10.1

Chapter 10

Potentials and Fields

The Potential Formulation

10.1.1 Scalar and Vector Potentials

In this chapter we ask how the sources (o and J) generate electric and magnetic fields; in
other words, we seek the general solution to Maxwell’s equations,

1 oB
i) V.-E=—p, (iii) VxE=—-——,
€0 at
(10.1)
.. . oE
(i) V-B=0, (iv) V x B = uoJ+ poeog—.

ot

Given p(r, r) and J(r, ¢), what are the fields E(r, ) and B(r, £)? In the static case Coulomb’s
law and the Biot-Savart law provide the answer. What we’re looking for, then, is the
generalization of those laws to time-dependent configurations.

This is not an easy problem, and it pays to begin by representing the fields in terms of
potentials. In electrostatics V x E = 0 allowed us to write E as the gradient of a scalar
potential: E = —V V. In electrodynamics this is no longer possible, because the curl of E
is nonzero. But B remains divergenceless, so we can still write

02,

as in magnetostatics. Putting this into Faraday’s law (iii) yields

b
VxE=—-——(V xA),
X 8t( x A)

JA
V x (E+—)=O.
at

or
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Here is a quantity, unlike E alone, whose curl does vanish; it cap therefore be written as the
gradient of a scalar:

JA
E+—=-VV.
at
In terms of V and A, then,
JA
E=-VV - —. 10.3
o (10.3)

This reduces to the old form, of course, when A is constant.

The potential representation (Egs. 10.2 and 10.3) automatically fulfills the two homoge-
neous Maxwell equations, (ii) and (iii). How about Gauss’s law (i) and the Ampére/Maxwell
law (iv)? Putting Eq. 10.3 into (i), we find that

) 1
V2V+§(V-A)=—5p; (10.4)

this replaces Poisson’s equation (to which it reduces in the static case). Putting Egs. 10.2
and 10.3 into (iv) yields

32A

v
V x (V x A) = noJ — pnoegV (-57) - MOEOWa

or, using the vector identity V x (V x A) = V(V - A) — V2A, and rearranging the terms
a bit:

a%A v
(VZA - “OEOW> -V (V A+ ,U«OEOE) = —uol. (10.5)

Equations 10.4 and 10.5 contain all the information in Maxwell’s equations.

Example 10.1
Find the charge and current distributions that would give rise to the potentials

k
'ui(ct - |)c|)2 z, for|x| <ct,
v=0, A={ %

0, for |x| > ct,

where k is a constant, and ¢ = 1/, /€guig.

Solution: First we'll determine the electric and magnetic fields, using Eqgs. 10.2 and 10.3:

A k
= % T —%(01 —1xhz,
k ) k )
B=vVxA=-P%" 2y = 2% —apy,
4c 0x 2c
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E, B,
Hok?
2
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Figure 10.1

(plus for x > 0, minus for x < 0). These are for |x| < ct; when |x| > ct, E=B =0
(Fig.10.1). Calculating every derivative in sight, I find

. k. k.
V-E=0; V.-B=0; VxE=¢%y; VxB=~“2Lz;
c

oE poke . OB pugk .

9 2 0 a2 Y
As you can easily check, Maxwell’s equations are all satisfied, with p and J both zero. Notice,
however, that B has a discontinuity at x = 0, and this si gnals the presence of a surface current

K in the yz plane; boundary condition (iv) in Eq. 7.63 gives
kty =K x %,

and hence
K=ktz.

Evidently we have here a uniform surface current flowing in the z direction over the plane
x = 0, which starts up at t = 0, and increases in proportion to ¢. Notice that the news travels
out (in both directions) at the speed of light: for points |x| > cr the message (that current is
now flowing) has not yet arrived, so the fields are zero.

Problem 10.1 Show that the differential equations for V and A (Egs. 10.4 and 10.5) can be
written in the more symmetrical form

(10.6)

where

av
0?2 = v2 ‘MOGOW and L=V 'A+MO€O§-
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Figure 10.2

Problem 10.2 For the configuration in Ex. 10.1, consider a rectangular box of length I, width
w, and height #, situated a distance d above the yz plane (Fig. 10.2).

(a) Find the energy in the box at time #] = d/c, and att, = (d + h)/c.

(b) Find the Poynting vector, and determine the energy per unit time flowing into the box
during the interval t; < ¢ < 13.

(c) Integrate the result in (b) from #; to £, and confirm that the increase in energy (part (a))
equals the net influx.

10.1.2 Gauge Transformations

Equations 10.4 and 10.5 are ugly, and you might be inclined at this stage to abandon the
potential formulation altogether. However, we have succeeded in reducing six problems—
finding E and B (three components each)—down to four: V (one component) and A (three
more). Moreover, Egs. 10.2 and 10.3 do not uniquely define the potentials; we are free to
impose extra conditions on V and A, as long as nothing happens to E and B. Let’s work out
precisely what this gauge freedom entails. Suppose we have two sets of potentials, (V, A)
and (V', A’), which correspond to the same electric and magnetic fields. By how much can
they differ? Write
A'=A+4a and V' =V +8.

Since the two A’s give the same B, their curls must be equal, and hence
Vxa=0.
We can therefore write @ as the gradient of some scalar:

axa=VAi.
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'The two potentials also give the same E, so

Jo
v — =0,
'B+8t

dA
W(p2)=0

The term in parentheses is therefore independent of position (it could, however, depend on
time); call it k(z):

or

- k(t
ﬁ—*g*‘ (r).

Actually, we might as well absorb k(z) into A, defining a new A by adding fot k(t))dt' to the
old one. This will not affect the gradient of A; it just adds k(¢) to dA /0t. It follows that

A =A+Vai,
(10.7)

Vi=V-— a—)‘

ot

Conclusion: For any old scalar function A, we can with impunity add Vi to A, provided
we simultaneously subtract 3 /3¢ from V. None of this will affect the physical quantities E
and B. Such changes in V and A are called gauge transformations. They can be exploited
to adjust the divergence of A, with a view to simplifying the “ugly” equations 10.4 and
10.5. In magnetostatics, it was best to choose V - A = (Eq. 5.61); in electrodynamics
the situation is not so clear cut, and the most convenient gauge depends to some extent on
the problem at hand. There are many famous gauges in the literature; I'll show you the two
most popular ones.

Problem 10.3 Find the fields, and the charge and current distributions, corresponding to

1 t,
A

Vir,t) =0, A(r,t)= —4n€0 a3t

Problem 10.4 Suppose V = 0 and A = Ay sin(kx — wr) ¥, where Ag, w, and k are constants.
Find E and B, and check that they satisfy Maxwell’s equations in vacuum. What condition
must you impose on w and k?

Problem 10.5 Use the gauge function A = —(1/4mep)(gt/r) to transform the potentials in
Prob. 10.3, and comment on the result.
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10.1.3 Coulomb Gauge and Lorentz* Gauge

The Coulomb Gauge. As in magnetostatics, we pick

V-A=0. (10.8)
With this, Eq. 10.4 becomes
1
ViV = ——p. 10.9)
€0
This is Poisson’s equation, and we already know how to solve it: setting V = 0 at infinity,
r,t
VT, o) = / PO e (10.10)
4meq 3

Don’t be fooled, though—unlike electrostatics, V by itself doesn’t tell you E; you have to
know A as well (Eq. 10.3).

There is a peculiar thing about the scalar potential in the Coulomb gauge: itis determined
by the distribution of charge right now. If I move an electron in my laboratory, the potential
V on the moon immediately records this change. That sounds particularly odd in the light
of special relativity, which allows no message to travel faster than the speed of light. The
point is that V by itself is not a physically measurable quantity—all the man in the moon can
measure is E, and that involves A as well. Somehow it is built into the vector potential, in the
Coulomb gauge, that whereas V instantaneously reflects all changes in p, the combination
—VV — (8A/8t) does not; E will change only after sufficient time has elapsed for the
“news” to arrive.!

The advantage of the Coulomb gauge is that the scalar potential is particularly simple to
calculate; the disadvantage (apart from the acausal appearance of V) is that A is particularly
difficult to calculate. The differential equation for A (10.5) in the Coulomb gauge reads

32 v
V2A — poeg—5 = — vi—]. 10.11
Ho€0 55 mod + po€o ( o1 ) ( )
The Lorentz gauge. In the Lorentz gauge we pick
av

This is designed to eliminate the middle term in Eq. 10.5 (in the language of Prob. 10.1, it
sets L = (). With this

82
V2A — — = —uol. 10.13
HO€0 32 wolJ ( )
Meanwhile, the differential equation for V, (10.4), becomes
v 1
V2V — poeg—s = ——p. (10.14)
ar? €

*There is some question whether this should be attibuted to H. A. Lorentz or to L. V. Lorenz (see J. Van Bladel,
IEEE Antennas and Propagation Magazine 33(2), 69 (1991)). But all the standard textbooks include the t, and to
avoid possible confusion I shall adhere to that practice.

1See O. L. Brill and B. Goodman. Am. J. Phys. 35, 832 (1967).
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The virtue of the Lorentz gauge is that it treats V and A on an equal footing: the same
differential operator

2

0
v2- — =0?, 10.15
HO€0 7 5 (10.15)

(called the d’Alembertian) occurs in both equations:

) 5 1
(]) Ocv = ——p,
€0 (10.16)

() O%A = —ugl.

This democratic treatment of V and A is particularly nice in the context of special relativity.
where the d’ Alembertian is the natural generalization of the Laplacian, and Eqs. 10.16 can
beregarded as four-dimensional versions of Poisson’s equation. (In this same spirit the wave
equation, for propagation speed ¢, 0% f = 0, might be regarded as the four-dimensional
version of Laplace’s equation.) In the Lorentz gauge V and A satisfy the inhomogeneous
wave equation, with a “source” term (in place of zero) on the right. From now on I shall
use the Lorentz gauge exclusively, and the whole of electrodynamics reduces to the problem
of solving the inhomogeneous wave equation for specified sources. That’s my project for
the next section.

Problem 10.6 Which of the potentials in Ex. 10.1, Prob. 10.3, and Prob. 10.4 are in the Coulomb
gauge? Which are in the Lorentz gauge? (Notice that these gauges are not mutually exclusive.)

Problem 10.7 In Chapter 5, 1 showed that it is always possible to pick a vector potential
whose divergence is zero (Coulomb gauge). Show that it is always possible to choose V - A =
—Q€p(dV /0t), as required for the Lorentz gauge, assuming you know how to solve equations
of the form 10.16. Ts it always possible to pick V = 0? How about A = 0?

Continuous Distributions

10.2.1 Retarded Potentials

In the static case, Egs. 10.16 reduce to (four copies of) Poisson’s equation,

vv=—L, VA= _uy
- 60’0’ - IJ’O’

with the familiar solutions

V() = : /p(r)dt/, A(r)=ﬂ mdr’, (10.17)
4ey n 4 3
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Figure 10.3

where 2, as always, is the distance from the source point 1’ to the field point r (Fig. 10.3).
Now, electromagnetic “news” travels at the speed of light. In the nonstatic case, therefore,
it’s not the status of the source right now that matters, but rather its condition at some earlier
time ¢, (called the retarded time) when the “message” left. Since this message must travel
a distance z, the delay is2/c:

2
h=t— - (10.18)
c
The natural generalization of Eq. 10.17 for nonstatic sources is therefore
1 r,t rt
V1) = —/L’)dﬂ, A(r, 1) = @/udr/. (10.19)
4megy 3 4 3

Here p(r’, 1,) is the charge density that prevailed at point I’ at the retarded time 7. Because
the integrands are evaluated at the retarded time, these are called retarded potentials. (I
speak of “the” retarded time, but of course the most distant parts of the charge distribution
have earlier retarded times than nearby ones. It’s just like the night sky: The light we see
now left each star at the retarded time corresponding to that star’s distance from the earth.)
Note that the retarded potentials reduce properly to Eq. 10.17 in the static case, for which
p and J are independent of time.

Well, that all sounds reasonable—and surprisingly simple. Biit are we sure it’s right? 1
didn’t actually derive these formulas for V and A; all I did was invoke a heuristic argument
(“electromagnetic news travels at the speed of light”) to make them seem plausible. To
prove them, I must show that they satisfy the inhomogeneous wave equation (10.16) and
meet the Lorentz condition (10.12). In case you think I'm being fussy, let me warn you that
if you apply the same argument to the fields you’ll get entirely the wrong answer:

1 o, ). Jo',pyxze
Er, 1) # Feo/ T’adr’, B(r,:) # %/ —¢+dt,
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as you would expect if the same “logic” worked for Coulomb’s law and the Biot-Savart law.
Let’s stop and check, then, that the retarded scalar potential satisfies Eq. 10.16; essentially
the same argument would serve for the vector potentjal.? I shall leave it for you (Prob. 10.8)
to check that the retarded potentials obey the Lorentz condition.

In calculating the Laplacian of V (r, 1), the crucial point to notice is that the integrand
(in Eq. 10.19) depends on r in rwo places: explicitly, in the denominator (2 = |r —r’|), and
implicitly, through t, = t — 2/c, in the numerator. Thus

1 1 1
VvV = / l:(Vp)— + pV (—):l dt’, (10.20)
4egy 3 2
and :
Vo =pVi, = —=pVa (10.21)
c
(the dot denotes differentiation with respect to time).> Now V2 = 4 and V(1/4) = —4/42
(Prob. 1.13), so
| - n
Vv = / PE_ L2 ar (10.22)
4meq c 2 22
Taking the divergence,

s 1 T2 _ . . ([ A 2 )
VeV = —— = (V) +pV-{-})]|- 5 (Vp)+pV | dt
4megy ¢l 2 22

But

as in Eq. 10.21, and
(Prob. 1.62), whereas

(Eq. 1.100). So

1 13 18%v 1
V2V= 4—" [—22_477,083(4)] dt' = _2_2—_:0(1'3 £),
T € c*a c” Ot €

confirming that the retarded potential (10.19) satisfies the inhomogencous wave gquation
(10.16).  ged

ry give you the straightforward but cumbersome proof; for a clever indirect argument see M. A, Heald and J.
B. Marion, Classical Electromagnetic Radiation, 3d ed., Sect. 8.1 (Orlando, FL: Saunders (1995)).
3Note that 8/8t, = /81, since , = 1 —2/c and 2 is independent of .
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Incidentally, this proof applies equally well to the advanced potentials,

1 ! /
V,(r.1) = ——/p—(r’—t“)dz’, Ay(r. 1) = @/Mdr’, (10.23)
4mey 3 4 3

in which the charge and the current densities are evaluated at the advanced time

o=t (10.24)
A few signs are changed, but the final result is unaffected. Although the advanced potentials
are entirely consistent with Maxwell’s equations, they violate the most sacred tenet in all of
physics: the principle of causality. They suggest that the potentials now depend on what
the charge and the current distribution will be at some time in the future—the effect, in
other words, precedes the cause. Although the advanced potentials are of some theoretical
interest, they have no direct physical significance.*

Example 10.2
An infinite straight wire carries the current

0, forr=<0,
I1(t) =
Iy, fort > 0.

That is, a constant current Jg is turned on abruptly at ¢ = 0. Find the resulting electric and
magnetic fields.

Solution: The wire is presumably electrically neutral, so the scalar potential is zero. Let the
wire lie along the z axis (Fig. 10.4); the retarded vector potential at point P is

oI,
A(s,t):Z—;;i/ ) 4.

oo 2

Fort < s/c, the “news” has not yet reached P, and the potential is zero. For ¢t > s/c, ohly

the segment
2| </ (c)? =52 (10.25)

contributes (outside this range ¢, is negative, so I (#,) = 0); thus

/ 2_2
AG.ry = (#0005, / =" _dz
7 4 0 V2422

Iy . )
MZ]H( 52+22+Z)

2

0 2 s

M(er)2=s2 wolo N <Ct+ ()2 _sz) .
= Z.

4Because the d’ Alembertian involves 12 (as opposed to £), the theory itself is time-reversal invariant, and does
not distinguish “past” from “future,” Time asymmetry is introduced when we select the retarded potentials in
preference to the advanced ones, reflecting the (not unreasonable!) belief that electromagnetic influences propagate
forward, not backward, in time.
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1
dz
3
z
g P
Figure 10.4
The electric field is A :
iolgc A
Es f)=——"—=——"2% 5
ot 2/ (ct)? — 52
and the magnetic field is
dA; & b t A
Bis,) =V xA=_t2g_ Moo ¢

Notice that as t — oo we recover the static case: E = 0, B = (uglp/2ms) $

Problem 10.8 Confirm that the retarded potentials satisfy the Lorentz gauge condition. [Hint:

First show that
Nty pilw.pov. (d
V~(¢>_¢(V J)+¢(V h-v (@)

where V denotes derivatives with respect to r, and V’ denotes derivatives with respect to r’.
Next, noting that J(r’, ¢ —2/c) depends on 1’ both explicitly and through 2, whereas it depends
on r only through 2, confirm that

1. . 1.
VI=—2J- (v, Vid=—p—-J (V).
Use this to calculate the divergence of A (Eq. 10.19).]

Problem 10.9

(a) Suppose the wire in Ex. 10.2 carries a linearly increasing current
I(t) =kt,

for t > 0. Find the electric and magnetic fields generated.

(b) Do the same for the case of a sudden burst of current:

1(t) = q0d(r).
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y
1
b
[ a B~
o X
Figure 10.5

Problem 10.10 A piece of wire bent into a loop, as shown in Fig. 10.5, carries a current that
increases linearly with time:

I(t) =kt
Calculate the retarded vector potential A at the center. Find the electric field at the center. Why
does this (neutral) wire produce an electric field? (Why can’t you determine the magnetic field
from this expression for A?)

10.2.2 Jefimenko’s Equations

Given the retarded potentials

1 ‘ot |
Vi) = —— / PULE) o Ay = M0 / @0 o (10.26)
4mey 3 4 3
it is, in principle, a straightforward matter to determine the fields:
JA
E=-VV-—" B=VxA (10.27)

But the details are not entirely trivial because, as I mentioned earlier, the integrands depend
on r both explicitly, through 2 = |r — 1’| in the denominator, and implicitly, through the
retarded time 7, =t — 2/c in the argument of the numerator.

I already calculated the gradient of V (Eq. 10.22); the time derivative of A is easy:

A  po (Jd
—_— = —dt’. 10.2
at 471/0, t (10.28)

Putting them together (and using ¢? = 1/ug€p):

E(l‘, t) — 47[160 / [p(r7tr)£+ p(rvtr)&_ J(rz’ tr)}dt/' (1029)

22 cr )

This is the time-dependent generalization of Coulomb’s law, to which it reduces in the static
case (where the second and third terms drop out and the first term loses its dependence on f,.).
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As for B, the curl of A contains two terms:

VxA=X F(VXJ)—JxVC)]dz’.
47 A

2

Now
aJ, 9Jy
V x =— - —
( D dy 9z
and
aJ; . 0ty 1.0
—— =L =— It
dy dy c " dy
SO

1/. 0 . 02 1.
VxDe=— (e — 0,2 ) = < [i x (V)]
(V> ) c( ay yaz) C[JX( /L)]x

But V2 =4 (Prob. 1.13), so
1.
VxJ=-Jxa (10.30)
C

Meanwhile V (1/2) = —4/2? (again, Prob. 1.13), and hence

B(r, 1) = Z—;/ [J(r - Ir) + J(r,zr):| x 2dt’. (10.31)

22 ch

This is the time-dependent generalization of the Biot-Savart law, to which it reduces in the
static case.

Equations 10.29 and 10.31 are the (causal) solutions to Maxwell’s equations. For some
reason they do not seem to have been published until quite recently—the earliest explicit
statement of which I am aware was by Oleg Jefimenko, in 1966.% In practice Jefimenko’s
equations are of limited utility, since it is typically easier to calculate the retarded potentials
and differentiate them, rather than going directly to the fields. Nevertheless, they provide
a satisfying sense of closure to the theory. They also help to clarify an observation I made
in the previous section: To get to the retarded potentials, all you do is replace ¢ by ¢, in
the electrostatic and magnetostatic formulas, but in the case of the fields not only is time
replaced by retarded time, but completely new terms (involving derivatives of p and J)
appear. And they provide surprisingly strong support for the quasistatic approximation (see
Prob. 10.12).

50.D. Jefimenko, Electricity and Magnetism, Sect. 15.7 (New York: Appleton-Century-Crofts, 1996). Closely
related expressions appear in W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, Sect. 14.3
(Reading, MA: Addison-Wesley, 1962). See K. T. McDonald, Am. J. Phys. 65, 1074 ( 1997) for illuminating
commentary and references.
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Problem 10.11 Suppose J(r) is constant in time, so (Prob. 7.55) p(r, ) = p(r, 0) + p(r, O)z. °

Show that .
1 pr,ty .,
1) dreg / 22 ‘

that is, Coulomb’s law holds, with the charge density evaluated at the non-retarded time.

Problem 10.12 Suppose the current density changes slowly enough that we can (to good
approximation) ignore all higher derivatives in the Taylor expansion

Jo) =Jo) + (tr — I + ...

(for clarity, I suppress the r-dependence, which is not at issue). Show that a fortuitous cancel-
lation in Eq. 10.31 yields

o [ J@, 1) x2
4 22
That is: the Biot-Savart law holds, with J evaluated at the non-retarded time. This means that
the quasistatic approximation is actually much better than we had any right to expect: the rwo
errors involved (neglecting retardation and dropping the second term in Eq. 10.31) cancel one
another, to first order.

B(r,:) = dr’.

10.3 Point Charges
10.3.1 Liénard-Wiechert Potentials

My next project is to calculate the (retarded) potentials, V(r, ) and A(r, t), of a point
charge g that is moving on a specified trajectory

w(t) = position of ¢ at time ¢. (10.32)
The retarded time is determined implicitly by the equation
Ir —w(p)l =c(t — 1), (10.33)

for the left side is the distance the “news” must travel, and (¢ — t,) is the time it takes to
make the trip (Fig. 10.6). I shall call w(z,) the retarded position of the charge; 4 is the
vector from the retarded position to the field point r:

2=r1—wt). (10.34)

It is important to note that at most one point on the trajectory is “in communication”
with r at any particular time 7. For suppose there were two such points, with retarded times
t; and f7:

21=c(—1t)) and 23 =c(t — ).
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Retarded
position \ Particle
trajectory

Present

g~ position

Figure 10.6

Then 21 —22 = c(t2 — t1), so the average velocity of the particle in the direction of r would
have to be c—and that’s not counting whatever velocity the charge might have in other
directions. Since no charged particle can travel at the speed of light, it follows that only
one retarded point contributes to the potentials, at any given moment.®

Now, a naive reading of the formula

1 r,t
V) = ——f PULE) 4o (10.35)
4 €0 2
might suggest to you that the retarded potential of a point charge is simply
1 g
V%4 €02

(the same as in the static case, only with the understanding that 2 is the distance to the
retarded position of the charge). But this is wrong, for a very subtle reason: Itis true that
for a point source the denominator 2 comes outside the integral,” but what remains,

/p(r’, t,)dt, (10.36)

is nor equal to the charge of the particle. To calculate the total charge of a configuration you
must integrate o over the entire distribution at one instant of time, but here the retardation.
t, = t—2/c, obliges us to evaluate p at different times for different parts of the configuration.
If the source is moving, this will give a distorted picture of the total charge. You might

SFor the same reason, an observer at r sees the particle in only one place at a time. By contrast, it is possible to
hear an object in two places at once. Consider a bear who growls at you and then runs toward you at the speed ot
sound and growls again; you hear both growls at the same time, coming from two different locations, but there'~
only one bear.

TThere is, however, an implicit change in its functional dependence: Before the integration, 2 = |r — r'| is a
function of r and r’; affer the integration (which fixes I’ = w(#-))%2 = |r — w(z,)| is (like #,) a function of r and 1
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think that this problem would disappear for point charges, but it doesn’t. In Maxwell’s
electrodynamics, formulated as it is in terms of charge and current densities, a point charge
must be regarded as the limit of an extended charge, when the size goes to zero. And for
an extended particle, no matter how small, the retardation in Eq. 10.36 throws in a factor
(1—4%-v/c)~!, where v is the velocity of the charge at the retarded time:

/p(r’, tyde = —3 (10.37)
1—2-v/c

Proof: This is a purely geometrical effect, and it may help to tell the story in
a less abstract context. You will not have noticed it, for obvious reasons, but
the fact is that a train coming towards you looks a little longer than it really is,
because the light you receive from the caboose left earlier than the light you
receive simultaneously from the engine, and at that earlier time the train was
farther away (Fig. 10.7). In the interval it takes light from the caboose to travel
the extra distance L', the train itself moves a distance L’ — L:

L L'-L , L
— = , or L'=——,
c v 1-v/c

So approaching trains appear longer, by a factor (1 — v/c)™'. By contrast, a
train going away from you looks shorter,3 by afactor (1+v/c)~". In general, if
the train’s velocity makes an angle 6 with your line of sight,” the extra distance
light from the caboose must coveris L’ cos @ (Fig. 10.8). In the time L’ cos 8/c,
then, the train moves a distance (L' — L):

L'cos¢ L' —1L , L
= , or L'= —u—
c v I —vcosf/c
- <
DA E Dé 55
;--‘—-‘-1_:-——-1 —_—
LS_—”I =y - \i\
| L
| L
Figure 10.7

8please note that this has nothing whatever to do with special relativity or Lorentz contraction—L is the length
of the moving train, and its rest length is not at issue. The argument is somewhat reminiscent of the Doppler effect.

91 assume the train is far enough away or (more to the point) short enough so that rays from the caboose and
engine can be considered paraliel.
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2
N To

observer

Figure 10.8

Notice that this effect does not distort the dimensions perpendicular to the
motion (the height and width of the train). Never mind that the light from the
far side is delayed in reaching you (relative to light from the near side)—since
there’s no motion in that direction, they’ll still look the same distance apart.
The apparent volume v’ of the train, then, is related to the actual volume T by

T
DR

/

T (10.38)

where % is a unit vector from the train to the observer.

In case the connection between moving trains and retarded potentials escapes
you, the point is this: Whenever you do an integral of the type 10.37, in which
the integrand is evaluated at the retarded time, the effective volume is modified
by the factor in Eq. 10.38, just as the apparent volume of the train was—and
for the same reason. Because this correction factor makes no reference to the
size of the particle, it is every bit as significant for a point charge as for an
extended charge.  qed

It follows, then, that

qc

Vr,t) = EE——
0 dreg (2c — 2+ V)

(10.39)

where v is the velocity of the charge at the retarded time, and 2 is the vector from the retarded
position to the field point r. Meanwhile, since the current density of a rigid object is pv
(Eq. 5.26), we also have

/
A(r,f)=%/M@d‘f/—ﬂz/-p(r’,t,)dt’,

2 T Adma
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or

Mo gev v

Ar,n=2_99
1) 47 (e —n-v) 2

v(r,1). (10.40)

Equations 10.39 and 10.40 are the famous Liénard-Wiechert potentials for a moving point
charge.!?

Example 10.3

Find the potentials of a point charge moving with constant velocity.

Solution: For convenience, let’s say the particle passes through the origin at time ¢ = 0, so
that
w(t) = vt.

We first compute the retarded time, using Eq. 10.33:
v —vir| =ct — 1),

or, squaring:
P2 —2r vty + 042 =2 = 21ty +12).

Solving for 7, by the quadratic formula, I find that

o (c2t -r-v)* \/(czt —r-v)2 4+ (c2 —v2)(r2 — c2t2)

. 50 (10.41)

To fix the sign, consider the limit v = 0:
,=t+ i.
¢

In this case the charge is at rest at the origin, and the retarded time should be ( —r/c); evidently
we want the minus sign.

Now, from Eqgs. 10.33 and 10.34,

" r— vt
2=c(t—1t), and ’I«—C—(t*_—tr),
SO
. vV o (r—vt) vor 2
2(l=2-vje) =ct-t)|l—- — | =ct—t,))— — — —4
c c(t—1t) c c

= %[(c% —1-v) = (¢ — V05

l\/(czt —1-V2 4+ (2 —v2)(r2 — 212
¢

0There are many ways to obtain the Liénard-Wiechert potentials. I have tried to emphasize the geomerrical
origin of the factor (1 — 4 v/c)_1 ; for illuminating commentary see W. K. H. Panofsky and M. Phillips, Classical
Electricity and Magnetism, 2d ed., pp. 342-3 (Reading, MA: Addison-Wesley, 1962). A more rigorous derivation
is provided by J. R. Reitz, F. J. Milford, and R. W. Christy, Foundations of Electromagnetic Theory, 3d ed.,
Sect. 21.1 (Reading, MA: Addison-Wesley, 1979), or M. A. Heald and J. B. Marion, Classical Electromagnetic
Radiation, 3d ed., Sect. 8.3 (Orlando, FL: Saunders, 1995).
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(I used Eq. 10.41, with the minus sign, in the last step). Therefore,

qc

Vir,t) = )
( deq (2t —1-v)2 + (2 — v2)(r2 — c212)

(10.42)

and (Eq. 10.40)

Ho qcv
A(r, 1) == . 10.43
47 (2t =12+ (€2 — o)) (r2 — 21?) (1943

Problem 10.13 A particle of charge g moves in a circle of radius a at constant angular velocity
. (Assume that the circle lies in the xy plane, centered at the origin, and at time ¢ = 0 the
charge is at (a, 0), on the positive x axis.) Find the Liénard-Wiechert potentials for points on
the z axis.

Problem 10.14 Show that the scalar potential of a point charge moving with constant velocity
(Eq. 10.42) can be written equivalently as

1 q
4meo R\/1—v2sin?0/c2

where R = r — vt is the vector from the present (!) position of the particle to the field point

r, and 9 is the angle between R and v (Fig. 10.9). Evidently for nonrelativistic velocities
2 2

(v* K ),

Vi, t) = (10.44)

Vo= 4
’ )_ 47'[60R
R
0
q v
Figure 10.9

Problem 10.15 I showed that ar most one point on the particle trajectory communicates with
r at any given time. In some cases there may be no such point (an observer at r would not see
the particle—in the colorful language of General Relativity it is “beyond the horizon™). As an
example, consider a particle in hyperbolic motion along the x axis:

w(t) = /b2 + (c1)2% (00 <t < ). (10.45)
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(In Special Relativity this is the trajectory of a particle subject to a constant force F = mc? /b.)
Sketch the graph of w versus ¢. At four or five representative points on the curve, draw the
trajectory of a light signal emitted by the particle at that point—both in the plus x direction
and in the minus x direction. What region on your graph corresponds to points and times (x, t)
from which the particle cannot be seen? At what time does someone at point x first see the
particle? (Prior to this the potential at x is evidently zero.) Is it possible for a particle, once
seen, to disappear from view?

Problem 10.16 Determine the Liénard-Wiechert potentials for a charge in hyperbolic motion
(Eq. 10.45). Assume the point r is on the x axis and to the right of the charge.

10.3.2 The Fields of a Moving Point Charge

We are now in a position to calculate the electric and magnetic fields of a point charge in
arbitrary motion, using the Liénard-Wiechert potentials:'!

c v
vy =——9 A= Sv.r. (10.46)
d7ep (1C — 2 - V) c?
and the equations for E and B:
A
E=-VV-—, B=VxA,
ot
The differentiation is tricky, however, because
A=r—w(t) and v=w() (10.47)

are both evaluated at the retarded time, and r,—defined implicitly by the equation
Ir —w(t,)| =c(t — 1) (10.48)

—is ifself a function of r and 7.1 So hang on: the next two pages are rough going ... but
the answer is worth the effort.
Let’s begin with the gradient of V:

qc —1

VvV =
den (2 — 2 - V)2

Ve —2-v). (10.49)

HYou can get the fields directly from Jefimenko’s equations, but it’s not easy. See, for example, M. A. Heald
and 1. B. Marion, Classical Electromagnetic Radiation, 3d ed., Sect. 8.4 (Orlando, FL: Saunders, 1995).

127phe following calculation is done by the most direct, “brute force” method. For a more clever and efficient
approach see J. D. Jackson, Classical Electrodynamics, 3d ed., Sect. 14.1 (New York: John Wiley, 1999).
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Sincer = ¢c(t ~ 1),
Vi = —cVt,. (10.50)
As for the second term, product rule 4 gives

Va-vV)=@-V)V+(v-Ve+ax (VxV)+Vx(Vxa). (10.51)

Evaluating these terms one at a time:

2-V) 3 9 + 2 9 +2 9 )
. vV = — —_— —_ »
¢ T ox Yoy ‘oz Y

N dv o1, N dv 01, 4 dv ot,
Ydi, ax T Vdi 9y | Cdt oz

= a®- Vi), (10.52)

where a = v is the acceleration of the particle at the retarded time. Now

V-Via=(wv-V)r—(v-V)w, (10.53)
and
v-Vr = (vxi + vyi + vzi) xX+yy+2z%)
ax ay 0z
= X+, y+v,Z=v, (10.54)
while

(v-VYw=v(v- V1)

(same reasoning as Eq. 10.52). Moving on to the third term in Eq. 10.51,

av av av av av av
Vxve (202 _ 0 Voo (9% _ 9V (OVy OVx),
v <8y Bz)x+<3z ox y+ ax dy z

dv, 0t,  dvy 91, dvy 0t,  dv, 9t . dvy 01, dvy 01\
= — = — x4+ — = —)y+ — = — )z
dt, dy  dt, 0z dt, 9z  dt, dx dt, 9x  dt, dy

= —ax Vi, (10.55)

Finally,
Vxa=Vxr—Vxw, (10.56)

but V x r = 0, while, by the same argument as Eq. 10.55,

V Xw=—vx Vi,. (10.57)
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Putting all this back into Eq. 10.51, and using the “BAC-CAB” rule to reduce the triple
cross products,

Ve-v) = a@-V)+v—v(v-Vi)—2ax (ax V) +vx (vxVt)
= V4 (- -a—v)Vy,. (10.58)

Collecting Egs. 10.50 and 10.58 together, we have

_ 9c [
T dmey (rc — 2 - V)2

vV VA -1 ta. a)Vtr] : (10.59)

To complete the calculation, we need to know Vz,.. This can be found by taking the
gradient of the defining equation (10.48)—which we have already done in Eq. 10.50—and
expanding out Vz:

1

—cVt, = V2=V :sz(a-a)
= %[(4- Vi +2 x (V x2)]. (10.60)

But
2-Viya=2—v@®r- V)

(same idea as Eq. 10.53), while (from Eq. 10.56 and 10.57)

V x2a=(vxVt).

Thus
1 1
—cVt, = ;[4— V(- Vi) +2x (v x V)] = Z[;,,_ - V)V,
and hence
-2
Vip = ———. (10.61)
2w —2-V
Incorporating this result into Eq. 10.59, I conclude that
L ac 2 2
VvV = 47{6() (/LC .. V)3 [(/LC —2- V)V - (C — v 4+ 2. a)a] . (1062)

A similar calculation, which I shall leave for you (Prob. 10.17), yields

oA ! ac [/Lc 2-v)( 2afc)
@“ — V) (—v
at dweg (e — - v)3 ( +

+ %(c2 - 4. a)v] . (10.63)
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Combining these results, and introducing the vector
u=cr—v, (10.64)

I find

q
dey (A -u)3

E@r, 1) = [(c? — vHu +2 x (u x a)]. (10.65)

Meanwhile,
1 1
VxA= SV x (Vv)= S[V(V xv) —vx (VV)]
c c

We have already calculated V x v (Eq. 10.55) and V'V (Eq. 10.62). Putting these together.

1
VxA=—- 1
cdmeg (u-2)3

2 X [(c2 — vz)v + (2-a)v+ (2-uwal.

The quantity in brackets is strikingly similar to the one in Eq. 10.65, which can be written.
using the BAC-CAB rule, as [(c? = v®)u+ (2-a)u — (2-u)a]; the main difference is that we
have v’s instead of u’s in the first two terms. In fact, since it’s all crossed into 2 anyway, we
can with impunity change these v’s into —u’s; the extra term proportional to 2 disappears
in the cross product. It follows that

1.
B(r,t) = -2 x E(r, 1). (10.66)
C

Evidently the magnetic field of a point charge is always perpendicular to the electric field,
and to the vector from the retarded point.

The first term in E (the one involving (c2 — v?)u) falls off as the inverse square of the
distance from the particle. If the velocity and acceleration are both zero, this term alone
survives and reduces to the old electrostatic result

1 "
- 15
4 eq 22

For this reason, the first term in E is sometimes called the generalized Coulomb field.
(Because it does not depend on the acceleration, it is also known as the velocity field.) The
second term (the one involving 2 X (u x a)) falls off as the inverse first power of 2 and is
therefore dominant at large distances. As we shall see in Chapter 11, it is this term that is
responsible for electromagnetic radiation; accordingly, it is called the radiation field—or.
since it is proportional to a, the acceleration field. The same terminology applies to the
magnetic field.

Back in Chapter 2, 1 commented that if we could only write down the formula for the
force one charge exerts on another, we would be done with electrodynamics, in principle.
That, together with the superposition principle, would tell us the force exerted on a test
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charge Q by any configuration whatsoever. Well . .. here we are: Egs. 10.65 and 10.66 give
us the fields, and the Lorentz force law determines the resulting force:

qQ 2 2
dreo aou) {[(c v)u+2 x (ux a)]
+ gx [&x (@ — v¥)u+2 x (uxa)]]}, (10.67)

where V is the velocity of Q, and 2, u, v, and a are all evaluated at the retarded time. The
entire theory of classical electrodynamics is contained in that equation . . . but you see why
I preferred to start out with Coulomb’s law.

Example 10.4

Calculate the electric and magnetic fields of a point charge moving with constant velocity.

Solution: Putting a = 0 in Eq. 10.65,

q (2-vip

C 4mey (2-u)l

In this case, using w = vz,
M= —2v=c(—vity) —c(t — 1)V = c(r — vi).

In Ex. 10.3 we found that

4c—4-v:4-u=\/(czt—r~v)2+(62—vz)(rz—c2t2).

In Prob. 10.14, you showed that this radical could be written as
Rey/1 —v2sin6/c2,

R=r—wvt

where

is the vector from the present location of the particle to r, and 6 is the angle between R and v
(Fig. 10.9). Thus

q 1-— v2/c2 R

= . (10.68)
3/2 p2
4réo (1 — v2sin? 6/c2) /2R

Er, 1)

Notice that E points along the line from the present position of the particle. This is an
extraordinary coincidence, since the “message” came from the retarded position. Because of
the sin’ 6 in the denominator, the field of a fast-moving charge is flattened out like a pancake in
the direction perpendicular to the motion (Fig. 10.10). In the forward and backward directions
E is reduced by a factor (1 — v? / cz) relative to the field of a charge at rest; in the perpendicular
direction it is enhanced by a factor 1/+/1 — vZ/c2.
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E

Y«

Figure 10.10

As for B, we have

;L_r—vtr =)+ @—-t)v R
- 2 T

v
+ -
C

and therefore

1. 1
B=-(AxE)=—(vxE). (10.69)
c C

Lines of B circle around the charge, as shown in Fig. 10.11.

Figure 10.11
The fields of a point charge moving at constant velocity (Eqgs. 10.68 and 10.69) were first
obtained by Oliver Heaviside in 1888.!3 When v2 < ¢? they reduce to

Mo 9
4 R?

TR Be.o= v x R). (10.70)

B = e R

The first is essentially Coulomb’s law, and the latter is the “Biot-Savart law for a point charge™
I warned you about in Chapter 5 (Eq. 5.40).

Bror history and references, see O. J. Jefimenko, Am. J. Phys. 62,79 (1994).
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Problem 10.17 Derive Eq. 10.63. First show that

oty ac
_—= 10.71
ot 2-u ( )

Problem 10.18 Suppose a point charge g is constrained to move along the x axis. Show that
the fields at points on the axis to the right of the charge are given by

1
E:——q —_ C+v ﬁ, B=O
dreg 2?2 \c—v

What are the fields on the axis to the left of the charge?

Problem 10.19

(a) Use Eq. 10.68 to calculate the electric field a distance d from an infinite straight wire
carrying a uniform line charge A, moving at a constant speed v down the wire.

(b) Use Eq. 10.69 to find the magnetic field of this wire.
Problem 10.20 For the configuration in Prob. 10.13, find the electric and magnetic fields at

the center. From your formula for B, determine the magnetic field at the center of a circular
loop carrying a steady current I, and compare your answer with the result of Ex. 5.6

More Problems on Chapter 10

Problem 10.21 Suppose you take a plastic ring of radius a and glue charge on it, so that
the line charge density is Ag|sin(6/2)|. Then you spin the loop about its axis at an angular
velocity w. Find the (exact) scalar and vector potentials at the center of the ring. [Answer:
A = (uorowa/3m) {sinfw(t — a/c)] % — cos[o(t — a/c)] §}]

Problem 10.22 Figure 2.35 summarizes the laws of electrostatics in a “triangle diagram”
relating the source (p), the field (E), and the potential (V). Figure 5.48 does the same for
magnetostatics, where the source is J, the field is B, and the potential is A. Construct the
analogous diagram for electrodynamics, with sources p and J (constrained by the continuity
equation), fields E and B, and potentials V and A (constrained by the Lorentz gauge condition).
Do not include formulas for V and A in terms of E and B.

Problem 10.23 Check that the potentials of a point charge moving at constant velocity
(Egs. 10.42 and 10.43) satisfy the Lorentz gauge condition (Eq. 10.12).

Problem 10.24 One particle, of charge g1, is held at rest at the origin. Another particle, of
charge g>, approaches along the x axis, in hyperbolic motion:

x(1) = \/bz + (c1)?;

it reaches the closest point, b, at time t = 0, and then returns out to infinity.
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(a) What is the force F» on ¢ (due to g1) at time ¢?

(b) What total impulse (I, = [°0  F3dt) is delivered by g5 10 417

(c) What is the force Fj on g1 (due to g;) at time 7

(d) What total impulse (I} = [°2_ Fjdt) is delivered to q1 by g»? [Hint: It might help to

-0

review Prob. 10.15 before doing this integral. Answer: In = —I1 = q1q3/4€pbc]

Problem 10.25 A particle of charge ¢ is traveling at constant speed v along the x axis. Calculate
the total power passing through the plane x = a, at the moment the particle itself is at the
origin. [Answer: qzu /327teoa2]

Problem 10.26!4 A particle of charge g is at rest at the origin. A second particle, of charge
q7, moves along the z axis at constant velocity v.

(a) Find the force F12(t) of g1 on g2, at time ¢ (when ¢ is at z = vt).
(b) Find the force F2; (¢) of g2 on ¢, at time . Does Newton’s third law hold, in this case?

(¢c)Calculate the linear momentum p(¢) in the electromagnetic fields, at time ¢. (Don’t bother
with any terms that are constant in time, since you won’t need them in part (d)). [Answer:
(109192/471) 2]

(d) Show that the sum of the forces is equal to minus the rate of change of the momentum in
the fields, and interpret this result physically.

145ee 1. J. G. Scanio, Am, J. Phys. 43,258 (1975).



