6.3 **Crystalline structure**

Bravais lattices

Volume of primitive cell	$V = (\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}$	(6.1)	a,b,c V	primitive base vectors volume of primitive cell
	$a^* = 2\pi b \times c / [(a \times b) \cdot c]$ $b^* = 2\pi c \times a / [(a \times b) \cdot c]$	(6.2)		
Reciprocal primitive base vectors ^{<i>a</i>}	$\boldsymbol{b} = 2\pi \boldsymbol{c} \times \boldsymbol{a} / [(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}]$ $\boldsymbol{c}^* = 2\pi \boldsymbol{a} \times \boldsymbol{b} / [(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}]$	(6.3) (6.4)	a*,b*,c*	reciprocal primitive base vectors
	$\boldsymbol{a}\cdot\boldsymbol{a}^*=\boldsymbol{b}\cdot\boldsymbol{b}^*=\boldsymbol{c}\cdot\boldsymbol{c}^*=2\pi$	(6.5)		
	$\boldsymbol{a}\cdot\boldsymbol{b}^*=\boldsymbol{a}\cdot\boldsymbol{c}^*=0$ (etc.)	(6.6)		
Lattice vector	$\boldsymbol{R}_{uvw} = u\boldsymbol{a} + v\boldsymbol{b} + w\boldsymbol{c}$	(6.7)	R _{uvw} u,v,w	lattice vector [uvw] integers
Reciprocal lattice	$\boldsymbol{G}_{hkl} = h\boldsymbol{a}^* + k\boldsymbol{b}^* + l\boldsymbol{c}^*$	(6.8)	G_{hkl}	reciprocal lattice vector [hkl]
vector	$\exp(\mathbf{i}\boldsymbol{G}_{hkl}\cdot\boldsymbol{R}_{uvw})=1$	(6.9)	i	$i^2 = -1$
Weiss zone equation ^b	hu + kv + lw = 0	(6.10)	(hkl)	Miller indices of plane ^c
Interplanar spacing (general)	$d_{hkl} = \frac{2\pi}{G_{hkl}}$	(6.11)	d _{hkl}	distance between (<i>hkl</i>) planes
Interplanar spacing (orthogonal basis)	$\frac{1}{d_{hkl}^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$	(6.12)		

^aNote that this is 2π times the usual definition of a "reciprocal vector" (see page 20).

^bCondition for lattice vector [uvw] to be parallel to lattice plane (hkl) in an arbitrary Bravais lattice. ^cMiller indices are defined so that G_{hkl} is the shortest reciprocal lattice vector normal to the (hkl) planes.

Weber symbols

Converting [<i>uvw</i>] to [<i>UVTW</i>]	$U = \frac{1}{3}(2u - v)$ $V = \frac{1}{3}(2v - u)$ $T = -\frac{1}{3}(u + v)$ $W = w$	(6.13) (6.14) (6.15) (6.16)	U,V,T,W u,v,w [UVTW] [uvw]	Weber indices zone axis indices Weber symbol zone axis symbol
Converting [UVTW] to [uvw]	u = (U - T) $v = (V - T)$ $w = W$	(6.17) (6.18) (6.19)		
Zone law ^a	hU + kV + iT + lW = 0	(6.20)	(hkil)	Miller-Bravais indices

^aFor trigonal and hexagonal systems.

Cubic lattices

lattice	primitive (P)	body-centred (I)	face-centred (F)
lattice parameter	а	а	а
volume of conventional cell	a^3	a^3	a^3
lattice points per cell	1	2	4
1st nearest neighbours ^a	6	8	12
1st n.n. distance	а	$a\sqrt{3}/2$	$a/\sqrt{2}$
2nd nearest neighbours	12	6	6
2nd n.n. distance	$a\sqrt{2}$	а	а
packing fraction ^b	$\pi/6$	$\sqrt{3}\pi/8$	$\sqrt{2}\pi/6$
reciprocal lattice ^c	Р	F	Ι
	$a_1 = a\hat{x}$	$\boldsymbol{a}_1 = \frac{a}{2}(\hat{\boldsymbol{y}} + \hat{\boldsymbol{z}} - \hat{\boldsymbol{x}})$	$\boldsymbol{a}_1 = \frac{a}{2}(\hat{\boldsymbol{y}} + \hat{\boldsymbol{z}})$
primitive base vectors ^d	$a_2 = a\hat{y}$	$\boldsymbol{a}_2 = \frac{a}{2}(\hat{\boldsymbol{z}} + \hat{\boldsymbol{x}} - \hat{\boldsymbol{y}})$	$a_2 = \frac{a}{2}(\hat{z} + \hat{x})$
	$a_3 = a\hat{z}$	$\boldsymbol{a}_3 = \frac{a}{2}(\hat{\boldsymbol{x}} + \hat{\boldsymbol{y}} - \hat{\boldsymbol{z}})$	$\boldsymbol{a}_3 = \frac{a}{2}(\hat{\boldsymbol{x}} + \hat{\boldsymbol{y}})$

^aOr "coordination number."

^bFor close-packed spheres. The maximum possible packing fraction for spheres is $\sqrt{2\pi/6}$.

^cThe lattice parameters for the reciprocal lattices of P, I, and F are $2\pi/a$, $4\pi/a$, and $4\pi/a$ respectively. $d\hat{x}$, \hat{y} , and \hat{z} are unit vectors.

Crystal systems^a

system	symmetry	unit cell ^b	<i>lattices</i> ^c
triclinic	none	$a \neq b \neq c; \alpha \neq \beta \neq \gamma \neq 90^{\circ}$	Р
monoclinic	one diad [010]	$a \neq b \neq c; \alpha = \gamma = 90^{\circ}, \ \beta \neq 90^{\circ}$	Р, С
orthorhombic	three orthogonal diads	$a \neq b \neq c;$ $\alpha = \beta = \gamma = 90^{\circ}$	P, C, I, F
tetragonal	one tetrad [001]	$a = b \neq c;$ $\alpha = \beta = \gamma = 90^{\circ}$	P, I
trigonal ^d	one triad [111]	$a=b=c;\alpha=\beta=\gamma<120^{\circ}\neq90^{\circ}$	P, R
hexagonal	one hexad [001]	$a = b \neq c;$ $\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$	Р
cubic	four triads $\ \langle 111\rangle$	$a=b=c;\alpha=\beta=\gamma=90^{\circ}$	P, F, I

^aThe symbol " \neq " implies that equality is not required by the symmetry, but neither is it forbidden.

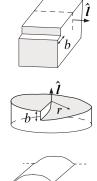
^bThe cell axes are a, b, and c with α , β , and γ the angles between b:c, c:a, and a:b respectively.

^cThe lattice types are primitive (P), body-centred (I), all face-centred (F), side-centred (C), and rhombohedral primitive (R).

^dA primitive hexagonal unit cell, with a triad || [001], is generally preferred over this rhombohedral unit cell.

Dislocations and cracks

Edge dislocation	$\hat{\boldsymbol{l}}\cdot\boldsymbol{b}=0$	(6.21)	 <i>î</i> unit vector ∥ line of dislocation <i>b</i>, <i>b</i> Burgers vector^a 	
Screw dislocation	$\hat{l} \cdot \boldsymbol{b} = b$	(6.22)	$ \begin{array}{c} U \\ uislocation \ energy \ per \\ unit \ length \\ \mu \\ shear \ modulus \end{array} $	
Screw dislocation energy per unit length ^b	$U = \frac{\mu b^2}{4\pi} \ln \frac{R}{r_0}$ $\sim \mu b^2$	(6.23) (6.24)	R outer cutoff for r r_0 inner cutoff for r L critical crack length α surface energy per unit area	
Critical crack length ^c	$L = \frac{4\alpha E}{\pi (1 - \sigma^2) p_0^2}$	(6.25)	E Young modulus σ Poisson ratio p_0 applied widening stress	



^aThe Burgers vector is a Bravais lattice vector characterising the total relative slip were the dislocation to travel throughout the crystal.

^bOr "tension." The energy per unit length of an edge dislocation is also $\sim \mu b^2$. ^cFor a crack cavity (long $\perp L$) within an isotropic medium. Under uniform stress p_0 , cracks $\geq L$ will grow and smaller cracks will shrink.

Crystal diffraction

Laue equations	$a(\cos\alpha_1 - \cos\alpha_2) = h\lambda$ $b(\cos\beta_1 - \cos\beta_2) = k\lambda$ $c(\cos\gamma_1 - \cos\gamma_2) = l\lambda$	(6.26) (6.27) (6.28)	a,b,c $\alpha_1,\beta_1,\gamma_1$ $\alpha_2,\beta_2,\gamma_2$ h,k,l	lattice parameters angles between lattice base vectors and input wavevector angles between lattice base vectors and output wavevector integers (Laue indices)
Bragg's law ^a	$2\boldsymbol{k}_{\rm in}\boldsymbol{.}\boldsymbol{G}+ \boldsymbol{G} ^2=0$	(6.29)	$\begin{vmatrix} \lambda \\ k_{in} \\ G \end{vmatrix}$	wavelength input wavevector reciprocal lattice vector
Atomic form factor	$f(\boldsymbol{G}) = \int_{\text{vol}} e^{-\mathbf{i}\boldsymbol{G}\cdot\boldsymbol{r}} \rho(\boldsymbol{r}) \mathrm{d}^3 \boldsymbol{r}$	(6.30)	$ \begin{array}{c} f(\boldsymbol{G}) \\ \boldsymbol{r} \\ \rho(\boldsymbol{r}) \end{array} $	atomic form factor position vector atomic electron density
Structure factor ^b	$S(\boldsymbol{G}) = \sum_{j=1}^{n} f_j(\boldsymbol{G}) \mathrm{e}^{-\mathrm{i}\boldsymbol{G}\cdot\boldsymbol{d}_j}$	(6.31)	$ \begin{array}{c} S(G) \\ n \\ d_j \end{array} $	structure factor number of atoms in basis position of <i>j</i> th atom within basis
Scattered intensity ^c	$I(\boldsymbol{K}) \propto N^2 S(\boldsymbol{K}) ^2$	(6.32)	K I(K) N	change in wavevector $(=k_{out}-k_{in})$ scattered intensity number of lattice points illuminated
Debye– Waller factor ^d	$I_T = I_0 \exp\left[-\frac{1}{3}\langle u^2 \rangle \boldsymbol{G} ^2\right]$	(6.33)	$ \begin{bmatrix} I_T \\ I_0 \\ \langle u^2 \rangle \end{bmatrix} $	intensity at temperature T intensity from a lattice with no motion mean-squared thermal displacement of atoms

^{*a*}Alternatively, see Equation (8.32).

^bThe summation is over the atoms in the basis, i.e., the atomic motif repeating with the Bravais lattice. ^cThe Bragg condition makes K a reciprocal lattice vector, with $|k_{in}| = |k_{out}|$. ^dEffect of thermal vibrations.