22\lambda)/a$	(b) $(1.22a)/\lambda$	(c)	$\lambda m/(1.22a)$	(d) <i>a</i> /(1.22λm)
200.	An astronomical telescope has between the objective and the objective and eyepiece are resp	as an angular magnification of n e eyepiece is 36 <i>cm</i> and final ima pectively	magn age is	itude 5 for distant object formed at infinity. The s	ts. The separation for the separation of the sep	on ne
			[IIT-JEE 1989; MP PET 19	95; JIPMER 2000)
	(a) 20 cm, 16 cm cm	(b) 50 cm, 10 cm	(c)	30 cm, 6 cm	(d) 45 <i>cm</i> , –	-9
201.	A photograph of the moon wa objective lens of the telescope.	s taken with telescope. Later on, In photograph	it w	as found that a housefly	was sitting on th [NCERT 1970	e o; MP PET 1999
	(a) The image of housefly will image	be reduced	(b)	There is a reduction in the	e intensity of the	
	(c) There is an increase in the	e intensity of the image	(d)	The image of the housefly	will be enlarged	
202.	The magnifying power of a tele	escope is <i>M</i> . If the focal length of e	ye pi	ece is doubled, then the m	agnifying power	
	will become				0 1 01	
					[Hary	ana CEET 1998
	(a) 2 <i>M</i>	(b) <i>M</i> /2	(c)	2 M	(d) $_{3}M$	
203.	The minimum magnifying pov power will become	ver of a telescope is <i>M</i> . If the focal	lengt	h of its eyelens is halved,	the magnifying	
	1			[]	AP PMT/PET 199	8]
	(a) <i>M</i> /2	(b) 2 <i>M</i>	(c)	3 M	(d) 4 <i>M</i>	
204.	The final image in an astronom	nical telescope is			[EAMC]	ET (Engg.) 1998
204.	The final image in an astronom (a) Real and errect errect	nical telescope is (b) Virtual and inverted	(c)	Real and inverted	[EAMC] (d) Virtual and	E T (Engg.) 1998 d
204. 205.	The final image in an astronom (a) Real and errect errect The astronomical telescope ha	nical telescope is (b) Virtual and inverted s two lenses of focal powers 0.5 <i>D</i>	(c) and 2	Real and inverted to <i>D</i> . Its magnifying power	[EAMC] (d) Virtual and r will be	ET (Engg.) 1998 d [CPMT 1997
204. 205.	The final image in an astronom (a) Real and errect errect The astronomical telescope ha (a) 40	nical telescope is (b) Virtual and inverted s two lenses of focal powers 0.5 <i>D</i> (b) 10	(c) and 2 (c)	Real and inverted to <i>D</i> . Its magnifying powe 100	[EAMC] (d) Virtual and r will be (d) 35	ET (Engg.) 1998 d [CPMT 1997
204. 205. 206.	The final image in an astronom (a) Real and errect errect The astronomical telescope ha (a) 40 An astronomical telescope of te	nical telescope is (b) Virtual and inverted s two lenses of focal powers 0.5 <i>D</i> (b) 10 n-fold angular magnification has a	(c) and 2 (c) lengtl	Real and inverted to <i>D</i> . Its magnifying powe 100 n of 44 <i>cm</i> . The focal lengt	[EAMC] (d) Virtual and r will be (d) 35 h of the objective is	ET (Engg.) 1998 d [CPMT 1997 s[CBSE PMT 19
204. 205. 206.	The final image in an astronom (a) Real and errect errect The astronomical telescope ha (a) 40 An astronomical telescope of te (a) 4 <i>cm</i>	nical telescope is (b) Virtual and inverted s two lenses of focal powers 0.5 <i>D</i> (b) 10 n-fold angular magnification has a (b) 40 <i>cm</i>	(c) and 2 (c) lengtl (c)	Real and inverted to <i>D</i> . Its magnifying powe 100 n of 44 <i>cm</i> . The focal lengt 44 <i>cm</i>	[EAMC] (d) Virtual and r will be (d) 35 h of the objective is (d) 440 cm	ET (Engg.) 1998 d [CPMT 1997 s[CBSE PMT 19
204.205.206.207.	The final image in an astronom (a) Real and errect errect The astronomical telescope has (a) 40 An astronomical telescope of te (a) 4 <i>cm</i> A telescope consisting of an ob on a distant object in such a w at the objective, the angular w	nical telescope is (b) Virtual and inverted s two lenses of focal powers 0.5 <i>D</i> (b) 10 n-fold angular magnification has a (b) 40 <i>cm</i> jective of focal length 100 <i>cm</i> and ay that parallel rays emerge from idth of the image is	(c) and 2 (c) lengtl (c) a sin the e	Real and inverted to <i>D</i> . Its magnifying power 100 n of 44 <i>cm</i> . The focal lengt 44 <i>cm</i> gle eyes lens of focal lengt ye lens. If the object subt	[EAMC] (d) Virtual and r will be (d) 35 h of the objective is (d) 440 cm h 10 cm is focusse ends an angle of 2	ET (Engg.) 1998 d [CPMT 1997 s[CBSE PMT 19 sd [JIPMER 1997
204.205.206.207.	The final image in an astronom (a) Real and errect errect The astronomical telescope ha (a) 40 An astronomical telescope of te (a) 4 <i>cm</i> A telescope consisting of an ob on a distant object in such a w at the objective, the angular w (a) 20°	nical telescope is (b) Virtual and inverted s two lenses of focal powers 0.5 <i>D</i> (b) 10 n-fold angular magnification has a (b) 40 <i>cm</i> jective of focal length 100 <i>cm</i> and ay that parallel rays emerge from idth of the image is (b) 1/6°	(c) and 2 (c) length (c) a sin the e	Real and inverted to <i>D</i> . Its magnifying power 100 n of 44 <i>cm</i> . The focal lengt 44 <i>cm</i> gle eyes lens of focal lengt ye lens. If the object subte	[EAMCI (d) Virtual and r will be (d) 35 h of the objective is (d) 440 cm h 10 cm is focusse ends an angle of 2 (d) 24°	ET (Engg.) 1998 d [CPMT 1997 s[CBSE PMT 19 s] [JIPMER 1997
 204. 205. 206. 207. 208. 	The final image in an astronom (a) Real and errect errect The astronomical telescope have (a) 40 An astronomical telescope of te (a) 4 <i>cm</i> A telescope consisting of an ob- on a distant object in such a we at the objective, the angular we (a) 20° When diameter of the aperture	nical telescope is (b) Virtual and inverted s two lenses of focal powers $0.5 D$ (b) 10 n-fold angular magnification has a (b) 40 cm jective of focal length 100 cm and ay that parallel rays emerge from idth of the image is (b) $1/6^{\circ}$ e of the objective of an astronomica	(c) and 2 (c) lengtl (c) a sin the e (c) al tele	Real and inverted to <i>D</i> . Its magnifying power 100 n of 44 <i>cm</i> . The focal lengt 44 <i>cm</i> gle eyes lens of focal lengt ye lens. If the object subto 10° escope is increased, its	[EAMC] (d) Virtual and r will be (d) 35 h of the objective is (d) 440 cm h 10 cm is focusse ends an angle of 2 (d) 24°	ET (Engg.) 1998 d [CPMT 1997 s[CBSE PMT 19 scd JIPMER 1997 [MP PMT 1997
 204. 205. 206. 207. 208. 	The final image in an astronom (a) Real and errect errect The astronomical telescope have (a) 40 An astronomical telescope of ter (a) 4 <i>cm</i> A telescope consisting of an ob on a distant object in such a w at the objective, the angular w (a) 20° When diameter of the aperture (a) Magnifying power is increase	nical telescope is (b) Virtual and inverted s two lenses of focal powers 0.5 D (b) 10 n-fold angular magnification has a (b) 40 cm jective of focal length 100 cm and ay that parallel rays emerge from idth of the image is (b) 1/6° e of the objective of an astronomica- ased and resolving power is decre	(c) and 2 (c) lengtl (c) a sin the e (c) al tele ased	Real and inverted to <i>D</i> . Its magnifying power 100 n of 44 <i>cm</i> . The focal lengt 44 <i>cm</i> gle eyes lens of focal lengt ye lens. If the object subto 10° escope is increased, its	[EAMC] (d) Virtual and t will be (d) 35 h of the objective is (d) 440 <i>cm</i> h 10 <i>cm</i> is focusse ends an angle of 2 (d) 24°	ET (Engg.) 1998 d [CPMT 1997 s[CBSE PMT 19 s] [JIPMER 1997 [MP PMT 1997
 204. 205. 206. 207. 208. 	The final image in an astronom (a) Real and errect errect The astronomical telescope have (a) 40 An astronomical telescope of te (a) 4 <i>cm</i> A telescope consisting of an ob on a distant object in such a w at the objective, the angular w (a) 20° When diameter of the aperture (a) Magnifying power and res	nical telescope is (b) Virtual and inverted s two lenses of focal powers 0.5 D (b) 10 n-fold angular magnification has a (b) 40 cm jective of focal length 100 cm and ay that parallel rays emerge from idth of the image is (b) 1/6° e of the objective of an astronomica- pased and resolving power is decree solving power both are increased	(c) and 2 (c) lengtl (c) a sin the e (c) al tele ased	Real and inverted to <i>D</i> . Its magnifying power 100 n of 44 <i>cm</i> . The focal lengt 44 <i>cm</i> gle eyes lens of focal lengt ye lens. If the object subto 10° escope is increased, its	[EAMCI (d) Virtual and r will be (d) 35 h of the objective is (d) 440 cm h 10 cm is focusse ends an angle of 2 (d) 24°	ET (Engg.) 1998 d [CPMT 1997 s[CBSE PMT 19 scd [JIPMER 1997 [MP PMT 1997
 204. 205. 206. 207. 208. 	The final image in an astronom (a) Real and errect errect The astronomical telescope have (a) 40 An astronomical telescope of te (a) 4 <i>cm</i> A telescope consisting of an ob- on a distant object in such a we at the objective, the angular we (a) 20° When diameter of the aperture (a) Magnifying power is increase (b) Magnifying power and ress (c) Magnifying power remain	nical telescope is (b) Virtual and inverted s two lenses of focal powers $0.5 D$ (b) 10 n-fold angular magnification has a (b) 40 cm jective of focal length 100 cm and ay that parallel rays emerge from idth of the image is (b) $1/6^{\circ}$ e of the objective of an astronomica- based and resolving power is decre solving power both are increased s the same but resolving power is	(c) and 2 (c) lengtl (c) a sin the e (c) al tele ased increa	Real and inverted to <i>D</i> . Its magnifying power 100 n of 44 <i>cm</i> . The focal lengt 44 <i>cm</i> gle eyes lens of focal lengt ye lens. If the object subto 10° escope is increased, its	[EAMC] (d) Virtual and r will be (d) 35 h of the objective is (d) 440 cm h 10 cm is focusse ends an angle of 2 (d) 24°	ET (Engg.) 1998 d [CPMT 1997 s[CBSE PMT 19 sd [JIPMER 1997 [MP PMT 1997
 204. 205. 206. 207. 208. 	The final image in an astronom (a) Real and errect errect The astronomical telescope have (a) 40 An astronomical telescope of te (a) 4 <i>cm</i> A telescope consisting of an ob on a distant object in such a w at the objective, the angular w (a) 20° When diameter of the aperture (a) Magnifying power is increase (b) Magnifying power and ress (c) Magnifying power remain (d) Magnifying power and ress	nical telescope is (b) Virtual and inverted s two lenses of focal powers 0.5 <i>D</i> (b) 10 n-fold angular magnification has a (b) 40 <i>cm</i> jective of focal length 100 <i>cm</i> and ay that parallel rays emerge from idth of the image is (b) 1/6° e of the objective of an astronomica- cased and resolving power is decre solving power both are increased s the same but resolving power is solving power both are decreased	(c) and 2 (c) length (c) a sin the e (c) al tele ased increa	Real and inverted to <i>D</i> . Its magnifying power 100 n of 44 <i>cm</i> . The focal lengt 44 <i>cm</i> gle eyes lens of focal lengt ye lens. If the object subto 10° escope is increased, its	[EAMCI (d) Virtual and r will be (d) 35 h of the objective is (d) 440 cm h 10 cm is focusse ends an angle of 2 (d) 24°	ET (Engg.) 1998 d [CPMT 1997 s[CBSE PMT 19 s] [JIPMER 1997 [MP PMT 1997
 204. 205. 206. 207. 208. 209. 	The final image in an astronom (a) Real and errect errect The astronomical telescope have (a) 40 An astronomical telescope of te (a) 4 <i>cm</i> A telescope consisting of an ob- on a distant object in such a we at the objective, the angular we (a) 20° When diameter of the aperture (a) Magnifying power is increase (b) Magnifying power and ress (c) Magnifying power and ress The focal length of objective and at least distance of distinct vision	nical telescope is (b) Virtual and inverted s two lenses of focal powers $0.5 D$ (b) 10 n-fold angular magnification has a (b) 40 cm jective of focal length 100 cm and ay that parallel rays emerge from idth of the image is (b) $1/6^{\circ}$ e of the objective of an astronomica- ased and resolving power is decre solving power both are increased s the same but resolving power is solving power both are decreased and eye-piece of a telescope are 100 fon. The magnification of telescope	(c) and 2 (c) length (c) a sin the e (c) al tele ased increa	Real and inverted to <i>D</i> . Its magnifying power 100 n of 44 <i>cm</i> . The focal lengt 44 <i>cm</i> gle eyes lens of focal lengt ye lens. If the object subto 10° escope is increased, its ased and 5 <i>cm</i> respectively. Fina	[EAMCI (d) Virtual and t will be (d) 35 h of the objective is (d) 440 cm h 10 cm is focusse ends an angle of 2 (d) 24°	ET (Engg.) 1998 d [CPMT 1997 s[CBSE PMT 19 sd [JIPMER 1997 [MP PMT 1997 d [RPET 1997
 204. 205. 206. 207. 208. 209. 	The final image in an astronom (a) Real and errect errect The astronomical telescope have (a) 40 An astronomical telescope of te (a) 4 <i>cm</i> A telescope consisting of an ob on a distant object in such a w at the objective, the angular w (a) 20° When diameter of the aperture (a) Magnifying power is increase (b) Magnifying power and ress (c) Magnifying power remain (d) Magnifying power and ress The focal length of objective and at least distance of distinct visit (a) 20	nical telescope is (b) Virtual and inverted s two lenses of focal powers $0.5 D$ (b) 10 n-fold angular magnification has a (b) 40 cm jective of focal length 100 cm and ay that parallel rays emerge from idth of the image is (b) $1/6^{\circ}$ e of the objective of an astronomica- sased and resolving power is decre solving power both are increased s the same but resolving power is solving power both are decreased and eye-piece of a telescope are 100 ion. The magnification of telescope (b) 24	(c) and 2 (c) length (c) a sin the e (c) al tele ased increa	Real and inverted to <i>D</i> . Its magnifying power 100 n of 44 <i>cm</i> . The focal lengt 44 <i>cm</i> gle eyes lens of focal lengt ye lens. If the object subt 10° escope is increased, its ased ased and 5 <i>cm</i> respectively. Fina	[EAMCI (d) Virtual and r will be (d) 35 h of the objective is (d) 440 cm h 10 cm is focusse ends an angle of 2 (d) 24°	ET (Engg.) 1998 d [CPMT 1997 s[CBSE PMT 19 s: [JIPMER 1997 [MP PMT 1997 d [RPET 1997
 204. 205. 206. 207. 208. 209. 210. 	The final image in an astronom (a) Real and errect errect The astronomical telescope have (a) 40 An astronomical telescope of te (a) 4 cm A telescope consisting of an ob- on a distant object in such a way at the objective, the angular way (a) 20° When diameter of the aperture (b) Magnifying power is increa- (c) Magnifying power and res- (c) Magnifying power and res- (d) Magnifying power and res- The focal length of objective and at least distance of distinct visit (a) 20 A simple telescope, consisting	nical telescope is (b) Virtual and inverted s two lenses of focal powers $0.5 D$ (b) 10 n-fold angular magnification has a (b) 40 cm jective of focal length 100 cm and ay that parallel rays emerge from idth of the image is (b) $1/6^{\circ}$ e of the objective of an astronomica- ased and resolving power is decree solving power both are increased s the same but resolving power is solving power both are decreased nd eye-piece of a telescope are 100 ion. The magnification of telescope (b) 24 of an objective of focal length 60 c	(c) and 2 (c) length (c) a sin the e (c) al tele ased increa cm a cm a	Real and inverted to <i>D</i> . Its magnifying power 100 n of 44 <i>cm</i> . The focal lengt 44 <i>cm</i> gle eyes lens of focal lengt ye lens. If the object subtrant 10° escope is increased, its ased and 5 <i>cm</i> respectively. Final 30 d single eye lens of focal 1	[EAMCI (d) Virtual and r will be (d) 35 h of the objective is (d) 440 cm h 10 cm is focusse ends an angle of 2 (d) 24° (d) 24°	ET (Engg.) 1998 d [CPMT 1997 s[CBSE PMT 19 sd [JIPMER 1997 [MP PMT 1997 d [RPET 1997
 204. 205. 206. 207. 208. 209. 210. 	The final image in an astronom (a) Real and errect errect The astronomical telescope have (a) 40 An astronomical telescope of ter (a) 4 <i>cm</i> A telescope consisting of an ob- on a distant object in such a we at the objective, the angular we (a) 20° When diameter of the aperture (a) Magnifying power is increase (b) Magnifying power and ress (c) Magnifying power and ress (c) Magnifying power and ress (d) Magnifying power and ress (a) 20 A simple telescope, consisting focussed on a distant object in angle 2° at the objective the construction (b) Provide the construction of the second (c) 20	nical telescope is (b) Virtual and inverted s two lenses of focal powers $0.5 D$ (b) 10 n-fold angular magnification has a (b) 40 cm jective of focal length 100 cm and ay that parallel rays emerge from idth of the image is (b) $1/6^{\circ}$ e of the objective of an astronomica- ased and resolving power is decree solving power both are increased s the same but resolving power is solving power both are decreased nd eye-piece of a telescope are 100 ion. The magnification of telescope (b) 24 of an objective of focal length 60 c such a way that parallel rays com-	(c) and 2 (c) length (c) a sin the e (c) al tele ased increa e is (c) cm an es out	Real and inverted to <i>D</i> . Its magnifying power 100 n of 44 <i>cm</i> . The focal length 44 <i>cm</i> gle eyes lens of focal length ye lens. If the object subtract 10° escope is increased, its ased and 5 <i>cm</i> respectively. Final 30 d single eye lens of focal 1 if from the eye lens. If the object and 1 the object subtract and 1 the object s	[EAMCI (d) Virtual and r will be (d) 35 h of the objective is (d) 440 cm h 10 cm is focusse ends an angle of 2 (d) 24° (d) 24°	ET (Engg.) 1998 d [CPMT 1997 s[CBSE PMT 19 cd [JIPMER 1997 [MP PMT 1997 d [RPET 1997
 204. 205. 206. 207. 208. 209. 210. 	The final image in an astronom (a) Real and errect errect The astronomical telescope have (a) 40 An astronomical telescope of te (a) 4 <i>cm</i> A telescope consisting of an ob on a distant object in such a we at the objective, the angular we (a) 20° When diameter of the aperture (a) Magnifying power is increase (b) Magnifying power and ress (c) Magnifying power remain (d) Magnifying power and ress The focal length of objective and at least distance of distinct vision (a) 20 A simple telescope, consisting focussed on a distant object in angle 2° at the objective, the and (c) 10°	nical telescope is (b) Virtual and inverted s two lenses of focal powers $0.5 D$ (b) 10 n-fold angular magnification has a (b) 40 cm jective of focal length 100 cm and ay that parallel rays emerge from idth of the image is (b) $1/6^{\circ}$ e of the objective of an astronomica- ased and resolving power is decree solving power both are increased s the same but resolving power is solving power both are decreased and eye-piece of a telescope are 100 ion. The magnification of telescope (b) 24 of an objective of focal length 60 of such a way that parallel rays com- ngular width of the image	(c) and 2 (c) length (c) a sin the e (c) al tele ased increa e is (c) cm an e s out	Real and inverted to <i>D</i> . Its magnifying power 100 n of 44 <i>cm</i> . The focal lengt 44 <i>cm</i> gle eyes lens of focal lengt ye lens. If the object subtract 10° escope is increased, its ased ased and 5 <i>cm</i> respectively. Final 30 d single eye lens of focal 1 from the eye lens. If the object subtract 10°	[EAMCI (d) Virtual and (d) Virtual and (d) 35 (d) 35 (d) $440 \ cm$ (f) $440 \ cm$ (f) 24° (d) 24° (d) 24° (d) 24° (ends an angle of 2 (d) 24° (d) 24°	ET (Engg.) 1998 d [CPMT 1997 s[CBSE PMT 19 [JIPMER 1997 [MP PMT 1997 d [RPET 1997

						Refle	ction o	of Ligh	t 71	
211.	The diameter of the objective would be approximately	of the	e telescope is 0.1 <i>metre</i> and w	vavel	ength of lig	ht is 6000 Å. It:	s resolv	ving pov	wer [MP PET 1997
	(a) 7.32×10^{-6} radian 1.36×10^{5} radian	(b)	1.36×10 ⁶ radian	(c)	7.32×10 ⁻⁴	⁵ radian	(d)			
212.	A Gallilean telescope has obje power of the telescope for nor	ective mal v	and eye-piece of focal length ision is	s 200	o <i>cm</i> and 2	cm respectively	. The n	nagnify	ing [1	MP PMT 1996
	(a) 90	(b)	100	(c)	108		(d) 1	98		
213.	All of the following statement	s are c	correct except					[]	Ianij	pal MEE 1995
	(a) The total focal length of a	n asti	ronomical telescope is the sur	n of t	he focal len	ngths of its two le	enses			
	(b) The image formed by the two lenses its divergent	astro	nomical telescope is always e	rect b	ecause the	effect of the con	nbinatio	on of th	ie	
	(c) The magnification of an a piece	stron	omical telescope can be incre	ased	by decreasi	ing the focal leng	gth of tl	he eye-		
	(d) The magnifying power of objective to that of the ey	the ro e-pieo	efracting type of astronomical ce	l teles	scope is the	ratio of the foca	l lengtl	n of the		
214.	The length of a telescope is 36	cm.'	Γhe focal length of its lenses c	an be	:				[Bił	nar MEE 1995
	(a) 30 cm, 6 cm cm	(b)	– 30 cm, – 6 cm	(c)	– 30 cm, -	- 6 cm	(d) –	30 cm,	6	
215.	The diameter of the objective of this telescope will be	lens o	of telescope is 5.0 m and wave	eleng	th of light i	is 6000 Å. The l	imit of	resolut	ion [1	MP PMT 1994
	(a) 0.03 <i>sec</i>	(b)	3.03 sec	(c)	0.06 sec		(d) o).15 sec		
216.	If tube length of astronomical focal length of objective	l tele	scope is 105 <i>cm</i> and magnify	ving p	ower is 20	for normal sett	ing, cal	culate	the	[AFMC 1994
	(a) 100 <i>cm</i>	(b)	10 cm	(c)	20 cm		(d) 2	25 cm		
217.	Radio telescope is used to see									[AFMC 1994
	(a) Distant start and plane measure its temperature	ts			(b)		Sun	and	to	
	(c) Stars and to measures of	liame	eters	(d)	None of	these				
218.	Four lenses with focal lens \pm length of the lens which produced	15 cr ices t	n and \pm 150 cm are being pla he largest magnification with	aced a giv	for used as eneye-piec	s a telescopic ob e is	jective.	The fo	cal [CB	SE PMT 1994
	(a) −15 <i>cm</i>	(b)	+150 cm	(c)	–150 cm		(d) +	-15 cm		
219.	The image of a star (effectively aperture 5.0 <i>cm</i> . If the lens is diameter of the image formed	y a po s idea will l	int source) is made by conver l, and the effective wavelengt be nearest to	gent h in i	lens of foca image form	al length 50 <i>cm a</i> nation is taken a	and dia s 5×10	meter of $^{-5}$ cm , t	of the	[NSEP 1994
	(a) Zero	(b)	10 ⁻⁶ cm	(c)	10^{-5} cm		(d) 1	$10^{-3} cm$		
220.	To increase the magnifying polens)	ower o	of telescope (f_o = focal length of	of the	objective a	and f_e = focal lenge	gth of t	he eye		
						[MP PI	ET/PM1	Г 1988;	MP	PMT 1992, 94
	(a) f_o should be large and f_e s	hould	l be small	(b)	f_o should be	e small and f_e she	ould be	large		
	(c) f_o and f_e both should be la	rge		(d)	f_o and f_e bot	th should be sm	all			
221.	The limit of resolution of a 10	$0 \ cm$	telescope ($\lambda = 5.5 \times 10^{-7} m$) is							[BHU 1993
	(a) 0.14 "	(b)	0.3"	(c)	1′		(d) 1	."		
222.	In a reflecting astronomical te same focal length and apertur	elesco e, the	pe, if the objective (a spheric: n	al mi	rror) is repl	laced by a parab	olic mi	rror of	the [[IIT-JEE 1993
	(a) The final image will be er image will be obtained	ect			(b)		The	laı	rger	
	(c) The telescope will gather	more	light	(d)	Spherical a	berration will b	e absen	t		

72 Reflection of Light

223.	A planet is observed by an eyepiece of focal length 2 cm	astronomical refr	acting telescope ha	ving an objec	tive of focal len	gth 16 <i>m</i> a	ind an	[IIT-JEE 1993
	(a) The distance between the	e objective and th	e eyepiece is 16.02 <i>n</i>	n				
	(b) The angular magnification	on of the planet is	800					
	(c) The image of the planet	s inverted						
	(d) The objective is larger th	an the eyepiece						
224.	The average distance between points on the surface of the n with $\lambda = 6000 \text{ Å}$ is	n the earth and m noon that can be r	boon is $38.6 \times 10^4 k$ resolved by a telescop	<i>m</i> . The minim pe whose obje	um separation h ctive lens has a c	etween the liameter of	e two 5 m []	MP PMT 1993
	(a) 5.65 m	(b) 28.25 <i>m</i>	((c) 11.30 m		(d) 56.51	т	
225.	The focal length of the object the magnifying power when t	ive and eye piece he image is forme	of a telescope are re ed at infinity is	espectively 60	<i>cm</i> and 10 <i>cm</i> . 7	The magnit	ude of	[MP PET 1991
	(a) 50	(b) 6	((c) 70		(d) 5		
226.	The focal length of an object diameter of the pupil is 3 <i>mm</i>	tive of a telescope of for its complete	e is 3 <i>metre</i> and dia use, the focal length	ameter 15 <i>cm.</i> of eye piece m	Assuming for a aust be	normal ey	ve, the	MP PET 1989
	(a) 6 <i>cm</i>	(b) 6.3 <i>cm</i>	((c) 20 <i>cm</i>		(d) 60 cm	n	
227.	An opera glass (Gallilean tel objective is 15 <i>cm</i> . Its magnif	escope) measure ying power is	s 9 <i>cm</i> from the obj	jective to the	eyepiece. The fo	cal length	of the	[DPMT 1988
	(a) 2.5	(b) 2/5	((c) 5/3		(d) 0.4		
228.	The focal length of objective a formed at (i) least distance of	and eye lens of a a distinct vision (ii	astronomical telesco) infinity. The magn	pe are respect ifying power i	ively 2 <i>m</i> and 5 c n both cases will	m. Final in be	nage is [MP P	MT/PET 1988
	(a) $-48, -40$	(b) - 40, - 48	3 ((c) – 40, 48		(d) – 48, 4	40	
229.	An optical device that enables	s an observer to se	ee over or around op	aque objects, i	is called			[CPMT 1986
	(a) Microscope Hydrometer	(b) Telescope	((c) Periscope		(d)		
230.	The magnifying power of a te	lescope can be inc	creased by					[CPMT 1979
	(a) Increasing focal length o	f the system	((b) Fitting eye	piece of high por	wer		
	(c) Fitting eye piece of low p	ower		(d) Increasing	the distance of c	bjects		
231.	An achromatic telescope obje choice is	ctive is to be made	de by combining the	e lenses of flir	it and crown gla	sses. This j	proper	[CPMT 1977
	(a) Convergent of crown and	l divergent of flint	t (b) Divergent	of crown and cor	vergent of	flint	
	(c) Both divergent	0	(d) Both conve	ergent	0		
232.	An observer looks at a tree of	height 15 <i>m</i> with	a telescope of magni	ifving power 1	o. To him. the tr	ee appears		[CPMT 1975
0	(a) 10 times taller nearer	(b) 15 times ta	aller ((c) 10 times r	iearer	(d) 15	times	
233.	The magnification produced telescope is 1.1 <i>m</i> . The magni	by an astronomic fication when the	al telescope for norn image is formed at l	nal adjustmen east distance	t is 10 and the le of distinct vision	ngth of the $(D = 25 \ cm)$	ı) is	
	(a) 14	(b) 6	((c) 16		(d) 18		
234.	The objective of a telescope h the height of the image of the	as a focal length of tower formed by	of 1.2 <i>m</i> . it is used to the objective	view a 10.0 m	a tall tower 2 <i>km</i>	away. Wha	t is	
	(a) 2 mm	(b) 4 <i>mm</i>	((c) 6 <i>mm</i>		(d) 8 mm		
235.	A giant telescope in an observ normal adjustment, the telescope in a second sec	vatory has an obje cope is used to vie	ective of focal length ew the moon. What i	19 <i>m</i> and an e s the diameter	eye-piece of focal of the image of	length 1.0 the moon fo	<i>cm</i> . In ormed	
	by the objective? The diameter $3.8 \times 10^8 m$	er of the moon is	$3.5 \times 10^{\circ} m$ and th	e radius of the	e lunar orbit rou	nd the earth	n is	
	(a) 10 <i>cm</i>	(b) 12.5 <i>cm</i>	((c) 15 <i>cm</i>		(d) 17.5 c	m	
236.	The aperture of the largest te $\approx 4 \times 10^5 km$ and the wavelen	lescope in the wor gth of the visible l	rld is $\approx 5 \text{ metre.}$ If the light is $\approx 5000 \text{ A}$	e separation h Å , then the n	between the moo ninimum separa	n and the e tion betwe	arth is en the	
	objects on the surface of the	noon which can b	e just resolved is					
	(a) 1 metre approximately approximately	(b) 10 <i>metre</i> a	approximately ((c) 50 metre	approximately	(d) 200 <i>n</i>	netre	
237.	In Galileo's telescope, magnit	ying power for no	ormal vision is 20 an	d power of ey	e-piece is −20 D	. Distance		

between the objective and eye-piece should be

					Re	eflection	of Light	t 73
	(a) 90 cm	(b)	95 cm	(c)	100 cm	(d)	105 cm	
238.	The least resolve angle by a to nearly	elescop	e using objective of aper	ture 5 <i>m</i> a	and light of wavelength	= 4000 4	4. <i>U</i> . is	
	(a) $\frac{1}{50}^{\circ}$	(b)(b)	$\frac{1}{50}$ sec	(c)	$\frac{1}{50}$ minute	(d)	$\frac{1}{500}$ sec	
239.	The limit of resolution of a 10	o <i>cm</i> tel	escope for visible light o	f wavelen	gth 6000 \AA is approxin	nately		
	(a) 0.1 <i>s</i> or arc	(b)	30°	(c)	$\left(\frac{1}{6}\right)^{o}$	(d)	None	of
	these							
240.	An eye-piece of a telescope w a power of	rith a ma	agnification of 100 has a	power of	20 diopters. The objec	t of this t	elescope	has
	(a) 2 diopters	(b)	0.2 diopters	(c)	2000 diopters	(d) :	20 diopte	ers
241.	The Yerkes Observatory teles wavelength of light to be 6×1	scope ha 10 ⁻⁷ <i>m</i> ,†	as a large telescope with the angular distance θ be	objective etween tw	of diameter of about 1 o stars which can just l	m. Assun be resolve	ning ed is	
	(a) $(7.3 \times 10^{-7})^{\circ}$	(b)	$7.3 \times 10^{-7} rad$	(c)	$\frac{1}{40}$ of a second	(d)	None	of
	these							
242.	A Galilean telescope measure Its magnifying power is	es 9 <i>cm</i>	from the objective to th	e eye-piec	e. The focal length of t	he object	ive is 15	ст.
	(a) 2.5	(b)	2/5	(c)	5/3	(d)	0.4	
243.	For seeing a cricket match, w	e preter	r binoculars to the terres	trial teles	cope, because			
	(a) Binoculars give three-di	mension	nal view	(b) '	l'errestrial telescope gi	ves inver	ted image	9
	(c) To avoid chromatic aber	ration		(d)'	Fo have larger magnific	cation		
244.	A simple two lens telescope pointed at an object at a very piece is adjusted so that the objective is	has an v large d e final v	objective of focal length listance which subtends <i>r</i> irtual image is formed	1 50 <i>cm a</i> at an ang at infinity	and an eye-piece of 2.5 le of 1 <i>milliradian</i> on t y. The size of the real	5 <i>cm</i> . The he naked image fo	e telescop eye. The rmed by	e is eye the
	(a) 5 <i>mm</i>	(b)	1 <i>mm</i>	(c)	0.5 <i>mm</i>	(d)	0.1 <i>mm</i>	
245.	The objective of a telescope, a sharp image of the slit is form image is <i>l</i> , then magnification	after foo med by n of tele	cussing for infinity is tak the eye-piece at a certain scope is	en out an n distance	d a slit of length <i>L</i> is pl from it on the other s	aced in it ide. The l	s position ength of	n. A this
	(a) l	<i>(b)</i>	2L	(c)	l	(d)	<u>L</u>	
	2L		l		L		l	
246.	An astronomical telescope in decreased slightly	norma	l adjustment receives lig	ht from a	distant source <i>S</i> . The t	ube lengt	h is now	
	(a) A virtual image of <i>S</i> will	be form	ned at a finite distance					
	(b) No image will be formed							
	(c) A small, real image of S	will be f	ormed behind the eye-p	iece, close	e to it			
	(d) A large, real image of S v	will be fo	ormed behind the eye-pi	ece, far av	way from it	_		
247.	A telescope consisting of obj from the object glass. The fir is	ect glas nal imag	s of power $+ 2 D$ and egge is seen with complete	ye-glass o ly relaxed	f power + 20 <i>D</i> is focu l eye. The magnifying p	issed on power of	an object the telesc	1 <i>m</i> cope
	(a) 20	(b)	41	(c)	24	(d)	49.2	
248.	An astronomical telescope magnification, when both are <i>f</i>	and a e in nor	Galilean telescope us mal adjustment. The eye	e identic -piece of	al objective lenses. T the astronomical telesc	They hav cope has a	re the sa a focal ler	ame 1gth
	(<i>a</i>) The tube lengths of the t differ by 2 <i>f</i>	wo teles	scopes differ by <i>f</i>	(b)	The tube lengths of	the two	telesco	opes
	(c) The Galilean telescope h length	as a sho	orter tube length	(d)	The Galilean telescop	oe has a	longer t	ube

79	80	81	82	83	84	85	86	8 7	88	89	90	91	92	93	94	95	96	9 7	98
----	----	----	----	----	----	----	----	------------	----	----	----	----	----	----	----	----	----	------------	----

74 Reflection of Light

a	d	b	a	с	a	b	b	c	a	b	b	d	b	a	d	d	a	с	a
99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
b	с	с	c	b	b	с	b	с	a	b	b	с	b	d	с	с	a	a	b
119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138
a	d	a	c	a	d	c	b	d	b	c	с	b	a	d	a	с	a	b	d
139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158
с	b	d	d	с	a	a	b	с	b	d	a	d	d	d	a	с	b	b	d
159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178
d	d	d	с	b	с	a	a	b	с	с	b,d	a	b	d	с	d	b	b	a
179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198
b	b	b	С	С	С	С	b	a	a	b	С	d	a	С	С	a, c	d	b	d
199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218
с	b	b	b	b	a	b	a	c	b	b	d	b	b	a	a	a	a	b	d
219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	23 7	238
a	a	d	a	d	b	a	a	a	c	b	a	с	a	с	d	с	b	b	a
239	240	241	242	243	244	245	246	2 47											
b	b	a	a	c	d	a	b	b, c											