

DPP No. 64

Total Marks : 26

Max. Time: 28 min.

Topics : Heat, Magnetic Effect of Current and Magnetic Force on Charge/current, Rotation, Current Electricity, Center of Mass

Type o Single Subjee Compr	f Questions choice Objective ('–1' ctive Questions ('–1' ne ehension ('–1' negative	negative marking) egative marking) Q. marking) Q.6 to Q.	Q.1 to Q.3 .4 to Q.5 8	(3 marks, 3 min.) (4 marks, 5 min.) (3 marks, 3 min.)	M.M., Min. [9, 9] [8, 10] [9, 9]			
1.	Two identical rectangular rods of metal are welded end to end in series between temperature 0°C and 100°C and 10 J of heat is conducted (in steady state process) through the rod in 2.00 min. If 5 such rods are taken and joined as shown in figure maintaining the same temperature difference between A and B, then the time in which 20 J heat will flow through the rods is :							
	(A) 30 sec.	(B) 2 min.	(C) 1 min.	(D) 20 sec.				
2.	An α particle is moving	along a circle of rad	lius R with a constant a	ngular velocity @. Point	A lies in the same			

- 2. An α particle is moving along a circle of radius R with a constant angular velocity ω. Point A lies in the same plane at a distance 2R from the centre. Point A records magnetic field produced by α particle. If the minimum time interval between two successive times at which A records zero magnetic field is 't', the angular speed ω, in terms of t is -
 - (A) $\frac{2\pi}{t}$ (B) $\frac{2\pi}{3t}$ (C) $\frac{\pi}{3t}$ (D) $\frac{\pi}{t}$
- **3.** When a person throws a meter stick it is found that the centre of the stick is moving with speed 10 m/ s and left end of stick with speed 20 m/s. Both points move vertically upwards at that moment. Then angular speed of the stick is:
 - (A) 20 rad/ sec (B) 10 rad/sec (C) 30 rad/sec (D) none of these
- 4. AB and CD are two uniform resistance wires of lengths 100 cm and 80 cm respectively. The connections are shown in the figure. The cell of emf 5 V is ideal while the other cell of emf E has internal resistance 2Ω . A length of 20 cm of wire CD is balanced by 40 cm of wire AB. Find the emf E in volt, if the reading of the ideal ammeter is 2 A. The other connecting wires have negligible resistance.

5. Figure shows $\frac{2}{v}$ v/s s curve for a particle of mass 2 kg moving in a straight line. If the time (in seconds) taken by the particle to achive a displacement of 10 m is t. (v = velocity, s = displacement), then find the value of (t - 20).

COMPREHENSION

There are two blocks A and B placed on a smooth surface. Block A has mass 10 kg and it is moving with velocity 0.8 m/s towards stationary B of unknown mass. At the time of collision, their velocities are given by the following graph :

6.	Coefficient of restitution of the collision is						
	(A) 1.5	(B) 1	(C) 0.5	(D) 0.8			
7.	Impulse of deformation is :						
	(A) 1 Ns	(B) 3 Ns	(C) 6 Ns	(D) 5 Ns			
8.	Maximum deformation potential energy is:						
	(A) 1.2 J	(B) 3.2 J	(C) 2.0 J	(D) 1.6 J			

Answers Key

1.	(C)	2.	(B)	3.	(A)	4.	12
5.	1	6.	(B)	7.	(B)	8.	(A)

Hints & Solutions

1.
$$\frac{dQ}{dt} = \frac{KA\Delta T}{2\ell} = \frac{\Delta T}{\frac{2\ell}{KA}} = \frac{10}{120} \text{ J/sec.}$$

New rate
$$\frac{d\dot{Q}}{dt} = \frac{\Delta T}{\frac{\ell}{2KA}}$$

So time taken is $t = \frac{20}{40} \times 120$ sec.

= 60 sec.

2. (B)

Point A shall record zero magnetic field (due to α -particle) when the α -particle is at position P and Q as shown in figure. The time taken by α -particle to go from P to Q is

3. Angular velocity w = $\frac{20-10}{0.5}$ = 20 rad/sec.

4. Potential difference across wire AB = 5 V ∴ p.d. across 40 cm of this wire $=\frac{5}{100} \times 40 = 2$ volt. ... Potential difference across 20 cm of wire CD = 2 volt. ∴ p.d. across wire $CD = \frac{2}{20} \times 80 = 8$ volt. p.d. across 2 Ω resistor = 2 × 2 = 4 volt \therefore Emf of the cell = 12 volt. 5. $\int \frac{2}{y} ds = \int \frac{2}{ds} dt ds = 2t = 8 \times 4 + \frac{1}{2} \times 10 \times 2$ t = 21 s t – 20 = 1 s **Ans.** Sol. (1 to 3) $m_A \times 0.8 = m_A \times 0.2 + m_B \times 1.0$ $m_A \times 0.6 m_B \times 1.0 m_B = 0.6 m_A$ $e = \frac{1 - 0.2}{0.8} = 1 = 1.5$ $I_d = 6 \times 0.5 - 6 \times 0 = 3N - 5$ $= 10 \times \{0.8 - 0.5\} = 10 \times 0.3$ = 3 NS $\Delta U = \frac{1}{2} \times 10 \times (0.8)^2 - \frac{1}{2} \times 10 \times (0.5)^2$ = 5 × 0.64 8 × 0.25 = 3.2 - 2.0 = 1.2 J