Reg. No.:	Code No. 9024
Name:	

Second Year - March 2018

Time: 2 Hours Cool-off time: 15 Minutes

Part – III

ELECTRONIC SERVICE TECHNOLOGY

Maximum: 60 Scores

General Instructions to Candidates:

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൂൾ ഓഫ് ടൈം' ചോദ്യങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- നിർദ്ദേശങ്ങൾ മുഴുവനും ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നല്ലിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

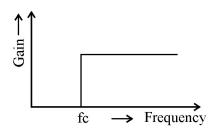
Answer all questions from question 1-5. Each question carries 1 Score.

(Scores: $5 \times 1 = 5$)

- 1. How many flip-flops are required to construct a mod-30 counter?
- 2. An integrator is a filter.
- 3. In television transmission, bandwidth required for a channel is _____. [5.5 MHz, 11 MHz, 7 MHz, 14 MHz]
- 4. Minimum value of input dc voltage required to get a regulated output of +8 V using IC 7808 is _____.

 [2 V, 10 V, 8 V, 5 V]
- 5. The working principle of OFC is _____.

Answer any six questions from 6 to 13. Each question carries 2 Scores.


(Scores: $6 \times 2 = 12$)

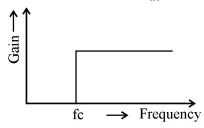
- 6. Prove that A(A + B) = A
- 7. Ideal frequency response curve of a circuit is given below:
 - (a) Identify the circuit.

(Score : 1)

(b) Draw the circuit diagram.

(Score : 1)

- 8. Define CMRR.
- 9. Draw the index profile of step index fibre and graded index fibre.
- 10. Draw the circuit of a half bridge inverter.


1 മുതൽ 5 വരെയുള്ള ചോദ്യങ്ങൾക്ക് നിർബന്ധമായും ഉത്തരം എഴുതുക. ഓരോ ശരിയുത്തരത്തിനും ഒരു സ്കോർ വീതം. (സ്കോർസ്: $5 \times 1 = 5$)

- 1. Mod-30 counter നിർമ്മിക്കുന്നതിന് എത്ര flip-flop കൾ ആവശ്യമാണ്.
- 2. ഒരു integrator _____ filter ആണ്.
- 3. ടെലിവിഷൻ സംപ്രക്ഷണത്തിൽ, ഒരു ചാനലിന് ആവശ്യമായ bandwidth _____ ആണ്. [5.5 MHz, 11 MHz, 7 MHz, 14 MHz]
- 4. IC 7808 ഉപയോഗിച്ച് $+8~\rm V$ റെഗുലേറ്റഡ് ഔട്ട്പുട്ട് ലഭിക്കുന്നതിന് ആവശ്യമായ മിനിമം ഇൻപുട്ട് വോൾട്ടേജ് _____ ആണ്. [$2~\rm V, 10~\rm V, 8~\rm V, 5~\rm V$]
- 5. OFC യുടെ പ്രവർത്തന തത്വം ആണ്.
 - 6 മുതൽ 13 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും ആറെണ്ണത്തിന് ഉത്തരം എഴുതുക. ഓരോ ശരിയുത്തരത്തിനും 2 സ്കോർ വീതം. (സ്കോർസ്: $6 \times 2 = 12$)
- A(A+B)=A എന്ന് തെളിയിക്കുക.
- 7. ഒരു സർക്യൂട്ടിന്റെ ഐഡിയൽ ഫ്രീക്വൻസി റെസ്പോൺസ് താഴെ തന്നിരിക്കുന്നു :
 - (a) സർക്യൂട്ട് തിരിച്ചറിയുക.

(സ്കോർ : 1)

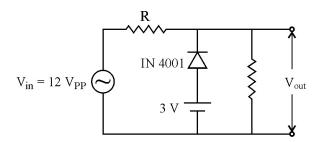
(b) സർക്യൂട്ട് ഡയഗ്രം വരയ്ക്കുക.

(സോർ : 1)

- 8. CMRR നിർവ്വചിക്കുക.
- 9. Step index ഫൈബറിന്റെയും graded index ഫൈബറിന്റെയും index profile വരയ്ക്കുക.
- 10. Half bridge inverter-ന്റെ സർക്യൂട്ട് ഡയഗ്രം വരയ്ക്കുക.

- 11. Draw the structure of a commonly used VHF receiving antenna.
- 12. Assume '1' indicates the ON condition and '0' indicates OFF condition of LED. Design a circuit to obtain the LED sequence as 1000, 0100, 0010, 0001, 1000, etc.
- 13. Draw a basic RADAR system used in ships.

Answer any FOUR questions from 14 to 18. Each question carries 3 Scores.


(Scores: $4 \times 3 = 12$)

- 14. Using IC 7400, implement the function $y = \overline{A} B + A \overline{B}$.
- 15. (a) Identify the circuit given below.

(Score : 1)

(b) Draw its output waveform (diode is ideal).

(Scores: 2)

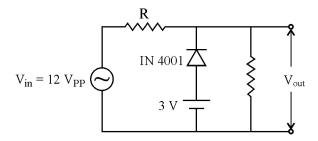
16. (a) Write the output equation of an integrator.

(Score: 1)

(b) Draw the above circuit using IC 741.

(**Scores** : 2)

- 17. Draw the block diagram of a TV transmitter.
- 18. Explain different distortions in tape recorder.


9024

4

- 11. സാധാരണ ഉപയോഗിക്കുന്ന VHF റിസീവിംഗ് ആന്റിനയുടെ ഘടന വരയ്ക്കുക.
- 12. ഒരു LED-യുടെ ON കണ്ടീഷൻ 1 ഉപയോഗിച്ചും OFF കണ്ടീഷൻ 0 ഉപയോഗിച്ചും സൂചിപ്പിക്കുന്നു എന്ന് വിചാരിക്കുക. LED ഉപയോഗിച്ച് 1000, 0100, 0010, 0001, 1000, എന്ന ശ്രേണി ഉണ്ടാക്കുന്നതിനാവശ്യമായ സർക്യൂട്ട് ഡിസൈൻ ചെയ്യുക.
- 13. കപ്പലുകളിൽ ഉപയോഗിക്കുന്ന ബേസിക് റെഡാർ സിസ്റ്റം വരയ്ക്കുക.

14 മുതൽ 18 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 4 എണ്ണത്തിന് ഉത്തരമെഴുതുക. ഓരോ ശരിയുത്തരത്തിനും 3 സ്കോർ വീതം. (സ്കോർസ് : $4 \times 3 = 12$)

- 14.~~IC~7400 ഉപയോഗിച്ച് $y=\overline{A}~B+A~\overline{B}~$ എന്ന function പ്രാവർത്തികമാക്കുക.
- 15. (a) താഴെ തന്നിരിക്കുന്ന സർക്യൂട്ട് തിരിച്ചറിയുക. (സ്കോർ : 1)
 - (b) ഇതിന്റെ ഔട്ട്പുട്ട് waveform വരയ്ക്കുക. (ഡയോഡ് ഐഡിയൽ ആണ്). (സ്കോർസ്: 2)

- 16. (a) ഒരു ഇന്റഗ്രേറ്ററിന്റെ output equation എഴുതുക. (സ്കോർ : 1)
 - (b) മേൽപ്പറഞ്ഞ സർക്യൂട്ട് IC 741 ഉപയോഗിച്ച് നിർമ്മിക്കുക. (സ്കോർസ്: 2)
- 17. ഒരു ടി.വി. ട്രാൻസ്മിറ്ററിന്റെ ബ്ലോക്ക് ഡയഗ്രം വരയ്ക്കുക.
- 18. ടേപ്പ് റെക്കോർഡറിന്റെ വിവിധ തരത്തിലുള്ള distortions വിശദീകരിക്കുക.

Answer any FOUR questions from 19 to 23. Each question carries 4 scores.

(Scores : $4 \times 4 = 16$)

- 19. What is race around condition? How it can be eliminated?
- 20. Draw the block diagram of an electronic exchange.
- 21. With block diagram explain the working of a UPS system used in hospital ICU.
- 22. You are given transistors, capacitors and resistors. Construct a circuit to open the door of a gate while hearing the horn of a car and close it after a delay.
- 23. Draw a complete vestigial side band frequency spectrum for a picture carrier frequency of 240 MHz. Mark all important frequencies.

Answer any THREE questions from 24 to 27. Each question carries 5 scores.

(Scores: $3 \times 5 = 15$)

- 24. (a) Which logic gates are known as universal gates? (Scores: 1)
 - (b) Reduce using K-map:

$$f(A, B, C, D) = \Sigma(1, 5, 6, 9, 12, 13, 14, 15)$$
 (Scores : 4)

- 25. (a) Draw circuit diagram of a stable multi-vibrator using 555 IC. (Scores: 3)
 - (b) What are the different steps involved in fabrication of resistor in a silicon chip? (Scores: 2)
- 26. (a) Draw the block diagram of a fax transceiver. (Scores: 3)
 - (b) What is the concept behind frequency reuse? (Scores: 2)
- 27. (a) What is the working principle of a moving coil loud speaker? (Scores: 1)
 - (b) With neat diagram, explain its working. (Scores: 4)

9024 6

- 19 മുതൽ 23 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും നാലെണ്ണത്തിന് ഉത്തരമെഴുതുക. ഓരോ ശരിയുത്തരത്തിനും 4 സോർ വീതം. (സോർസ് : 4 × 4 = 16)
- 19. എന്താണ് race around condition? ഇത് എങ്ങനെ ഒഴിവാക്കാം?
- 20. ഒരു electronic exchange ന്റെ ബ്ലോക്ക് ഡയഗ്രം വരയ്ക്കുക.
- 21. ആശൃപത്രിയിലെ ICU-ൽ ഉപയോഗിക്കുന്ന UPS സിസ്റ്റത്തിന്റെ പ്രവർത്തനം ബ്ലോക്ക് ഡയഗ്രം ഉപയോഗിച്ച് വിശദീകരിക്കുക.
- 22. നിങ്ങൾക്ക് കുറച്ച് transistors, capacitors, resistors എന്നിവ തന്നിരിക്കുന്നു. ഒരു ഗേറ്റിന്റെ വാതിൽ കാറിന്റെ ഹോൺ കേൾക്കുമ്പോൾ തുറക്കുകയും അല്പസമയത്തിനുശേഷം അടയ്ക്കുകയും ചെയ്യുന്നതിന് സഹായകരമായ സർക്യൂട്ട് നിർമ്മിക്കുക.
- 23. Picture carrier ഫ്രീക്വൻസി 240 MHz ആയ ഒരു vestigial side band ഫ്രീക്വൻസ് സ്പെക്ട്രം വരച്ച് എല്ലാ പ്രധാന ഫ്രീക്വൻസികളും അടയാളപ്പെടുത്തുക.
 - 24 മുതൽ 27 വരെയുള്ള ചോദ്യങ്ങളിൽ ഏതെങ്കിലും മൂന്നെണ്ണത്തിന് ഉത്തരമെഴുതുക. ഓരോ ശരിയുത്തരത്തിനും 5 സ്കോർ വീതം. (സ്കോർസ്: $3 \times 5 = 15$)
- 24. (a) ഏത് logic gate കളെയാണ് യൂണിവേഴ്സൽ ഗേറ്റ്സ് എന്നു പറയുന്നത്? (സ്കോർ: 1)
 - (b) K-map ഉപയോഗിച്ച് ലഘൂകരിക്കുക :
 f(A, B, C, D) = Σ(1, 5, 6, 9, 12, 13, 14, 15)
 (മ്യോർസ്: 4)
- 25. (a) 555 IC ഉപയോഗിച്ച് ഒരു Astable multi-vibrator സർക്യൂട്ട് നിർമ്മിക്കുക. (സ്കോർസ് : 3)
 - (b) ഒരു സിലിക്കൺ ചിപ്പിൽ ഒരു resistor ഫാബ്രിക്കേറ്റ് ചെയ്യുന്നതിനാവശ്യമായ വിവിധ steps എഴുതുക. (ლൂാർസ്: 2)
- 26. (a) ഒരു Fax Transceiver-ന്റെ ബ്ലോക്ക് ഡയഗ്രം വരയ്ക്കുക. (സ്കോർസ്: 3)
 - (മൂടർസ്: 2)
- 27. (a) ഒരു moving coil loud speaker-ന്റെ പ്രവർത്തന തത്വം എന്ത്? (സ്കോർ : 1)
 - (b) ചിത്രത്തിന്റെ സഹായത്തോടെ അതിന്റെ പ്രവർത്തനം വിശദീകരിക്കുക. (സ്കോർസ്: 4)

7

9024

SECOND YEAR HIGHER SECONDARY EXAMINATION MARCH 2018

SUBJECT: ELectronics Service TechnologyCODE. NO: 9024.

Qn No	Sub Qns	Answer Key/Value Points	Score	Total
1		5 Flip Flops.	1	
2	!	Low pass foller		
3		7MHZ.	(5
4		lov	1	
5		Total internal reflection	<i>!</i>	
6		$A(A+B) = A \cdot A + A \cdot B$ $= A + A \cdot B$ $= A(I+B)$ $= A \cdot I$ $= A$	2	2
・フ	a	High Pass filter	ı	2
	5.	THE A ZIP ZR OIP	J	
8		CMRR is the ratio of differential mode gain to common mode gain	2	2
9		cladding x core x y core	1.41	2

Qn No	Sub Qns	Answer Key/Value Points	Score	Total	
10		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2	
11		Structure of Yagi Uda anlenña	2	2	
12		Circuit deagram of ring counter with 4 flip flops	2	2	: }
13		Basic block diagram of RADAR	2	2	
14		EX-OR gate using NANDgate	3	3	
15	a	-ve clipper with the beasing	1		+
	Ь	Of p waveform	2	3	
16	a	Vo & Svin dt	1	·	
	Ь	Circuit diagram of integrator using op-amp	2	3 	
17		Block diagram of TV transmitter	3	3	
18		Brief explanation of each [wow and flutter, hissing, rumble]	1 each	3	
19	,	Explanation of race around condition Elemination method - i)Use of master Slave JKFF (ii) using edgetriggered clock	2 2	4	
20		Block diagram of electronic exchange	į	4	
		-2-			

Qn No	Sub Qns	Answer Key/Value Points	Score	Total
21		Block dragsam of on line UPS Explanation	3 (4
22		Circuit diagram of monostable, multivibrator	4	4
23		Vestigial Side band spectrum Representation of frequencies (any 3)	1	4
24	a	NAND & NOR	42×2=1	
·	Ь	K map entry	2	5
-		Equation	1	
25	a	Circuit diagram of astable multi vibrator using 555IC	3	5
	Ь	IC fabrication	2	
26	a	Block diagram of fax teanseein	k 3	-
	Ь	Frequency heuse	2	5
27	a	Electroniagnetic induction	1	
·	Ь	Deagram of moving coil loud-	3	5
		Speaker	1	
		Explanation		
			! 	