

	Contents
4.1	Polynomial
4.2	Types of quadratic equation
4.3	Solution of quadratic equation
4.4	Nature of roots
4.5	Root under particular conditions
4.6	Relation between roots and coefficients
4.7	Biquadratic equation
4.8	Condition for common roots
4.9	Properties of quadratic equation
4.10	Quadratic expression
4.11	Wavy curve method
4.12	Position of roots of a quadratic equation
4.13	Descartes rule of signs
4.14	Rational algebraic inequations
4.15	Algebraic interpretation of rolle's Theorem
4.16	Equations and inequations on containing absolute value
A	ssignment (Basic and Advance Level)
	Answer Sheet of Assignment

The Babylonians knew of quadratic equations some 4000 years ago. The Greek mathematician Euclid (300 B.C.) gives several quadratic equation while solving geometrical problems,.

Aryabhatta (476 A.D.) gives a rule to sum the geometric series which involves the solution of the quadratic equations Brahmagupta (598 A.D.) provides a rule for the solution of the quadratic equations which is very much the quadratic formula. Mahavira around 850 A.D. proposed a problem involving the use of quadratic equation and its solution.

It was Sridhara, an Indian mathematician, around 900 A.D. who was the first to give an algebraic solution of the general equation $ax^2 + bx + c$

= 0 $a \neq 0$, showing the roots to be $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The first important treatment of a quadratic equation, by factoring, is found in Harriot's works in approximately 1631 A.D.

4.1 Polynomial

Algebraic expression containing many terms of the form cx^n , n being a non-negative integer is called a polynomial. *i.e.*, $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_{n-1}x^{n-1} + a_nx^n$, where x is a variable, $a_0, a_1, a_2, \dots, a_n$ are constants and $a_n \neq 0$

Example : $4x^4 + 3x^3 - 7x^2 + 5x + 3$, $3x^3 + x^2 - 3x + 5$.

(1) **Real polynomial :** Let $a_0, a_1, a_2, \dots, a_n$ be real numbers and x is a real variable.

Then $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$ is called real polynomial of real variable x with real coefficients.

Example : $3x^3 - 4x^2 + 5x - 4$, $x^2 - 2x + 1$ etc. are real polynomials.

(2) **Complex polynomial :** If $a_0, a_1, a_2, \dots, a_n$ be complex numbers and x is a varying complex number.

Then $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$ is called complex polynomial of complex variable *x* with complex coefficients.

Example : $3x^2 - (2+4i)x + (5i-4), x^3 - 5ix^2 + (1+2i)x + 4$ etc. are complex polynomials.

(3) **Degree of polynomial :** Highest power of variable x in a polynomial is called degree of polynomial.

Example : $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n$ is a *n* degree polynomial.

 $f(x) = 4x^3 + 3x^2 - 7x + 5$ is a 3 degree polynomial.

f(x) = 3x - 4 is single degree polynomial or linear polynomial.

f(x) = bx is an odd linear polynomial.

A polynomial of second degree is generally called a quadratic polynomial. Polynomials of degree 3 and 4 are known as cubic and biquadratic polynomials respectively.

(4) **Polynomial equation** : If f(x) is a polynomial, real or complex, then f(x) = 0 is called a polynomial equation.

4.2 Types of Quadratic Equation

A quadratic polynomial f(x) when equated to zero is called quadratic equation.

Example : $3x^{2} + 7x + 5 = 0, -9x^{2} + 7x + 5 = 0, x^{2} + 2x = 0, 2x^{2} = 0$

or

An equation in which the highest power of the unknown quantity is two is called quadratic equation.

Quadratic equations are of two types :

(1) **Purely quadratic equation :** A quadratic equation in which the term containing the first degree of the unknown quantity is absent is called a purely quadratic equation.

i.e. $ax^2 + c = 0$ where $a, c \in C$ and $a \neq 0$

(2) **Adfected quadratic equation :** A quadratic equation which contains terms of first as well as second degrees of the unknown quantity is called an adfected quadratic equation.

i.e. $ax^2 + bx + c = 0$ where $a, b, c \in C$ and $a \neq 0, b \neq 0$.

(3) **Roots of a quadratic equation :** The values of variable x which satisfy the quadratic equation is called roots of quadratic equation.

Important Tips

- An equation of degree n has n roots, real or imaginary.
- Surd and imaginary roots always occur in pairs in a polynomial equation with real coefficients i.e. if 2 3i is a root of an equation, then 2 + 3i is also its root. Similarly if $2+\sqrt{3}$ is a root of given equation, then $2-\sqrt{3}$ is also its root.
- An odd degree equation has at least one real root whose sign is opposite to that of its last term (constant term), provided that the coefficient of highest degree term is positive.
- Every equation of an even degree whose constant term is negative and the coefficient of highest degree term is positive has at least two real roots, one positive and one negative.

4.3 Solution of Quadratic Equation

(1) **Factorization method**: Let $ax^2 + bx + c = a(x - \alpha)(x - \beta) = 0$. Then $x = \alpha$ and $x = \beta$ will satisfy the given equation.

Hence, factorize the equation and equating each factor to zero gives roots of the equation.

Example :
$$3x^2 - 2x + 1 = 0 \implies (x - 1)(3x + 1) = 0$$

x = 1, -1/3

(2) Hindu method (Sri Dharacharya method): By completing the perfect square as

 $ax^{2} + bx + c = 0 \implies x^{2} + \frac{b}{a}x + \frac{c}{a} = 0$

Adding and subtracting $\left(\frac{b}{2a}\right)^2$, $\left[\left(x+\frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right] = 0$ which gives, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Hence the quadratic equation $ax^2 + bx + c = 0$ ($a \neq 0$) has two roots, given by

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \ \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Note : D Every quadratic equation has two and only two roots.

4.4 Nature of Roots

In quadratic equation $ax^2 + bx + c = 0$, the term $b^2 - 4ac$ is called discriminant of the equation, which plays an important role in finding the nature of the roots. It is denoted by Δ or *D*.

(1) If $a, b, c \in R$ and $a \neq 0$, then : (i) If D < 0, then equation $ax^2 + bx + c = 0$ has non-real complex roots.

(ii) If D > 0, then equation $ax^2 + bx + c = 0$ has real and distinct roots, namely $\alpha = \frac{-b + \sqrt{D}}{2a}$,

 $\beta = \frac{-b - \sqrt{D}}{2a}$

and then $ax^{2} + bx + c = a(x - \alpha)(x - \beta)$ (i)

(iii) If D = 0, then equation $ax^2 + bx + c = 0$ has real and equal roots $\alpha = \beta = \frac{-b}{2a}$

and then $ax^{2} + bx + c = a(x - \alpha)^{2}$ (ii)

To represent the quadratic expression $ax^2 + bx + c$ in form (i) and (ii), transform it into linear factors.

(iv) If $D \ge 0$, then equation $ax^2 + bx + c = 0$ has real roots.

(2) If $a, b, c \in Q, a \neq 0$, then : (i) If D > 0 and D is a perfect square \Rightarrow roots are unequal and rational.

(ii) If D > 0 and D is not a perfect square \Rightarrow roots are irrational and unequal.

(3) **Conjugate roots :** The irrational and complex roots of a quadratic equation always occur in pairs. Therefore

(i) If one root be $\alpha + i\beta$ then other root will be $\alpha - i\beta$.

(ii) If one root be $\alpha + \sqrt{\beta}$ then other root will be $\alpha - \sqrt{\beta}$.

(4) If D_1 and D_2 be the discriminants of two quadratic equations, then

(i) If $D_1 + D_2 \ge 0$, then

(a) At least one of D_1 and $D_2 \ge 0$. (b) If $D_1 < 0$ then $D_2 > 0$

(ii) If $D_1 + D_2 < 0$, then

(a) At least one of D_1 and $D_2 < 0$. (b) If $D_1 > 0$ then $D_2 < 0$.

4.5 Roots Under Particular Conditions

For the quadratic equation $ax^2 + bx + c = 0$.

(1) If $b = 0 \Rightarrow$ roots are of equal magnitude but of opposite sign.

(2) If $c = 0 \Rightarrow$ one root is zero, other is -b/a.

(3) If $b = c = 0 \Rightarrow$ both roots are zero.

(4) If $a = c \Rightarrow$ roots are reciprocal to each other.

(5) If $\begin{vmatrix} a > 0 & c < 0 \\ a < 0 & c > 0 \end{vmatrix}$ \Rightarrow roots are of opposite signs.

(6) If
$$\begin{vmatrix} a > 0 & b > 0 & c > 0 \\ a < 0 & b < 0 & c < 0 \end{vmatrix}$$
 \Rightarrow both roots are negative, provided $D \ge 0$.

(7) If $\begin{vmatrix} a > 0 & b < 0 & c > 0 \\ a < 0 & b > 0 & c < 0 \end{vmatrix}$ \Rightarrow both roots are positive, provided $D \ge 0$.

(8) If sign of $a = \text{sign of } b \neq \text{sign of } c \Rightarrow \text{greater root in magnitude, is negative.}$

(9) If sign of $b = \text{sign of } c \neq \text{sign of } a \Rightarrow \text{greater root in magnitude, is positive.}$

(10) If $a+b+c=0 \Rightarrow$ one root is 1 and second root is c/a.

(11) If a = b = c = 0, then equation will become an identity and will be satisfied by every value of *x*.

(12) If a = 1 and b, $c \in I$ and the root of equation $ax^2 + bx + c = 0$ are rational numbers, then these roots must be integers.

Important Tips

		Importa	ite repo			
5	5 5	e of sign, it has one +ve +ve and the equation in		of x, then all its	roots are comple	ex.
Example: 1	Both the roots of give	en equation $(x-a)(x-b)+$	+(x-b)(x-c)+(x-c)(x-c)(x-c)(x-c)(x-c)(x-c)(x-c)(x-c)	a) = 0 are alway	ſS	
			[MNR :	1986; IIT 1980; k	urukshetra CEE 1	1998]
	(a) Positive	(b) Negative	(c) Real	(d) Imagir	ary	
Solution: (c)	Given equation	(x-a)(x-b) + (x-b)(x-b)(x-b)(x-b)(x-b)(x-b)(x-b)(x-b)	-c) + (x-c)(x-a) = 0	can be	re-written	as
$3x^2 - 2(a+b+c)$	x + (ab + bc + ca) = 0					
	$D = 4[(a+b+c)^2 - 3(ab+b)^2 $	$[bc + ca)] = 4[a^2 + b^2 + c^2 - a^2]$	$ab - bc - ac] = 2[(a - b)^{2} +$	$(b-c)^2 + (c-a)^2$	≥ 0	
	Hence both roots are	always real.				
Example: 2		$x^{2} + (c-a)x + (a-b) = 0$ are	equal then $a + c =$	[]	urukshetra CEE	1992]
-	(a) 2b	(b) b^2	(c) 3b	(d) <i>b</i>		
Solution: (a)	b-c+c-a+a-b=0					
		lso as roots are equal,	other root will also be	equal to 1.		
	Also $\alpha.\beta = \frac{a-b}{b-c} \Rightarrow 1.1$	$=\frac{a-b}{b-c} \Rightarrow a-b=b-c \Rightarrow$	$\Rightarrow 2b = a + c$	-		
Example: 3	If the roots of equation	on $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$ are e	equal in magnitude bu	t opposite in sig	gn, then $(p+q) =$	
					[Rajasthan PET :	1999]
	(a) 2 <i>r</i>	(b) <i>r</i>	(c) - 2 <i>r</i>	(d) None o	of these	
Solution: (a)	Given equation can be	e written as $x^2 + (p+q-$	2r)x + [pq - (p+q)r] = 0			
	Since the roots are eq	ual and of opposite sig	n, \therefore Sum of roots = 0			
	$\Rightarrow -(p+q-2r) = 0 \Rightarrow p$	+q = 2r				
Example: 4	If 3 is a root of $x^2 + kx$	x - 24 = 0, it is also a roo	ot of		[EAMCET 2	2002]
	(a) $x^2 + 5x + k = 0$	(b) $x^2 - 5x + k = 0$	(c) $x^2 - kx + 6 = 0$	(d) $x^2 + kx$	+24 = 0	

Solution: (c)	Equation $x^2 + kx - 24$	= 0 has one root as 3	,		
	$\Rightarrow 3^2 + 3k - 24 = 0 \Rightarrow$	<i>k</i> = 5			
	Put $x = 3$ and $k = 5$	in option			
	Only (c) gives the co	orrect answer <i>i.e.</i> \Rightarrow 3	$^2 - 15 + 9 = 0 \implies 0 = 0$		
Example: 5	For what values of <i>l</i>	x will the equation x^2	-2(1+3k)x+7(3+2k)=0 hav	e equal roots	[MP PET 1997]
	(a) 1, -10/9	(b) 2, -10/9	(c) 3, -10/9	(d) 4, -10/9	
Solution: (b)	Since roots are equa	al then $[-2(1+3k)]^2 = 4.1$	$.7(3+2k) \implies 1+9k^2+6k=21$	$+14k \implies 9k^2 - 8k - 2k$	20 = 0
	Solving, we get $k = 2$	2, -10 / 9			

4.6 Relations between Roots and Coefficients

(1) **Relation between roots and coefficients of quadratic equation :** If α and β are the roots of quadratic equation $ax^2 + bx + c = 0$, ($a \neq 0$) then

Sum of roots =
$$S = \alpha + \beta = \frac{-b}{a} = -\frac{\text{coefficient of } x}{\text{coefficient of } x^2}$$

Product of roots = $P = \alpha, \beta = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$
If roots of quadratic equation $ax^2 + bx + c = 0$ ($a \neq 0$) are α and β then
(i) $(\alpha - \beta) = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta} = \pm \frac{\sqrt{b^2 - 4ac}}{a} = \pm \frac{\sqrt{D}}{a}$
(ii) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \frac{b^2 - 2ac}{a^2}$
(iii) $\alpha^2 - \beta^2 = (\alpha + \beta)\sqrt{(\alpha + \beta)^2 - 4\alpha\beta} = -\frac{b\sqrt{b^2 - 4ac}}{a^2} = \pm b\sqrt{D}}{a^2}$
(iv) $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = -\frac{b(b^2 - 3ac)}{a^3}$
(v) $\alpha^3 - \beta^3 = (\alpha - \beta)^3 + 3\alpha\beta(\alpha - \beta) = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta} \{(\alpha + \beta)^2 - \alpha\beta\} = \pm \frac{\pm (b^2 - ac)\sqrt{b^2 - 4ac}}{a^3}$
(vi) $\alpha^4 + \beta^4 = \{(\alpha + \beta)^2 - 2\alpha\beta\}^2 - 2\alpha^2\beta^2 = \left(\frac{b^2 - 2ac}{a^2}\right)^2 - 2\frac{c^2}{a^2}$
(vii) $\alpha^4 - \beta^4 = (\alpha^2 - \beta^2)(\alpha^2 + \beta^2) = \pm \frac{b(b^2 - 2ac)\sqrt{b^2 - 4ac}}{a^4}$
(viii) $\alpha^2 + \alpha\beta + \beta^2 = (\alpha + \beta)^2 - \alpha\beta = \frac{b^2 - ac}{a^2}$
(ix) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{b^2 - 2ac}{ac}$
(x) $\alpha^2\beta + \beta^2\alpha = \alpha\beta(\alpha + \beta) = -\frac{bc}{a^2}$
(xi) $\left(\frac{\alpha}{\beta}\right)^2 + \left(\frac{\beta}{\alpha}\right)^2 = \frac{a^4 + \beta^4}{\alpha^2\beta^2} = \frac{(\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2}{\alpha^2\beta^2} = \frac{b^2D + 2a^2c^2}{a^2c^2}$

(2) **Formation of an equation with given roots :** A quadratic equation whose roots are α and β is given by $(x - \alpha)(x - \beta) = 0$

$$\therefore x^2 - (\alpha + \beta)x + \alpha\beta = 0$$
 i.e. $x^2 - (\text{sum of roots})x + (\text{product of roots}) = 0$

 $\therefore x^2 - Sx + P = 0$

(3) Equation in terms of the roots of another equation : If α , β are roots of the equation $ax^2 + bx + c = 0$, then the equation whose roots are

(i) $-\alpha$, $-\beta \Rightarrow ax^2 - bx + c = 0$	(Replace x by – x)
(ii) $1/\alpha, 1/\beta \implies cx^2 + bx + a = 0$	(Replace x by $1/x$)
(iii) $\alpha^n, \beta^n; n \in N \Rightarrow a(x^{1/n})^2 + b(x^{1/n}) + c = 0$	(Replace x by $x^{1/n}$)
(iv) $k\alpha$, $k\beta \Rightarrow ax^2 + kbx + k^2c = 0$	(Replace x by x/k)
(v) $k + \alpha$, $k + \beta \implies a(x-k)^2 + b(x-k) + c = 0$	(Replace x by $(x - k)$)
(vi) $\frac{\alpha}{k}, \frac{\beta}{k} \Rightarrow k^2 ax^2 + kbx + c = 0$	(Replace <i>x</i> by <i>kx</i>)
(vii) $\alpha^{1/n}, \beta^{1/n}; n \in N \Rightarrow a(x^n)^2 + b(x^n) + c = 0$ (R	eplace x by x^n)

(4) **Symmetric expressions** : The symmetric expressions of the roots α , β of an equation are those expressions in α and β , which do not change by interchanging α and β . To find the value of such an expression, we generally express that in terms of $\alpha + \beta$ and $\alpha\beta$.

Some examples of symmetric expressions are :

(i)
$$\alpha^2 + \beta^2$$
 (ii) $\alpha^2 + \alpha\beta + \beta^2$ (iii) $\frac{1}{\alpha} + \frac{1}{\beta}$ (iv) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$
(v) $\alpha^2\beta + \beta^2\alpha$ (vi) $\left(\frac{\alpha}{\beta}\right)^2 + \left(\frac{\beta}{\alpha}\right)^2$ (vii) $\alpha^3 + \beta^3$ (viii) $\alpha^4 + \beta^4$

4.7 Biguadratic Equation

If α , β , γ , δ are roots of the biquadratic equation $ax^4 + bx^3 + cx^2 + dx + e = 0$, then $S_1 = \alpha + \beta + \gamma + \delta = -b/a$, $S_2 = \alpha \cdot \beta + \alpha \cdot \gamma + \alpha \delta + \beta \gamma + \beta \cdot \delta + \gamma \delta = (-1)^2 \frac{c}{a} = \frac{c}{a}$ or $S_2 = (\alpha + \beta)(\gamma + \delta) + \alpha \beta + \gamma \delta = c/a$, $S_3 = \alpha \beta \gamma + \beta \gamma \delta + \gamma \delta \alpha + \alpha \beta \delta = (-1)^3 \frac{d}{a} = -d/a$ or $S_3 = \alpha \beta (\gamma + \delta) + \gamma \delta (\alpha + \beta) = -d/a$ and $S_4 = \alpha \cdot \beta \cdot \gamma \cdot \delta = (-1)^4 \frac{e}{a} = \frac{e}{a}$

Example: 6 If the difference between the corresponding roots of $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \neq b$, then [AIEEE 2002]

(a)
$$a+b+4=0$$
 (b) $a+b-4=0$ (c) $a-b-4=0$ (d) $a-b+4=0$
Solution: (a) $\alpha+\beta=-a$, $\alpha\beta=b \Rightarrow \alpha-\beta=\sqrt{a^2-4b}$ and $\gamma+\delta=-b$, $\gamma\delta=a \Rightarrow \gamma-\delta=\sqrt{b^2-4a}$

Example: 7 According to question, $\alpha - \beta = \gamma - \delta \Rightarrow \sqrt{a^2 - 4b} = \sqrt{b^2 - 4a} \Rightarrow a + b + 4 = 0$ **Example: 7** If the sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ is equal to the sum of the squares of their reciprocals, then a/c, b/a, c/b are in [AIEEE 2003; DCE 2000] (a) A.P. (b) G.P. (c) H.P. (d) None of these

Solution: (c) As given, if
$$a, \beta$$
 be the roots of the quadratic equation, then

$$\Rightarrow a + \beta = \frac{1}{a^4} + \frac{1}{p^2} = \frac{(a + \beta)^2}{a} - \frac{2a}{2b} = -\frac{b}{a} - \frac{b^2}{a^2} - \frac{a^2}{a^2} - \frac{b^2}{a^2} - \frac{b^2}{a^2} - \frac{b}{a} - \frac{b^2}{a^2} + \frac{b^2}{a} - \frac{b^2}{a^2} + \frac{b^2$$

	$\therefore x^2 - \frac{19}{3}x + 1 = 0 \implies 3$	$5x^2 - 19x + 3 = 0$		
Example: 12	Let α , β be the ro	ots of the equation ($(x-a)(x-b) = c$, $c \neq 0$), then the roots of the equation
	$(x-\alpha)(x-\beta)+c=0$ are			
			[1]	T 1992; DCE 1998, 2000; Roorkee 2000]
	(a) <i>a</i> , c	(b) <i>b</i> , <i>c</i>	(c) a, b	(d) <i>a</i> , <i>d</i>
Solution: (c)		ts of $(x-a)(x-b) = c$ i.e. o		= 0
		$= \alpha + \beta$ and $\alpha\beta = ab - c \Rightarrow$		
		$f x^2 - (\alpha + \beta)x + \alpha\beta + c = 0 =$	$\Rightarrow (x-\alpha)(x-\beta)+c=0$	
	Hence (c) is the corre			
Example: 13				then [Rajasthan PET 1995; Karnataka CET
				V_{n-1} (d) $V_{n+1} = b V_n + a V_{n-1}$
Solution: (a)		ts of equation, $x^2 - ax + b$		
		$= (\alpha + \beta)(\alpha^{n} + \beta^{n}) - \alpha\beta(\alpha^{n-1} + \beta^{n-1}) - \alpha\beta(\alpha^{n-1}) - \alpha\beta(\alpha^{n-1} + \beta^{n-1}) - \alpha\beta(\alpha^{n-1}) - \alpha\beta(\alpha^$		
Example: 14	If one root of the equa	ation $x^2 + px + q = 0$ is the	e square of the othe	r, then [IIT Screening 2004]
	(a) $p^3 + q^2 - q(3p+1) =$	0	(b) $p^3 + q^2 + q(1 + q)$	(-3p) = 0
	(c) $p^3 + q^2 + q(3p-1) =$	0	(d) $p^3 + q^2 + q(1 - q)$	(-3p) = 0
olution: (d)	Let α and α^2 be the re-	boots then $\alpha + \alpha^2 = -p$, $\alpha.\alpha$	$\alpha^2 = q$	
	Now $(\alpha + \alpha^2)^3 = \alpha^3 + \alpha^6$	$+3\alpha^{3}(\alpha+\alpha^{2}) \Rightarrow -p^{3}=q+q$	$q^2 - 3pq \implies p^3 + q^2 + q^2$	q(1-3p) = 0
xample: 15	Let α and β be the roo	ts of the equation $x^2 + x$	+1 = 0 , the equation	n whose roots are α^{19}, β^7 is[IIT 1994; Pb.
	(a) $x^2 - x - 1 = 0$	(b) $x^2 - x + 1 = 0$	(c) $x^2 + x - 1 = 0$	(d) $x^2 + x + 1 = 0$
olution: (d)	Roots of $x^2 + x + 1 = 0$	are $x = \frac{-1 \pm \sqrt{1-4}}{2}, = \frac{-1 \pm \sqrt{2}}{2}$	$\frac{\sqrt{3}i}{2} = \omega, \omega^2$	
	Take $\alpha = \omega, \beta = \omega^2$			
	$\therefore \alpha^{19} = w^{19} = w, \beta^7 = (w^7)^2$	$(x^2)^7 = w^{14} = w^2$		
	Required equation	is $x^2 + x + 1 = 0$		
Example: 16	If one root of a quadr	atic equation is $\frac{1}{2+\sqrt{5}}$, t	then the equation is	[Rajasthan PET 1987]
	(a) $x^2 + 4x + 1 = 0$	(b) $x^2 + 4x - 1 = 0$	(c) $x^2 - 4x + 1 = 0$	(d) None of these
Solution: (b)	Given root $=$ $\frac{1}{2+\sqrt{5}} = -$	$\frac{2-\sqrt{5}}{-1} = -2 + \sqrt{5}$, : other	$\operatorname{root} = -2 - \sqrt{5}$	
	Again, sum of roots =	- 4 and product of roots	s = -1. The required	l equation is $x^2 + 4x - 1 = 0$
4.8 Conditi	on for Common Ro	oots		
			the common	root of quadratic equations
$a_1 x^2 + b_1 x + c_1$	$= 0$ and $a_2 x^2 + b_2 x$	$+c_{2}=0.$		
$\therefore a_1 \alpha^2$	$+b_1\alpha + c_1 = 0$, $a_2\alpha^2 +$	$b_2 \alpha + c_2 = 0$		
1				

By Crammer's rule :
$$\frac{\alpha^2}{\begin{vmatrix} -c_1 & b_1 \\ -c_2 & b_2 \end{vmatrix}} = \frac{\alpha}{\begin{vmatrix} a_1 & -c_1 \\ a_2 & -c_2 \end{vmatrix}} = \frac{1}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}} \text{ or } \frac{\alpha^2}{b_1c_2 - b_2c_1} = \frac{\alpha}{a_2c_1 - a_1c_2} = \frac{1}{a_1b_2 - a_2b_1}$$
$$\therefore \ \alpha = \frac{a_2c_1 - a_1c_2}{a_1b_2 - a_2b_1} = \frac{b_1c_2 - b_2c_1}{a_2c_1 - a_1c_2}, \ \alpha \neq 0$$

 \therefore The condition for only one root common is $(c_1a_2 - c_2a_1)^2 = (b_1c_2 - b_2c_1)(a_1b_2 - a_2b_1)$

(2) Both roots are common: Then required condition is $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$.

Important Tips

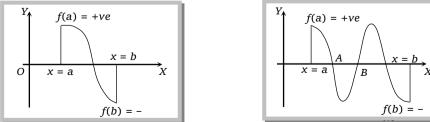
- To find the common root of two equations, make the coefficient of second degree term in the two equations equal and subtract. The value of x obtained is the required common root.
- Two different quadratic equations with rational coefficient can not have single common root which is complex or irrational as imaginary and surd roots always occur in pair.

Example: 17 If one of the roots of the equation $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is coincident. Then the numerical value of (a+b) is **[IIT 1986; Rajasthan PET 1992; EAMCET 2002]** (a) 0 (b) - 1 (c) (d) 5 **Solution:** (b) If α is the coincident root, then $\alpha^2 + a\alpha + b = 0$ and $\alpha^2 + b\alpha + a = 0$ $\Rightarrow \frac{\alpha^2}{a^2 - b^2} = \frac{\alpha}{b - a} = \frac{1}{b - a}$ $\alpha^2 = -(a+b), \ \alpha = 1 \Rightarrow -(a+b) = 1 \Rightarrow (a+b) = -1$ **Example: 18** If a, b, c are in G.P. then the equations $ax^2 + 2bx + c = 0$ and $dx^2 + 2ex + f = 0$ have a common root if $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in

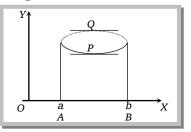
(a) A.P. (b) G.P.

(c) H.P.

[IIT 1985; Pb. CET 2000; DCE 2000] (d) None of these


Solution: (a) As given, $b^2 = ac \Rightarrow ax^2 + 2bx + c = 0$ can be written as $ax^2 + 2\sqrt{ac}x + c = 0 \Rightarrow (\sqrt{a}x + \sqrt{c})^2 = 0 \Rightarrow x = -\sqrt{\frac{c}{a}}$ This must be common root by hypothesis

So it must satisfy the equation, $dx^2 + 2ex + f = 0 \implies d\left(\frac{c}{a}\right) - 2e\sqrt{\frac{c}{a}} + f = 0$


$$\frac{d}{a} + \frac{f}{c} = \frac{2e}{c} \sqrt{\frac{c}{a}} = \frac{2e}{\sqrt{c} \cdot \sqrt{a}} \implies \frac{d}{a} + \frac{f}{c} = \frac{2e}{b}$$

Hence $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in A.P.

4.9 Properties of Quadratic Equation

(1) If f(a) and f(b) are of opposite signs then at least one or in general odd number of roots of the equation f(x) = 0 lie between *a* and *b*.

(2) If f(a) = f(b) then there exists a point *c* between *a* and *b* such that f'(c) = 0, a < c < b.

As is clear from the figure, in either case there is a point *P* or *Q* at x = c where tangent is parallel to *x*-axis

i.e. f'(x) = 0 at x = c.

(3) If α is a root of the equation f(x) = 0 then the polynomial f(x) is exactly divisible by $(x - \alpha)$ or $(x - \alpha)$ is factor of f(x).

(4) If the roots of the quadratic equations $ax^2 + bx + c = 0$, $a_2x^2 + b_2x + c_2 = 0$ are in the same

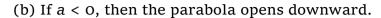
ratio
$$\left(i.e. \frac{\alpha_1}{\beta_1} = \frac{\alpha_2}{\beta_2}\right)$$
 then $b_1^2 / b_2^2 = a_1 c_1 / a_2 c_2$.

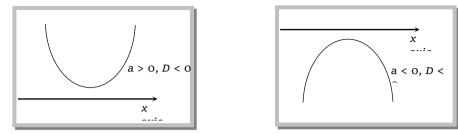
(5) If one root is *k* times the other root of the quadratic equation $ax^2 + bx + c = 0$ then $\frac{(k+1)^2}{2} = \frac{b^2}{2}$.

$$\frac{k}{k} = \frac{k}{ac}$$

Example: 19 The value of 'a' for which one root of the quadratic equation $(a^2 - 5a + 3)x^2 + (3a - 1)x + 2 = 0$ is twice as large as the other is

[AIEEE 2003] (a) 2/3 (b) - 2/3 (c) 1/3 (d) - 1/3 Solution: (a) Let the roots are α and 2α Now, $\alpha + 2\alpha = \frac{1-3a}{a^2 - 5a + 3}$, $\alpha \cdot 2\alpha = \frac{2}{a^2 - 5a + 3} \Rightarrow 3\alpha = \frac{1-3a}{a^2 - 5a + 3}$, $2\alpha^2 = \frac{2}{a^2 - 5a + 3}$ $\Rightarrow 2\left[\frac{1}{9}\frac{(1-3a)^2}{(a^2 - 5a + 3)^2}\right] = \frac{2}{a^2 - 5a + 3} \Rightarrow \frac{(1-3a)^2}{a^2 - 5a + 3} = 9 \Rightarrow 9a^2 - 45a + 27 = 1 + 9a^2 - 6a \Rightarrow 39a = 26 \Rightarrow a = 2/3$


4.10 Quadratic Expression

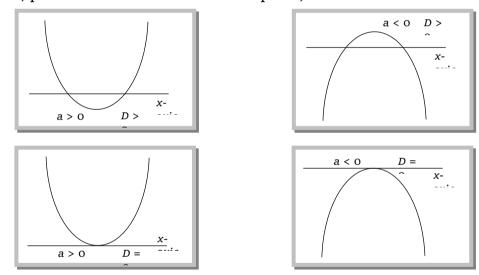

An expression of the form $ax^2 + bx + c$, where $a, b, c \in R$ and $a \neq 0$ is called a quadratic expression in x. So in general, quadratic expression is represented by $f(x) = ax^2 + bx + c$ or $y = ax^2 + bx + c$.

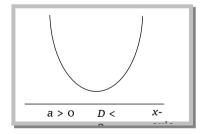
(1) Graph of a quadratic expression : We have $y = ax^2 + bx + c = f(x)$

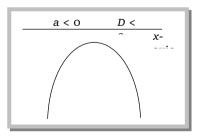
$$y = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{D}{4a^2} \right] \Rightarrow y + \frac{D}{4a} = a \left(x + \frac{b}{2a} \right)^2$$

Now, let $y + \frac{D}{4a} = Y$ and $X = x + \frac{b}{2a}$
 $Y = a \cdot X^2 \Rightarrow X^2 = \frac{1}{a} Y$
(i) The graph of the curve $y = f(x)$ is parabolic.
(ii) The axis of parabola is $X = 0$ or $x + \frac{b}{2a} = 0$ *i.e.* (parallel to *y*-axis).

(iii) (a) If a > 0, then the parabola opens upward.




(iv) Intersection with axis


(a) *x-axis*: For x axis, $y = 0 \implies ax^2 + bx + c = 0 \implies x = \frac{-b \pm \sqrt{D}}{2a}$

For *D* > 0, parabola cuts *x*-axis in two real and distinct points *i.e.* $x = \frac{-b \pm \sqrt{D}}{2a}$. For *D* = 0, parabola touches *x*-axis in one point, x = -b/2a.

For D < 0, parabola does not cut *x*-axis(*i.e.* imaginary value of *x*).

(b) **y-axis :** For y axis x = 0, y = c

(2) **Maximum and minimum values of quadratic expression :** Maximum and minimum value of quadratic expression can be found out by two methods :

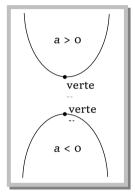
(i) **Discriminant method :** In a quadratic expression $ax^2 + bx + c$.

(a) If a > 0, quadratic expression has least value at x = -b/2a. This least value is given by $\frac{4ac-b^2}{4a} = -\frac{D}{4a}.$

(b) If a < 0, quadratic expression has greatest value at x = -b/2a. This greatest value is given by $\frac{4ac-b^2}{4a} = -\frac{D}{4a}$.

(ii) **Graphical method :** Vertex of the parabola $Y = aX^2$ is X = 0, Y = 0

i.e.,
$$x + \frac{b}{2a} = 0$$
, $y + \frac{D}{4a} = 0 \implies x = -b/2a$, $y = -D/4a$


Hence, vertex of $y = ax^2 + bx + c$ is (-b/2a, -D/4a)

(a) For a > 0, f(x) has least value at $x = -\frac{b}{2a}$. This least value is given

by
$$f\left(-\frac{b}{2a}\right) = -\frac{D}{4a}$$
.

(b) For a < 0, f(x) has greatest value at x = -b/2a. This greatest value is (h)D

given by
$$f\left(-\frac{b}{2a}\right) = -\frac{b}{4a}$$
.

(3) Sign of quadratic expression : Let $f(x) = ax^2 + bx + c$ or $y = ax^2 + bx + c$

Where a, b, $c \in R$ and $a \neq 0$, for some values of x, f(x) may be positive, negative or zero. This gives the following cases :

(i) a > 0 and D < 0, so f(x) > 0 for all $x \in R$ *i.e.*, f(x) is positive for all real values of x.

(ii) a < 0 and D < 0, so f(x) < 0 for all $x \in R$ *i.e.*, f(x) is negative for all real values of x.

(iii) a > 0 and D = 0 so, $f(x) \ge 0$ for all $x \in R$ i.e., f(x) is positive for all real values of x except at vertex, where f(x) = 0.

(iv) a < 0 and D = 0 so, $f(x) \le 0$ for all $x \in R$ *i.e.* f(x) is negative for all real values of x except at vertex, where f(x) = 0.

(v) a > 0 and D > 0

Let f(x) = 0 have two real roots α and β ($\alpha < \beta$), then f(x) > 0 for all $x \in (-\infty, \alpha) \cup (\beta, \infty)$ and f(x) < 0 for all $x \in (\alpha, \beta)$.

(vi) a < 0 and D > 0

Let f(x) = 0 have two real roots α and β ($\alpha < \beta$),

Then f(x) < 0 for all $x \in (-\infty, \alpha) \cup (\beta, \infty)$ and f(x) > 0 for all $x \in (\alpha, \beta)$

Example: 20 If *x* be real, then the minimum value of $x^2 - 8x + 17$ is [MNR 1980] (a) - 1 (b) o (d) 2 **Solution:** (c) Since a = 1 > 0 therefore its minimum value is $= \frac{4ac - b^2}{4a} = \frac{4(1)(17) - 64}{4} = \frac{4}{4} = 1$ $x^2 - x + 1$ a If when all the

Example: 21If x is real, then greatest and least values of
$$\frac{1}{x^2 + x + 1}$$
 are[IIT 1968; Rajasthan PET 1988](a) 3, -1/2(b) 3, 1/3(c) - 3, -1/3(d) None of these

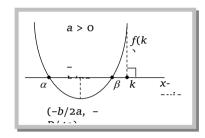
Solution: (b) Let $y = \frac{x^2 - x + 1}{x^2 + x + 1}$ $x^{2}(y-1)+(y+1)x+(y-1)=0$ \therefore *x* is real, therefore $b^2 - 4ac \ge 0$ $\Rightarrow (y+1)^2 - 4(y-1)(y-1) \ge 0 \Rightarrow 3y^2 - 10y + 3 \le 0 \Rightarrow (3y-1)(y-3) \le 0 \Rightarrow \left(y - \frac{1}{3}\right)(y-3) \le 0 \Rightarrow \frac{1}{3} \le y \le 3$ Thus greatest and least values of expression are 3, 1/3 respectively. Example: 22 If f(x) is quadratic expression which is positive for all real value of x and g(x) = f(x) + f'(x) + f''(x). Then for any real value of *x* [IIT 1990] (a) g(x) < 0(b) g(x) > 0(c) g(x) = 0(d) $g(x) \ge 0$ **Solution:** (b) Let $f(x) = ax^2 + bx + c$, then $g(x) = ax^2 + bx + c + 2ax + b + 2a = ax^2 + (b + 2a)x + (b + c + 2a)$ \therefore f(x) > 0. Therefore $b^2 - 4ac < 0$ and a > 0Now for q(x), Discriminant = $(b + 2a)^2 - 4a(b + c + 2a) = b^2 + 4a^2 + 4ab - 4ab - 4ac - 8a^2 = (b^2 - 4ac) - 4a^2 < 0$ as $b^2 - 4ac < 0$ Therefore sign of g(x) and *a* are same *i.e.* g(x) > 0. If α , β ($\alpha < \beta$) are roots of the equation $x^2 + bx + c = 0$ where (c < 0 < b) then Example: 23 [IIT Screening 2000] (a) $0 < \alpha < \beta$ (b) $\alpha < 0 < \beta < |\alpha|$ (c) $\alpha < \beta < 0$ (d) $\alpha < 0 < |\alpha| < \beta$ **Solution:** (b) Since f(0) = 0 + 0 + c = c < 0 \therefore Roots will be of opposite sign, $\alpha + \beta = -b = -ve$ (b > 0) It is given that $\alpha < \beta$ So, $\alpha + \beta = -ve$ is possible only when $|\alpha| > \beta$ $\Rightarrow \alpha < 0, \beta > 0, |\alpha| > \beta \Rightarrow \alpha < 0 < \beta < |\alpha|$

4.11 Wavy Curve Method

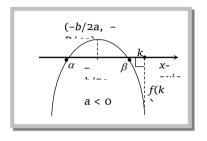
Let $f(x) = (x - a_1)^{k_1} (x - a_2)^{k_2} (x - a_3)^{k_3} \dots (x - a_{n-1})^{k_{n-1}} (x - a_n)^{k_n}$ (i)

Where $k_1, k_2, k_3, ..., k_n \in N$ and $a_1, a_2, a_3, ..., a_n$ are fixed natural numbers satisfying the condition

$$a_1 < a_2 < a_3 \dots < a_{n-1} < a_n$$

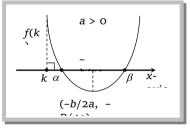

First we mark the numbers $a_1, a_2, a_3, \dots, a_n$ on the real axis and the plus sign in the interval of the right of the largest of these numbers, *i.e.* on the right of a_n . If k_n is even then we put plus sign on the left of a_n and if k_n is odd then we put minus sign on the left of a_n . In the next interval we put a sign according to the following rule :

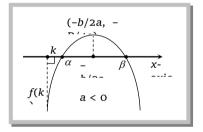
When passing through the point a_{n-1} the polynomial f(x) changes sign if k_{n-1} is an odd number and the polynomial f(x) has same sign if k_{n-1} is an even number. Then, we consider the next interval and put a sign in it using the same rule. Thus, we consider all the intervals. The solution of f(x) > 0 is the union of all intervals in which we have put the plus sign and the solution of f(x) < 0 is the union of all intervals in which we have put the minus sign.

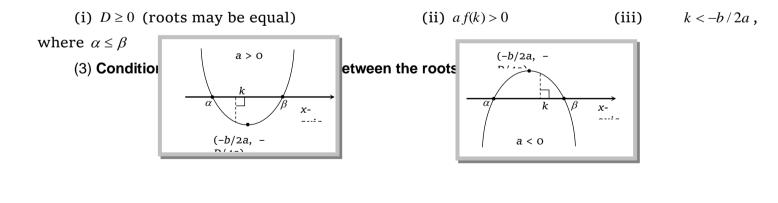

4.12 Position of Roots of a Quadratic Equation

Let $f(x) = ax^2 + bx + c$, where *a*, *b*, $c \in R$ be a quadratic expression and k, k_1, k_2 be real numbers such that $k_1 < k_2$. Let α , β be the roots of the equation f(x) = 0 *i.e.* $ax^2 + bx + c = 0$. Then $\alpha = \frac{-b + \sqrt{D}}{2a}$, $\beta = \frac{-b - \sqrt{D}}{2a}$ where *D* is the discriminant of the equation.

(1) Condition for a number k (If both the roots of f(x) = 0 are less than k)

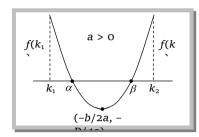

(i) $D \ge 0$ (roots may be equal)



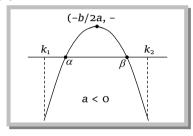

(ii)
$$a f(k) > 0$$
 (iii) $k > -b/2a$

where $\alpha \leq \beta$

(2) Condition for a number k (If both the roots of f(x) = 0 are greater than k)

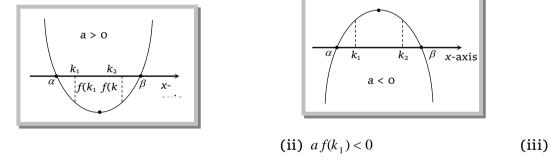

(i) D > 0 (ii) a f(k) < 0, where $\alpha < \beta$

(4) Condition for numbers k_1 and k_2 (If exactly one root of f(x) = 0 lies in the interval (k_1, k_2))



(i) D > 0

- (ii) $f(k_1)f(k_2) < 0$, where $\alpha < \beta$.
- (5) Condition for numbers k_1 and k_2 (If both roots of f(x) = 0 are confined between k_1 and k_2)


(i) $D \ge 0$ (roots may be equal)

(ii)
$$a f(k_1) > 0$$
 (iii)

 $af(k_2) > 0$

- (iv) $k_1 < -b/2a < k_2$, where $\alpha \le \beta$ and $k_1 < k_2$
- (6) Condition for numbers k_1 and k_2 (If k_1 and k_2 lie between the roots of f(x) = 0)

 $a f(k_2) < 0$, where $\alpha < \beta$

(i) D > 0

If the roots of the equation $x^2 - 2ax + a^2 + a - 3 = 0$ are real and less than 3, then [IIT 1999; MP PET 2000] Example: 24 (b) $2 \le a \le 3$ (a) *a* < 2 (c) $3 < a \le 4$ (d) a > 4Given equation is $x^2 - 2ax + a^2 + a - 3 = 0$ Solution: (a) If roots are real, then $D \ge 0$ $\Rightarrow 4a^2 - 4(a^2 + a - 3) \ge 0 \Rightarrow -a + 3 \ge 0 \Rightarrow a - 3 \le 0 \Rightarrow a \le 3$ As roots are less than 3, hence f(3) > 0 $9-6a+a^2+a-3>0 \implies a^2-5a+6>0 \implies (a-2)(a-3)>0 \implies a<2, a>3$. Hence a < 2 satisfy all the conditions. The value of a for which $2x^2 - 2(2a+1)x + a(a+1) = 0$ may have one root less than a and another root Example: 25 greater than a are given by [UPSEAT 2001] (a) 1 > a > 0(b) -1 < a < 0(c) $a \ge 0$ (d) a > 0 or a < -1The given condition suggest that a lies between the roots. Let $f(x) = 2x^2 - 2(2a+1)x + a(a+1)$ Solution: (d) For 'a' to lie between the roots we must have Discriminant \ge 0 and f(a) < 0Now, Discriminant ≥ 0 $4(2a+1)^2 - 8a(a+1) \ge 0 \implies 8(a^2 + a + 1/2) \ge 0$ which is always true. Also $f(a) < 0 \Rightarrow 2a^2 - 2a(2a+1) + a(a+1) < 0 \Rightarrow -a^2 - a < 0 \Rightarrow a^2 + a > 0 \Rightarrow a(1+a) > 0 \Rightarrow a > 0$ or a < -1

4.13 Descarte's Rule of Signs

The maximum number of positive real roots of a polynomial equation f(x) = 0 is the number of changes of sign from positive to negative and negative to positive in f(x).

The maximum number of negative real roots of a polynomial equation f(x) = 0 is the number of changes of sign from positive to negative and negative to positive in f(-x).

Example: 26	The maximum pos	ssible number of real	roots of equation $x^5 - 6x^2$.	-4x + 5 = 0 is	[EAMCET 2002]
	(a) 0	(b) 3	(c) 4	(d) 5	
Solution: (b)	$f(x) = x^5 - 6x^2 - 4x$	+5 = 0			
	+	+			
	2 changes of sign	\Rightarrow maximum two pos	itive roots.		
	$f(-x) = -x^5 - 6x^2 + 4$	4x + 5			
	+	+			
	1 changes of sign	\Rightarrow maximum one neg	ative roots.		
	\Rightarrow total maximum	possible number of r	real roots = $2 + 1 = 3$.		

4.14 Rational Algebraic Inequations

(1) Values of rational expression P(x)/Q(x) for real values of x, where P(x) and Q(x) are quadratic expressions : To find the values attained by rational expression of the form $\frac{a_1x^2 + b_1x + c_1}{a_2x^2 + b_2x + c_2}$ for

real values of *x*, the following algorithm will explain the procedure :

Algorithm

Step I: Equate the given rational expression to *y*.

Step II: Obtain a quadratic equation in *x* by simplifying the expression in step I.

Step III: Obtain the discriminant of the quadratic equation in Step II.

Step IV: Put Discriminant \geq 0 and solve the inequation for *y*. The values of *y* so obtained determines the set of values attained by the given rational expression.

(2) Solution of rational algebraic inequation: If P(x) and Q(x) are polynomial in x, then the

inequation $\frac{P(x)}{Q(x)} > 0$, $\frac{P(x)}{Q(x)} < 0$, $\frac{P(x)}{Q(x)} \ge 0$ and $\frac{P(x)}{Q(x)} \le 0$ are known as rational algebraic inequations.

To solve these inequations we use the sign method as explained in the following algorithm. **Algorithm**

Step I: Obtain P(x) and Q(x).

Step II: Factorize P(x) and Q(x) into linear factors.

Step III: Make the coefficient of *x* positive in all factors.

Step IV: Obtain critical points by equating all factors to zero.

Step V: Plot the critical points on the number line. If there are n critical points, they divide the number line into (n + 1) regions.

Step VI: In the right most region the expression $\frac{P(x)}{Q(x)}$ bears positive sign and in other regions the expression bears positive and negative signs depending on the exponents of the factors.

4.15 Algebraic Interpretation of Rolle's Theorem

Let f(x) be a polynomial having α and β as its roots, such that $\alpha < \beta$. Then, $f(\alpha) = f(\beta) = 0$. Also a polynomial function is everywhere continuous and differentiable. Thus f(x) satisfies all the three conditions of Rolle's theorem. Consequently there exists $\gamma \in (\alpha, \beta)$ such that $f'(\gamma) = 0$ *i.e.* f'(x) = 0 at $x = \gamma$. In other words $x = \gamma$ is a root of f'(x) = 0. Thus algebraically Rolle's theorem can be interpreted as follows.

Between any two roots of polynomial f(x), there is always a root of its derivative f'(x).

Lagrange's theorem : Let f(x) be a function defined on [a b] such that

(i) f(x) is continuous on [a b] and

(ii) f(x) is differentiable on (a, b), then $c \in (a, b)$, such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

Lagrange's identity : If $a_1, a_2, a_3, b_1, b_2, b_3 \in R$ then :

$$(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) - (a_1b_1 + a_2b_2 + a_3b_3)^2 = (a_1b_2 - a_2b_1)^2 + (a_2b_3 - a_3b_2)^2 + (a_3b_1 - a_1b_3)^2 + (a_3b_1 - a_2b_3)^2 + (a_3b_1 - a_3b_3)^2 = (a_1b_2 - a_2b_3)^2 + (a_2b_3 - a_3b_3)^2 = (a_2b_$$

Example: 27 If
$$\frac{2x}{2x^2 + 5x + 2} > \frac{1}{x+1}$$
, then [IIT 1987]
(a) $-2 > x > -1$ (b) $-2 \ge x \ge -1$ (c) $-2 < x < -1$ (d) $-2 < x \le -1$
Solution: (c) Given $\frac{2x}{2x^2 + 5x + 2} - \frac{1}{x+1} > 0 \Rightarrow \frac{2x^2 + 2x - 2x^2 - 5x - 2}{(2x + 1)(x + 2)(x + 1)} > 0 \Rightarrow \frac{-3x - 2}{(2x + 1)(x + 2)(x + 1)} > 0$
 $\Rightarrow \frac{-3(x + 2/3)}{(x + 1)(x + 2)(2x + 1)} > 0 \Rightarrow \frac{(x + 2/3)}{(x + 1)(x + 2)(2x + 1)} < 0$
Equating each factor equal to 0,
We get $x = -2, -1, -2/3, -1/2$ $\Rightarrow -2/3 < x < -1/2$ or $-2 < x < -1$
Example: 28 If for real values of $x, x^2 - 3x + 2 > 0$ and $x^2 - 3x - 4 \le 0$, then [IIT 1983]
(a) $-1 \le x < 1$ (b) $-1 \le x < 4$ (c) $-1 \le x < 1$ or $2 < x \le 4$ (d) $2 < x \le 4$
Solution: (c) $x^2 - 3x + 2 > 0$ or $(x - 1)(x - 2) > 0$
 $\therefore x \in (-\infty, 1) \cup (2, \infty)$ (i) $\frac{1}{x} + \frac{1}{x} + \frac{1}{x$

(c) Both roots in (b, ∞) (d) One root in $(-\infty, a)$ and other in $(b, +\infty)$ **Solution:** (d) We have, (x - a)(x - b) - 1 = 0 $(x-a)(x-b) = 1 > 0 \implies (x-a)(x-b) > 0 \quad [\because b > a]$ $\underbrace{\bigoplus}_{a \bigoplus b}$ $x \in]-\infty, a[\cup]b, +\infty[$, *i.e.* $(-\infty, a)$ and (b, ∞) . The number of integral solution of $\frac{x+1}{x^2+2} > \frac{1}{4}$ is Example: 30 [Orissa IEE 2002] (a) 1 (b) 2 (d) None of these (c) 5 $\frac{x+1}{x^2+2} - \frac{1}{4} > 0 \implies \frac{x^2 - 4x - 2}{x^2 + 2} < 0 \implies (x - (2 + \sqrt{6}))(x - (2 - \sqrt{6})) < 0$ $\implies 2 - \sqrt{6} < x < 2 + \sqrt{6}$ Solution: (c) Approximately, -0.4 < x < 4.4Hence, integral values of x are 0, 1, 2, 3, 4 Hence, number of integral solution = 5If 2a + 3b + 6c = 0 then at least one root of the equation $ax^2 + bx + c = 0$ lies in the interval Example: 31 [Kurukshetra CEE 2002; AIEEE 2002] (a) (0, 1) (b) (1, 2) (c) (2, 3) (d) (3, 4) **Solution:** (a) Let $f'(x) = ax^2 + bx + c$ $\therefore f(x) = \int f'(x) dx = \frac{ax^3}{3} + \frac{bx^2}{2} + cx$ Clearly f(0) = 0, $f(1) = \frac{a}{3} + \frac{b}{2} + c = \frac{2a + 3b + 6c}{6} = \frac{0}{6} = 0$ Since, f(0) = f(1) = 0. Hence, there exists at least one point *c* in between 0 and 1, such that f'(x) = 0, by Rolle's theorem. **Trick:** Put the value of a = -3, b = 2, c = 0 in given equation $-3x^{2} + 2x = 0 \implies 3x^{2} - 2x = 0 \implies x(3x - 2) = 0$ x = 0, x = 2/3, which lie in the interval (0, 1) 4.16 Equation and Inequation containing Absolute Value (1) Equations containing absolute values

By definition,
$$|x| = \begin{cases} x, \text{ if } x \ge 0 \\ -x, \text{ if } x < 0 \end{cases}$$

Important forms containing absolute value :

Form I: The equation of the form |f(x) + g(x)| = |f(x)| + |g(x)| is equivalent of the system $f(x).g(x) \ge 0$.

Form II: The equation of the form
$$|f_1(x)| + |f_2(x)| + |f_3(x)| + \dots + |f_n(x)| = g(x)$$
(i)

Where $f_1(x), f_2(x), f_3(x), \dots, f_n(x), g(x)$ are functions of x and g(x) may be a constant.

Equations of this form can be solved by the method of interval. We first find all critical points of $f_1(x), f_2(x), \dots, f_n(x)$. If coefficient of x is +ve, then graph starts with +ve sign and if it is negative, then graph starts with negative sign. Then using the definition of the absolute value, we pass form equation (i) to a collection of system which do not contain the absolute value symbols.

(2) Inequations containing absolute value

By definition,
$$|x| < a \Rightarrow -a < x < a (a > 0), |x| \le a \Rightarrow -a \le x \le a,$$

 $|x| > a \Rightarrow x < -a \text{ or } x > a \text{ and } |x| \ge a \Rightarrow x \le -a \text{ or } x \ge a$
Example: 32 The roots of $|x-2|^2 + |x-2| - 6 = 0$ are [UPSEAT 2003]
(a) 0, 4 (b) -1, 3 (c) 4, 2 (d) 5, 1
Solution: (a) We have $|x-2|^2 + |x-2| - 6 = 0$
Let $|x-2| = X$
 $X^2 + X - 6 = 0$
 $\Rightarrow X = \frac{-1 \pm \sqrt{1 + 24}}{2} = 2 - 3 \Rightarrow X = 2 \text{ and } X = -3$
 $\therefore |x-2| = 2 \text{ and } |x-2| = -3, \text{ which is not possible.}$
 $\Rightarrow x-2 = 2 \text{ or } x-2 = -2$
 $\therefore x = 4 \text{ or } x = 0$
Example: 33 The set of all real numbers x for which $x^2 - |x+2| + x > 0$, is [IIT Screening 2002]
(a) $(-\infty, -2) \cup (2, \infty)$ (b) $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$ (c) $(-\infty, -1) \cup (1, \infty)$ (d) $(\sqrt{2}, \infty)$
Solution: (b) Case I: If $x + 2 \ge 0$ i.e. $x \ge -2$, we get
 $x^3 - x - 2 + x > 0 \Rightarrow x^3 - 2 > 0 \Rightarrow (x - \sqrt{2})(x + \sqrt{2}) > 0$
 $\Rightarrow x = (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$ $\xrightarrow{4 - \sqrt{2}} = \sqrt{4}$
But $x \ge -2$
 $\therefore x = [-2, -\sqrt{2}] \cup (\sqrt{2}, \infty)$ $\xrightarrow{4 - \sqrt{2}} = \sqrt{4}$
But $x \ge -2$
 $\therefore x = [-2, -\sqrt{2}] \cup (\sqrt{2}, \infty)$ $\xrightarrow{4 - \sqrt{2}} = \sqrt{4}$
From (i) and (ii), we get, $x \in (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$
Example: 34 Product of real roots of the equation $x^3x^3 + |x| + 9 = 0$ ($t \ge 0$) (Alieer of all x
 $\therefore x \in (-\infty, -2)$ (ii)
From (i) and (ii), we get, $x \in (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$
Example: 34 Product of real roots of the equation $x^3x^3 + |x| + 9 = 0$ ($t \ge 0$) (Alieer eoots of given equation does not exist.
Example: 35 The number of solution of $\log_2(x - 1) = \log_2(x - 3)$ [IIT Screening 2001]

(a) 3 (b) 1 (c) 2 (d) 0 Solution: (b) We have $\log_4(x-1) = \log_2(x-3)$ $(x-1) = (x-3)^2 \Rightarrow x-1 = x^2+9-6x \Rightarrow x^2-7x+10 = 0 \Rightarrow (x-5)(x-2) = 0$ x = 5 or x = 2But x-3 < 0, when x = 2. \therefore Only solution is x = 5. Hence number of solution is one.

				Solution of Quadratic equations
		Basi	c Level	
1.	A real root of the equat	ion $\log_4 \{ \log_2(\sqrt{x+8} - \sqrt{x}) \} = 0$	is	[AMU 1999]
	(a) 1	(b) 2	(c) 3	(d) 4
2.	The roots of the equation	on $7^{\log_7(x^2-4x+5)} = x-1$ are		
3.	(a) 4, 5	(b) 2, - 3 equation $\log_x 2 \cdot \log_{2x} 2 = \log_{4x} 2$	(c) 2,3 2 is	(d) 3, 5
	(a) $\left\{2^{-\sqrt{2}}, 2^{\sqrt{2}}\right\}$	(b) $\left\{\frac{1}{2}, 2\right\}$	(c) $\left\{\frac{1}{4}, 2^2\right\}$	(d) None of these
4.		ation $3^{\log_a x} + 3x^{\log_a 3} = 2$ is give	-	
	(a) $3^{\log_2 a}$	(b) $3^{-\log_2 a}$	(c) $2^{\log_3 a}$	(d) $2^{-\log_3 a}$
5۰	If $3^{x+1} = 6^{\log_2 3}$, then <i>x</i> is			
	(a) 3	(b) 2	(c) $\log_3 2$	(d) $\log_2 3$
6.	The solution of $ x / (x - 1)$	$ + x = x^2 / x - 1 $ is		
	(a) $x \ge 0$	(b) $x > 0$	(c) $x \in (1, \alpha)$	(d) None of these
7.	If $2\log(x+1) - \log(x^2 - 1) =$	$= \log 2$, then x equals		
	(a) 1	(b) 0	(c) 2	(d) 3
8.		quation $x^{2} + 5 x + 4 = 0$ are		[MNR 1993]
	(a) $\{-1, -4\}$	(b) $\{1,4\}$	(c) {-4,4}	(d) None of these
9.	If $ x^2 - x - 6 = x + 2$, then	n the values of <i>x</i> are		[Roorkee 1982; Rajasthan PET 1992]
	(a) $-2, 2, -4$	(b) −2, 2, 4	(c) $3, 2, -2$	(d) 4,4,3
10.	${x \in R : x - 2 = x^2} =$			[EAMCET 2000]
	(a) $\{-1,2\}$	(b) {1,2}	(c) $\{-1, -2\}$	(d) $\{1, -2\}$
11.	If $ax^2 + bx + c = 0$, then x	κ =		[MP PET 1995]
	(a) $\frac{b \pm \sqrt{b^2 - 4ac}}{2a}$	(b) $\frac{-b\pm\sqrt{b^2-ac}}{2a}$	$(c) \frac{2c}{-b\pm\sqrt{b^2-4}}$	(d) None of these
12.	If $x^{2/3} - 7x^{1/3} + 10 = 0$, the function of the functio	hen x =		[BIT Ranchi 1992]
	(a) {125}	(b) {8}	(c) <i>φ</i>	(d) {125,8}
13.	The roots of the given e	equation $(p-q)x^2 + (q-r)x + (r-q)x +$	p)=0 are	[Rajasthan PET 1986; MP PET 1999]
	(a) $\frac{p-q}{r-p}, 1$	(b) $\frac{q-r}{p-q}, 1$	(c) $\frac{r-p}{p-q}, 1$	(d) $1, \frac{q-r}{p-q}$
14.	The solution of the equ	ation $x + \frac{1}{x} = 2$ will be		[MNR 1983]

			t 1	-	
	(a) 2, -1	(b) $0, -1, -\frac{1}{5}$	(c) $-1, -\frac{1}{5}$	(d) None of t	hese
15.	One root of the followin	g given equation $2x^5 - 14x^4 + 31$	$x^{3} - 64x^{2} + 19x + 130 = 0$ is		[MP PET 1985]
-	(a) 1	(b) 3	(c) 5	(d) 7	
16.	The roots of the equatio	n $x^4 - 4x^3 + 6x^2 - 4x + 1 = 0$ are			[MP PET 1986]
	(a) 1, 1, 1, 1	(b) 2, 2, 2, 2	(c) 3, 1, 3, 1	(d) 1, 2, 1, 2	
17.	_	(x+1)(x+3)(x+2)(x+4) = 120 is			Rajendra 1991]
_	(a) -1	(b) 2	(c) 1	(d) o	
18.	If $9^x - 4 \times 3^{x+2} + 3^5 = 0$, the second secon	-			
	(a) (1, 2)	(b) (2, 3)	(c) (2, 4)	(d) (1, 3)	
19.	In the equation $4^{x+2} = 2^{2}$	2^{2x+3} + 48, the value of <i>x</i> will be			
	(a) $-\frac{3}{2}$	(b) - 2	(c) - 3	(d) 1	
20.	The roots of the equatio	n $4^x - 3.2^{x+3} + 128 = 0$ are			[AMU 1985]
	(a) 1 and 2	(b) 2 and 3	(c) 3 and 4	(d) 4 and 5	
21.	The root of the equation	$\sqrt{2x-2} + \sqrt{x-3} = 2$ is			[Roorkee 1979]
	(a) 3	(b) 19	(c) 3, 19	(d) 3, -19	
22.	The solution of the equa	tion $\sqrt{x+1} + \sqrt{x-1} = 0$ is			[IIT 1978]
	(a) 1	(b) – 1	(c) 5/4	(d) None of t	hese
23.	If $x = \sqrt{6 + \sqrt{6 + \sqrt{6 + \dots + 10^6}}}$	$\overline{}$, then			[Pb.CET 1999]
-	(a) x is an irrational nu	mber (b)	2 < <i>x</i> < 3	(c) $x = 3$	(d)
24.		ch satisfy the equation $(5+2\sqrt{6})$			
•				CEE 1995; Karna	taka CET 1993]
	(a) ±2	(b) $\pm \sqrt{2}$	(c) $\pm 2, \pm \sqrt{2}$	(d) $2,\sqrt{2}$	
25.	If one root of the equati	on $a(b-c)x^{2} + b(c-a)x + c(a-b) = 0$	is 1 then, its other roots is	[Rajas	than PET 1986]
	(a) $\frac{a(b-c)}{b(c-a)}$	(b) $\frac{c(a-b)}{a(b-c)}$	(c) $\frac{b(c-a)}{a(b-c)}$	(d) None of t	hese
26.	The imaginary roots of	the equation $(x^2 + 2)^2 + 8x^2 = 6x(x)^2$	$(x^2 + 2)$ are		[Roorkee 1986]
	(a) 1± <i>i</i>	(b) 2± <i>i</i>	(c) -1± <i>i</i>	(d) None of	these
27.	GM of the roots of the e	quation $x^{2} - 18x + 9 = 0$ is		[Rajas	than PET 1997]
	(a) 6	(b) 3	(c) - 3	(d) ±3	
28.	The solution set of the e	equation $(x+1)^2 + [x-1]^2 = (x-1)^2$	$+[x+1]^2$ is		
	(a) $x \in R$	(b) $x \in N$	(c) $x \in I$	(d) $x \in Q$	
29.	$\left[\frac{1}{4}\right] + \left[\frac{1}{4} + \frac{1}{200}\right] + \left[\frac{1}{4} + \frac{1}{100}\right]$	$\left[\frac{1}{4} + \frac{199}{200}\right]$ is			
	(a) 49	(b) 50	(c) 51	(d) None of t	hese
30.	The value of $x = \sqrt{2 + \sqrt{2}}$	$+\sqrt{2+}$ is		[Karna	taka CET 2001]
	(a) -1	(b) 1	(c) 2	(d) 3	
31.	If $x^2 - x + 1 = 0$, then value	ue of x^{3n} is			[DCE 1995]
	(a) -1,1	(b) 1	(c) -1	(d) o	
32.		curve $y = x^2 + ax + 25$ touches the	ie <i>x</i> - axis		
	(a) 0	(b) ±5	(c) ±10	(d) None of t	hese
33.	Let α,β be the roots of t	the quadratic equation $x^2 + px + px$	$p^3 = 0 \ (p \neq 0)$. If (α, β) is a r	point on the pa	arabola $y^2 = x$,
	~	• • •		1	2

then the roots of the quadratic equation are

[MP PET 2000]

	. 1	*			
	(a) 4, - 2	(b) - 4, - 2	(c) 4, 2	(d) - 4, 2	
34.	If expression $e^{\{(\sin^2 x + s)\}}$	$\sin^4 x + \sin^6 x + \infty) \ln 2$ satisfies the	equation $x^2 - 9x + 8 = 0$, find the	e value of $\frac{\cos x}{\cos x + \sin x}$	$\frac{\pi}{\ln x}$, $0 < x < \frac{\pi}{2}$ [IIT 19]
	(a) $\frac{1}{1+\sqrt{3}}$	(b) $\frac{1}{1-\sqrt{3}}$	(c) $\frac{2}{1-\sqrt{2}}$	(d) None of	these
5.	The roots of equatio	$n\frac{2x+31}{9} + \frac{x^2+7}{x^2-7} = \frac{2x+47}{9}$ a	re	[Raja	sthan PET 1994]
	(a) 3, - 3	(b) 5, - 5	(c) $\sqrt{3}, -\sqrt{3}$	(d) $\sqrt{5}, -\sqrt{5}$	
6.	If $x^2 + y^2 = 25, xy = 12$,	, then $x =$		[]	BIT Ranchi 1992]
	(a) {3, 4}	(b) {3, - 3}	(c) $\{3, 4, -3, -4\}$	(d) {- 3, - 3	}
7.	The some of all real	roots of the equation $ x-2 $	$ ^{2} + x - 2 - 2 = 0$ is	[IIT 1997; Him	achal CET 2002]
	(a) 2	(b) 4	(c) 1	(d) None of	these
8.	-		ree times the product of its digi		[MP PET 1994]
	(a) 42	(b) 24	(c) 12	(d) 21	
9.		solutions of the equation $ x ^2$			[IIT 1988]
	(a) 1	(b) 2	(c) 3	(d) 4	
0.			e equality $ 3x^2 + 12x + 6 = 5x + 16$	-	[AMU 1999]
	(a) 4	(b) 3	(c) 2	(d) 1	
1.		olutions of the equation sin			[IIT 1990, 2002]
_	(a) 0	(b) 1 eal solutions of the equation	(c) 2 $\frac{1}{2}$	(d) Infinitel	y many
2.	(a) 1	(b) 2	$1 - x + x - 1 = \sin x + 1s$ (c) O	(d) 4	
_	. ,			(4) 4	
3.	The number of soluti	ions of $\cos x = \frac{1}{80}$ is			
	(a) 50	(b) 52	(c) 53	(d) None of	these
4.	The equation $\sqrt{(x+1)}$	$-\sqrt{(x-1)} = \sqrt{(4x-1)}$ has			[IIT 1997]
	(a) No solution	(b) One solution	(c) Two solutions	(d) More that	an two solution
5۰	The number of real r	coots of $\sqrt{5x^2-6x+8} - \sqrt{5x^2}$	-6x-7 = 1 is		[Roorkee 1984]
	(a) 1	(b) 2	(c) 3	(d) 4	
6.	The number of roots	of the quadratic equation 8	$8 \sec^2 \theta - 6 \sec \theta + 1 = 0$ is	[]	Pb. CET 1989,94]
	(a) Infinite	(b) 1	(c) 2	(d) 0	
7.	The number of value	s of x in the interval $[0,5\pi]$	satisfying the equation $3\sin^2 x$ –	$7\sin x + 2 = 0$ is [1]	IT 1998, MP PET 200
	(a) O	(b) 5	(c) 6	(d) 10	
8.	The maximum numb	er of real roots of the equat	tion $x^{2n} - 1 = 0$, is		[MP PET 2001]
	(a) 2	(b) 3	(c) n	(d) 2n	
9.	The equation $x + \frac{2}{1-x}$	$\frac{1}{x} = 1 + \frac{2}{1-x}$, has	[IIT 1983;	MNR 1998; Kuruks	shetra CEE 1993]
	(a) No real root	(b) One real root	(c) Two equal roots	(d) Infinitel	y many roots
D.	The number of real r	boots of equation $(x-1)^2 + (x-1)^2 + (x-1)^$	$(-2)^2 + (x-3)^2 = 0$ is	[IIT 1990; Karn	ataka CET 1998]
	(a) 2	(b) 1	(c) 0	(d) 3	
ι.		of the equation $\log(-2x) = 21$			[AMU 2001]
	(a) 3	(b) 2	(C) 1	(d) None of	these
2.	Number of real roots	s of the equation $\sum_{r=1}^{10} (x-r)^3 =$	=0 is		
3.	(a) 0 The minimum value	(b) 1 of $ x-3 + x-2 + x-5 $ is	(c) 2	(d) 3	
	(a) 3	(b) 7	(c) 5	(d) 9	

54.	Rationalised denominat	for of $\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$ is		
	(a) $\frac{2\sqrt{3}+3\sqrt{2}-\sqrt{30}}{12}$	(b) $\frac{3\sqrt{2}-2\sqrt{3}-\sqrt{30}}{15}$	(c) $\frac{2\sqrt{3} - 3\sqrt{2} + \sqrt{40}}{10}$	(d) $\frac{2\sqrt{3}+3\sqrt{2}-\sqrt{20}}{15}$
55.	If $x = \sqrt{7 + 4\sqrt{3}}$, then x	$+\frac{1}{r} =$		[EAMCET 1994]
	(a) 4	(b) 6	(c) 3	(d) 2
56.	If $\log_2 x + \log_x 2 = \frac{10}{3} = \log_x 2$	$g_2 y + \log_y 2$ and $x \neq y$, then $x + y$	=	[EAMCET 1994]
57.	(a) 2 The equation $\log_e x + \log_e x$	(b) $65/8$ $f_e(1+x)=0$ can be written as	(c) 37/6 [Kurul	(d) None of these (shetra CEE 1993; MP PET 1989]
	• •			(d) $x^2 + xe - e = 0$
58.	If $f(x) = 2x^3 + mx^2 - 13x + mx^2 - mx^2 - 13x + mx^2 $	n and 2, 3 are roots of the equ	ation $f(x) = 0$, then the value	of <i>m</i> and <i>n</i> are [Roorkee 1990]
	(a) - 5, - 30	(b) - 5, 30	(c) 5,30	(d) None of these
59.	The number of real solu (a) 1	tions of the equation $e^x = x$ is (b) 2	(c) 0	(d) None of these
60.		ts of the equation $x^2 + x - 6 = 0$	is	
	(a) 4	(b) O	(c) - 1	(d) None of these
61.	The number of values o	f a for which $(a^2 - 3a + 2)x^2 + (a^2 - 3a $	$-5a+6)x+a^2-4=0$ is an idea	ntity in <i>x</i> is
	(a) 0	(b) 2	(c) 1	(d) 3
62.	The number of values o	f the pair (a, b) for which $a(x +$	$1)^{2} + b(x^{2} - 3x - 2) + x + 1 = 0$ is	an identity in <i>x</i> is
	(a) 0	(b) 1	(c) 2	(d) Infinite
63.	If $(\sqrt{2})^x + (\sqrt{3})^x = (\sqrt{13})^{x/2}$	then the number of values of x	is	
	(a) 2	(b) 4	(c) 1	(d) None of these
64.	The number of real solu	tions of the equation $\frac{6-x}{x^2-4} = 2$	$2 + \frac{x}{x+2}$ is	
	(a) Two	(b) One	(c) Zero	(d) None of these
65.	The number of real solu	ations of $\sqrt{x^2 - 4x + 3} + \sqrt{x^2 - 9} = -$	$\sqrt{4x^2 - 14x + 6}$ is	
	(a) One	(b) Two	(c) Three	(d) None of these
		Advance	e Level	
66.	If $-1 \le x < 0$, then soluti	on of the equation $ x+1 - x +$	-3 x-1 x-2 = x+2 is	[IIT 1976]
	(a) 1, 5/3	(b) 5/3	(c) 1/3	(d) None of these
67.	The real roots of $ x ^3 = 3$	$3x^2 + 3 x - 2 = 0$ are		[DCE 1997]
	(a) 0, 2	(b) ± 1	(c) ± 2	(d) 1, 2
68.	The number of real solu	tions of the equation $2^{x/2} + (\sqrt{2})$	$(+1)^{x} = (5 + 2\sqrt{2})^{x/2}$ is	
	(a) One	(b) Two	(c) Four	(d) Infinite

(a) One (b) Two (c) Four (d) Infinite 69. The number of negative integral solutions of $x^2 \cdot 2^{x+1} + 2^{|x-3|+2|} = x^2 \cdot 2^{|x-3|+4|} + 2^{x-1}$ is [DCE 1993] (a) 0 (b) 1 (c) 2 (d) 4 70. The equation $e^x - x - 1 = 0$ has [Kurukshetra CEE 1998]

(a) Only one real root x = 0(b)At least two real roots(c) Exactly two real roots(d)**71.** The number of real roots of the equation $e^{\sin x} - e^{-\sin x} - 4 = 0$ are[IIT 1982](a) 1(b) 2(c) Infinite(d) None of these

72. If *a*, *b*, *c* are positive real numbers, then the number of real roots of the equation $ax^2 + b|x| + c = 0$ is

[DCE 1998, UPSEAT 1999]

[IIT 1989] y three real solutions e above finite ess than or equal to <i>x</i> . mber of real solutions
y three real solutions e above finite ess than or equal to <i>x</i> . nber of real solutions
y three real solutions e above finite ess than or equal to <i>x</i> mber of real solutions
y three real solutions e above finite ess than or equal to <i>x</i> mber of real solutions
finite ess than or equal to <i>x</i> nber of real solutions
ess than or equal to <i>x</i> nber of real solutions
ess than or equal to <i>x</i> nber of real solutions
nber of real solutions
1
en by
ull set
$(a_r)^x = 1$ and <i>n</i> be the
> n
ber of real roots of
[DCE 1994] one of these
[IIT 1987]
finite
al to <i>x</i> , are
$< x < n+1, n \in \mathbb{Z}$
of these
of these $\frac{1}{2}$, is one of these
$\frac{1}{2}$, is
$\frac{1}{2}$, is
¹ / ₂ , is one of these

If 0 < x < 1000 and $\left\lceil \frac{x}{2} \right\rceil + \left\lceil \frac{x}{3} \right\rceil + \left\lceil \frac{x}{5} \right\rceil = \frac{31}{30}x$, where [x] is the greatest integer less than or equal to x, the number of 88. possible values of *x* is (a) 34 (b) 32 (c) 33 (d) None of these 89. The solution set of $(x)^2 + (x+1)^2 = 25$, where (x) is the least integer greater than or equal to x, is (b) $(-5, -4] \cup (2, 3]$ (c) $[-4, -3) \cup (3, 4]$ (a) (2, 4)(d) None of these If $[x]^2 = [x+2]$, where [x] = the greatest integer less than or equal to x, then x must be such that 90. (a) x = 2, -1(b) $x \in [2,3)$ (c) $x \in [-1, 0)$ (d) None of these The solution set of $\left|\frac{x+1}{x}\right| + |x+1| = \frac{(x+1)^2}{|x|}$ is 91. (b) $\{x \mid x > 0\} \cup \{-1\}$ (c) {-1, 1} (a) $\{x \mid x \ge 0\}$ (d) $\{x \mid x \ge 1 \text{ or } x \le -1\}$ If $a.3^{\tan x} + a.3^{-\tan x} - 2 = 0$ has real solutions, $x \neq \frac{\pi}{2}, 0 \leq x \leq \pi$, then the set of possible values of the parameter *a* is 92. (b) [-1, 0) (d) $(0, +\infty)$ (a) [-1, 1] (c) (0, 1] Nature of roots **Basic Level** The roots of the quadratic equation $2x^2 + 3x + 1 = 0$, are [IIT 1983] 93. (a) Irrational (b) Rational (c) Imaginary (d) None of these The roots of the equation $x^2 + 2\sqrt{3}x + 3 = 0$ are [Rajasthan PET 1986] 94. (a) Real and equal (b) Rational and equal (c) Irrational and equal (d) Irrational and unequal If l, m, n are real and $l \neq m$, then the roots of the equation $(l-m)x^2 - 5(l+m)x - 2(l-m) = 0$ are[IIT 1979; Rajasthan PET 1983] 95. (c) Real and equal (a) Complex (b) Real and distinct (d) None of these If a and b are the odd integers, then the roots of the equation $2ax^2 + (2a+b)x + b = 0$, $a \neq 0$, will be [Pb. CET 1988] 96. (a) Rational (b) Irrational (c) Non-real (d) Equal If $k \in (-\infty, -2) \cup (2, \infty)$, then the roots of the equation $x^2 + 2kx + 4 = 0$ are [DCE 2002] 97. (a) Complex (b) Real and unequal (c) Real and equal (d) One real and one imaginary 98. Let a, b and c be real numbers such that 4a+2b+c=0 and ab>0. Then the quadratic equation $ax^2+bx+c=0$ has [IIT 1990] (a) Real roots (b) Complex roots (c) Purely imaginary roots (d) Only one root **99.** If a < b < c < d, then the roots of the equation (x - a)(x - c) + 2(x - b)(x - d) = 0 are [IIT 1984] (a) Real and distinct (b) Real and equal (c) Imaginary (d) None of these **100.** If $b_1b_2 = 2(c_1 + c_2)$, then at least one of the equations $x^2 + b_1x + c_1 = 0$ and $x^2 + b_2x + c_2 = 0$ has (b) Purely imaginary roots (a) Real roots (c) Imaginary roots (d) None of these **101.** In the equation $x^3 + 3Hx + G = 0$, if G and H are real and $G^2 + 4H^3 > 0$, then the roots are [Karnataka CET 2000] (a) All real and equal (b) All real and distinct (c) One real and two imaginary (d) **102.** The equation $(x-a)^3 + (x-b)^3 + (x-c)^3 = 0$, has (a) All the roots real (b) One real and two imaginary roots (c) Three real roots namely x = a, x = b, x = c(d) None of these **103.** For the equation $|x^2| + |x| - 6 = 0$, the roots are [EAMCET 1988, 93] (a) One and only one real number (b) Real with sum one (d) Real with product zero (c) Real with sum zero **104.** If a > 0, b > 0, c > 0, then both the roots of the equation $ax^2 + bx + c = 0$ [IIT 1980] (a) Are real and negative(b) Have negative real parts (c) Are rational numbers (d) None of these

95.	Let one root of $ax^2 + bx$	+ c = 0, where <i>a</i> , <i>b</i> , <i>c</i> are integers	be $3 + \sqrt{5}$, then the other r	root is [MNR 1982
	(a) $3 - \sqrt{5}$	(b) 3	(c) $\sqrt{5}$	(d) None of these
6.		quation $x^3 - 5x^2 + 9x - 5 = 0$, then		[Kerala (Engg.) 2002
	(a) 1 and $2-i$	(b) -1 and $3+i$	(c) 0 and 1	(d) -1 and $i-2$
7.	If a, b, c are $abc^{2}x^{2} + (3a^{2} + b^{2})cx - 6a^{2}$	nonzero, unequal rational $-ab+2b^2=0$ are	numbers then the	roots of the equation
	(a) Rational	(b) Imaginary	(c) Irrational	(d) None of these
8.	The equation $x^2 - 6x + 8$	$+\lambda(x^2-4x+3)=0$, $\lambda \in R$, has		
	(a) Real and unequal ro		(b) Real roots for $\lambda < 0$ o	•
_	(c) Real roots for $\lambda > 0$	only	(d)	Real and unequal roots for
	only			
9.	-	lation $(1-a)x^2 + 3ax - 1 = 0$ are		
	(a) One positive and on	ne negative	(b)	Both negative
	(c) Both positive	. 2	(d) Both nonreal complex	
).		tion $ax^2 + x + b = 0$ be real, then the		
	(a) Rational	(b) Irrational	(c) Real	(d) Imaginary
1.	-	tion $x^2 - 8x + (a^2 - 6a) = 0$ are real,		[Rajasthan PET 1987, 97
	(a) $-2 < a < 8$	(b) $2 < a < 8$	(c) $-2 \le a \le 8$	(d) $2 \le a \le 8$
2.	_	equation $(\cos p - 1)x^2 + (\cos p)x + \sin px^2$		[IIT 1990; Rajasthan PET 1995
	(a) $p \in (-\pi, 0)$	(b) $p \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	(c) $p \in (0, \pi)$	(d) $p \in (0, 2\pi)$
	The greatest value of	a non-negative real number λ	for which both the equa	ations $2x^2 + (\lambda - 1)x + 8 = 0$ and
	$x^2 - 8x + \lambda + 4 = 0$ have r			[AMU 1990
	(a) 9	(b) 12	(c) 15	(d) 16
1.		d are in A.P., then roots of the eq	quation $px^2 + qx + r = 0$ are p	real if [IIT 1995
	(a) $\left \frac{r}{p}-7\right \ge 4\sqrt{3}$	(b) $\left \frac{p}{r}-7\right \ge 4\sqrt{3}$	(c) For all values of <i>p</i> , <i>r</i>	(d) For no value of <i>p</i> , <i>r</i>
5.	Let $p, q \in \{1, 2, 3, 4\}$. The	number of equations of the form	$px^2 + qx + 1 = 0$ having real	l roots is [IIT 1994
	(a) 15	(b) 9	(c) 7	(d) 8
5.	The least integer k which	ch makes the roots of the equatio	on $x^2 + 5x + k = 0$ imaginary	is [Kerala (Engg.) 2002
	(a) 4	(b) 5	(c) 6	(d) 7
7.		roots α , β of the equation $ax^2 + bx$	_	
	(a) $ \alpha = \beta $	(b) $ \alpha > 1$	(c) $ \beta < 1$	(d) None of these
3.	If roots of the equation	$a(b-c)x^{2} + b(c-a)x + c(a-b) = 0$ are	e equal,, then a, b, c are in[Roorkee 1993; Rajasthan PET 2
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
э.	If the equation $(m-n)x^2$	+(n-l)x+l-m=0 has equal roots	, then <i>l</i> , <i>m</i> and <i>n</i> satisfy	[DCE 2002; EAMCET 1990
	(a) $2l = m + n$	(b) $2m = n + l$	(c) $m=n+l$	(d) $l=m+n$
b .	The condition for the ro	bots of the equation $(c^2 - ab)x^2 - 2(c^2 - ab)x^2 - 2$	$(a^2 - bc)x + (b^2 - ac) = 0$ to be e	equal is [TS Rajendra 1982
	(a) $a = 0$	(b) $b = 0$	(c) $c = 0$	(d) None of these
1.	If the roots of the equat	tion $(a^2 + b^2)t^2 - 2(ac + bd)t + (c^2 + d^2)$	=0 are equal, then	[MP PET 1996
	(a) $ab = dc$	(b) $ac = bd$	(c) $ad+bc=0$	(d) $\frac{a}{b} = \frac{c}{d}$
2.	If one root of $x^2 + px + 12$	2 = 0 is 4 and roots of the equation	on $x^2 + px + q = 0$ are equal,	, then q is equal to [Rajasthan
2.	If one root of $x^2 + px + 12$ (a) 49/4	2 = 0 is 4 and roots of the equation(b) 4/49	on $x^{2} + px + q = 0$ are equal, (c) 4	, then <i>q</i> is equal to [Rajasthan (d) None of these

Quadratic Equations and Inequations 183 (c) 2 (a) 3 (b) o (d) -1 **124.** If the roots of the equation $x^2 - 15 - m(2x - 8) = 0$ are equal then *m* is equal to [Rajasthan PET 1985] (b) - 3, 5 (d) - 3, - 5 (a) 3, - 5 (c) 3, 5 **125.** For what value of k will the equation $x^2 - (3k-1)x + 2k^2 - 11 = 0$ have equal roots [Karnataka CET 1998] (b) 9 (c) Both the above (a) 5 (d) 0 **126.** The value of k for which the quadratic equation $kx^2 + 1 = kx + 3x - 11x^2 = 0$ has real and equal roots are[**BIT Ranchi 1993**] (a) -11, - 3 (b) 5, 7 (c) 5, −7 (d) None of these **127.** If the roots of $4x^2 + px + 9 = 0$ are equal, then absolute value of *p* is [MP PET 1995] (a) 144 (b) 12 (c) - 12 $(d) \pm 12$ **128.** The value of *k* for which $2x^2 - kx + x + 8 = 0$ has equal and real roots are [BIT Ranchi 1990] (b) 9 and 7 (d) 9 and - 7 (a) - 9 and - 7(c) -9 and 7**129.** The roots of $4x^2 + 6px + 1 = 0$ are equal, then the value of *p* is [MP PET 2003] (c) $\frac{2}{2}$ (a) $\frac{4}{2}$ (b) $\frac{1}{2}$ (d) $\frac{4}{2}$ **130.** If the equation $x^2 - (2+m)x + (m^2 - 4m + 4) = 0$ has coincident roots, then [Roorkee 1991] (d) $m = \frac{2}{3}, m = 1$ (c) $m = \frac{2}{3}, m = 6$ (b) m = 0, m = 2(a) m = 0, m = 1**131.** If two roots of the equation $x^3 - 3x + 2 = 0$ are same, then the roots will be [MP PET 1985] (a) 2, 2, 3 (b) 1, 1, - 2 (c) - 2, 3, 3 (d) - 2, - 2, 1 **132.** The equation ||x-1|+a|=4 can have real solutions for x if a belongs to the interval (b) (-∞, - 4] (c) (4,∞) (a) (-∞, 4] (d) [-4,4] **133.** The set of values of *m* for which both roots of the equation $x^2 - (m+1)x + m + 4 = 0$ are real and negative consists of all m such that [AMU 1992] (a) $-3 < m \le -1$ (b) $-4 < m \le -3$ (c) $-3 \le m \le 5$ (d) $-3 \ge m$ or $m \ge 5$ **134.** Both the roots of the given equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are always [MNR 1986; IIT 1980; Kurukshetra CEE 1998] (b) Negative (a) Positive (c) Real (d) Imaginary **135.** If $P(x) = ax^2 + bx + c$ and $Q(x) = -ax^2 + dx + c$ where $ac \neq 0$, then $P(x) \cdot Q(x) = 0$, has at least [IIT 1985] (b) Two real roots (a) Four real roots (c) Four imaginary roots (d) None of these **136.** The conditions that the equation $ax^2 + bx + c = 0$ has both the roots positive is that [SCRA 1990] (a) *a*, *b* and *c* are of the same sign (b) a and b are of the same sign (c) *b* and *c* have the same sign opposite to that of *a* (d) a and c have the same sign opposite to that of b **137.** If [x] denotes the integral part of x and $k = \sin^{-1} \frac{1+t^2}{2t} > 0$, then the integral value of α for which the equation $(x-[k])(x+\alpha)-1=0$ has integral roots is (d) None of these (a) 1 (b) 2 (c) 4 **138.** If the roots of the equation $ax^2 + bx + c = 0$ are real and of the form $\frac{\alpha}{\alpha - 1}$ and $\frac{\alpha + 1}{\alpha}$, then the value of $(a + b + c)^2$ is [AMU 2000] (b) $b^2 - 2ac$ (c) $2b^2 - ac$ (a) $b^2 - 4ac$ (d) None of these Advance Level

139. Equation $\frac{a^2}{x-\alpha} + \frac{b^2}{x-\beta} + \frac{c^2}{x-\gamma} = m - n^2 x$ (a, b, c, m, $n \in \mathbb{R}$) has necessarily (b) All the roots imaginary (a) All the roots real (c) Two real and two imaginary roots (d) Two rational and two irrational roots **140.** If $\cos \theta$, $\sin \phi$, $\sin \theta$ are in G.P. then roots of $x^2 + 2 \cot \phi x + 1 = 0$ are always (a) Equal (b) Real (c) Imaginary (d) Greater than 1 **141.** If f(x) is a continuous function and attains only rational values and f(0) = 3, then roots of equation $f(1)x^{2} + f(3)x + f(5) = 0$ are (a) Imaginary (b) Rational (c) Irrational (d) Real and equal **142.** The roots of $ax^2 + bx + c = 0$, where $a \neq 0$ and coefficients are real, are non-real complex and a + c < b. Then (a) 4a + c > 2b(b) 4a + c < 2b(c) 4a + c = 2b(d) None of these **143.** The equation $(a+2)x^2 + (a-3)x = 2a-1, a \neq -2$ has roots rational for (a) All rational values of a except a = -2(b) All real values of a except a = -2(c) Rational values of $a > \frac{1}{2}$ (d) None of these **144.** The quadratic equation $x^2 - 2x - \lambda = 0, \lambda \neq 0$ (a) Cannot have a real root if $\lambda < 1$ (b) Can have a rational root if λ is a perfect square (c) Cannot have an integral root if $n^2 - 1 < \lambda < n^2 + 2n$ where n = 0, 1, 2, 3, ...(d) None of these **145.** If the roots of the equation $x^2 + px + q = 0$ are α and β and roots of the equation $x^2 - xr + s = 0$ are α^4 , β^4 , then the roots of the equation $x^2 - 4qx + 2q^2 - r = 0$ will be [IIT 1989] (a) Both negative (b) Both positive (c) Both real (d) One negative and one positive **146.** If equation $a(b-c)x^2 + b(c-a)x + c(a-b) = 0$ has equal roots, a, b, c > 0, $n \in N$, then (b) $a^n + c^n > 2b^n$ (c) $a^n + c^n \leq 2b^n$ (d) $a^n + c^n < 2b^n$ (a) $a^n + c^n \ge 2b^n$ **147.** If $\frac{\sum_{r=0}^{k-1} x^{2r}}{\frac{k-1}{k-1}}$ is a polynomial in *x* for two values of *p* and *q* of *k*, then roots of equation $x^2 + px + q = 0$ cannot be (a) Real (b) Imaginary (c) Rational (d) Irrational **148.** If for x > 0, $f(x) = (a - x^n)^{1/n}$, $g(x) = x^2 + px + q$, $p, q \in R$ and equation g(x) - x = 0 has imaginary roots, then number of real roots of equation g(g(x)) - f(f(x)) = 0 is (d) None of these (b) 2 (c) 4 (a) 0 **149.** Let $p, q \in \{1, 2, 3, 4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real and unequal roots is (a) 15 (b) 9 (c) 7 (d) 8 **150.** If α_1, α_2 and β_1, β_2 are the roots of the equations $ax^2 + bx + c = 0$ and $px^2 + qx + r = 0$ respectively and system of equations $\alpha_1 y + \alpha_2 z = 0$ and $\beta_1 y + \beta_2 z = 0$ has a non-zero solution. Then (a) $a^2 qc = p^2 br$ (b) $p^2 br = q^2 ac$ (c) $c^2 ar = r^2 pb$ (d) None of these [IIT 1987] **151.** If *a*, *b*, *c*, *d* are four consecutive terms of an increasing AP then the roots of the equation (x-a)(x-c)+2(x-b)(x-d)=0 are (a) Real and distinct (b) Nonreal complex (c) Real and equal (d) Integers **152.** If a, b, c are three distinct positive real numbers then the number of real roots of $ax^2 + 2b|x| - c = 0$ is

			Quadratic Equat	ions and Inequations 185	
	(a) 4	(b) 2	(c) 0	(d) None of these	
53.	If $a \in R$, $b \in R$ then th	the equation $x^2 - abx - a^2 = 0$ has			
	(a) One positive root	and one negative root	(b) Both roots positive		
	(c) Both roots negative	ve	(d) Non-real roots		
54.	The number of integra both roots negative is	ral values of a for which $x^2 - (a - a)$	-1) x + 3 = 0 has both roots pos	itive and $x^2 + 3x + 6 - a = 0$ has	
	(a) O	(b) 1	(c) 2	(d) Infinite	
55.	The quadratic equation	ons $x^2 + (a^2 - 2)x - 2a^2 = 0$ and $x^2 - 2a^2 = 0$	-3x + 2 = 0 have		
	(a) No common root f	for all $a \in R$	(b)	Exactly one common root	
or a	ll $a \in R$				
	(c) Two common root		(d) None of these		
56.	If $f(x) = \frac{x^2 - 1}{x^2 + 1}$ for ever	ry real number x then the minin	num value of f		
	(a) Does not exist bec	cause <i>f</i> is unbounded	(b) Is not attained even t	hough <i>f</i> is bounded	
	(c) Is equal to 1		(d) Is equal to -1		
57.	If <i>x</i> , <i>y</i> , <i>z</i> are real and	distinct then $f(x, y) = x^2 + 4y^2 + 9z$	$x^2 - 6yz - 3zx - 2xy$ is always		
	(a) Non-negative	(b) Nonpositive	(c) Zero	(d) None of these	
58.	If $a \in R$, $b \in R$ then th	the factors of the expression $a(x^2)$	$-y^2$)-bxy are		
	(a) Real and different	t (b) Real and identical	(c) Complex	(d) None of these	
59.		then the expression $a(b-c)x^2 + b(c)$	• • •		
	(a) Has real and disti	-	(b)	Is a perfect square	
	(c) Has no real factor		(d) None of these	A A C	
60.		where <i>a</i> , <i>c</i> are positive, then the	equation $ax^2 + bx + c = 0$ has		
	(a) Real roots	· · · · · · · · · · · · · · · · · · ·	(b) Imaginary roots		
	(c) Ratio of roots = 1	: w where w is a nonreal cube r	oot of unity	(d) Ratio of roots = <i>b</i> : <i>ac</i>	
61.	The polynomial $(ax^2 +$	$(bx+c)(ax^2-dx-c)$ $ac \neq 0$, has			
	(a) Four real zeros	(b) At least two real zeros	(c) At most two real zero	s (d) No real zeros	
	Relation between Roots and Coefficient				
_			Relation betwe	en Roots and Coefficient	
		Basic	Level	en Roots and Coefficient	
62.	If α , β are roots of the	Basic e equation $ax^2 + bx + c = 0$, then the	Level	en Roots and Coefficient	
62.	If α , β are roots of the	e equation $ax^2 + bx + c = 0$, then the	Level be value of $\alpha^3 + \beta^3$ is	F 1994; Rajasthan PET 1989, 96]	
62.		e equation $ax^2 + bx + c = 0$, then the [Kurukshetra CEF	Level ne value of $\alpha^3 + \beta^3$ is 2 1991; BIT Ranchi 1998; MP PE	Г 1994; Rajasthan PET 1989, 96]	
62.	If α , β are roots of the (a) $\frac{3abc+b^3}{a^3}$	e equation $ax^2 + bx + c = 0$, then the [Kurukshetra CEF	Level ne value of $\alpha^3 + \beta^3$ is 2 1991; BIT Ranchi 1998; MP PE		
	(a) $\frac{3abc+b^3}{a^3}$	e equation $ax^2 + bx + c = 0$, then the [Kurukshetra CEF	Level the value of $\alpha^3 + \beta^3$ is 2 1991; BIT Ranchi 1998; MP PET (c) $\frac{3abc-b^3}{a^3}$	T 1994; Rajasthan PET 1989, 96 (d) $\frac{b^3 - 3abc}{a^3}$	
63.	(a) $\frac{3abc+b^3}{a^3}$ If α , β are roots of the (a) $2n$	e equation $ax^2 + bx + c = 0$, then the [Kurukshetra CEE (b) $\frac{a^3 + b^3}{3ab}$ e equation $x^2 - (1 + n^2)x + \frac{1}{2}(1 + n^2 + \frac{1}{2})x + \frac{1}{2}(1 + n^2)$	Level The value of $\alpha^3 + \beta^3$ is 2 1991; BIT Ranchi 1998; MP PE (c) $\frac{3abc - b^3}{a^3}$ $(c) n^4 = 0$, then $\alpha^2 + \beta^2$ is equal (c) n^3	F 1994; Rajasthan PET 1989, 96 (d) $\frac{b^3 - 3abc}{a^3}$ to [Rajasthan PET 1996] (d) $2n^2$	
63.	(a) $\frac{3abc+b^3}{a^3}$ If α , β are roots of the (a) $2n$	e equation $ax^2 + bx + c = 0$, then the [Kurukshetra CEE (b) $\frac{a^3 + b^3}{3ab}$ e equation $x^2 - (1 + n^2)x + \frac{1}{2}(1 + n^2 + \frac{1}{2})x + \frac{1}{2}(1 + n^2)$	Level The value of $\alpha^3 + \beta^3$ is 2 1991; BIT Ranchi 1998; MP PE (c) $\frac{3abc - b^3}{a^3}$ $(c) n^4 = 0$, then $\alpha^2 + \beta^2$ is equal (c) n^3	F 1994; Rajasthan PET 1989, 96 (d) $\frac{b^3 - 3abc}{a^3}$ to [Rajasthan PET 1996] (d) $2n^2$	
.63. .64.	(a) $\frac{3abc + b^3}{a^3}$ If α , β are roots of the (a) $2n$ If α and β are the root (a) Zero	e equation $ax^2 + bx + c = 0$, then the [Kurukshetra CEE (b) $\frac{a^3 + b^3}{3ab}$ e equation $x^2 - (1 + n^2)x + \frac{1}{2}(1 + n^2 + \frac{1}{2})x + \frac{1}{2}(1 + \frac{1}{2})x + \frac$	Level the value of $\alpha^3 + \beta^3$ is 2 1991; BIT Ranchi 1998; MP PET (c) $\frac{3abc-b^3}{a^3}$ $a^{(4)} = 0$, then $\alpha^2 + \beta^2$ is equal (c) n^3 ($a \neq 0$; a, b, c being different (c) Negative	T 1994; Rajasthan PET 1989, 96 (d) $\frac{b^3 - 3abc}{a^3}$ to [Rajasthan PET 1996] (d) $2n^2$), then $(1 + \alpha + \alpha^2)(1 + \beta + \beta^2) = $ [I (d) None of these	
163. 164.	(a) $\frac{3abc + b^3}{a^3}$ If α , β are roots of the (a) $2n$ If α and β are the root (a) Zero	e equation $ax^2 + bx + c = 0$, then th [Kurukshetra CEE (b) $\frac{a^3 + b^3}{3ab}$ e equation $x^2 - (1 + n^2)x + \frac{1}{2}(1 + n^2 + (b) n^2)$ ts of the equation $ax^2 + bx + c = 0$	Level the value of $\alpha^3 + \beta^3$ is 2 1991; BIT Ranchi 1998; MP PET (c) $\frac{3abc-b^3}{a^3}$ $a^{(4)} = 0$, then $\alpha^2 + \beta^2$ is equal (c) n^3 ($a \neq 0$; a, b, c being different (c) Negative	T 1994; Rajasthan PET 1989, 96 (d) $\frac{b^3 - 3abc}{a^3}$ to [Rajasthan PET 1996] (d) $2n^2$), then $(1 + \alpha + \alpha^2)(1 + \beta + \beta^2) = $ [I (d) None of these	
163. 164.	(a) $\frac{3abc + b^3}{a^3}$ If α , β are roots of the (a) $2n$ If α and β are the root (a) Zero If α , β are the roots of	e equation $ax^2 + bx + c = 0$, then the [Kurukshetra CEE (b) $\frac{a^3 + b^3}{3ab}$ e equation $x^2 - (1 + n^2)x + \frac{1}{2}(1 + n^2 + \frac{1}{2})x + \frac{1}{2}(1 + \frac{1}{2}$	Level The value of $\alpha^3 + \beta^3$ is 2 1991; BIT Ranchi 1998; MP PET (c) $\frac{3abc - b^3}{a^3}$ $(c) n^4) = 0$, then $\alpha^2 + \beta^2$ is equal (c) n^3 ($a \neq 0$; a, b, c being different (c) Negative then the value of $\left(\frac{\alpha^2}{\beta}\right)^{\frac{1}{3}} + \left(\frac{\beta^2}{\alpha}\right)^{\frac{1}{3}}$	T 1994; Rajasthan PET 1989, 96 (d) $\frac{b^3 - 3abc}{a^3}$ to [Rajasthan PET 1996] (d) $2n^2$), then $(1 + \alpha + \alpha^2)(1 + \beta + \beta^2) = [1]$ (d) None of these $\frac{1}{3}$ is [AMU 1990]	
63. 64.	(a) $\frac{3abc + b^3}{a^3}$ If α , β are roots of the (a) $2n$ If α and β are the root (a) Zero	e equation $ax^2 + bx + c = 0$, then the [Kurukshetra CEE (b) $\frac{a^3 + b^3}{3ab}$ e equation $x^2 - (1 + n^2)x + \frac{1}{2}(1 + n^2 + \frac{1}{2})x + \frac{1}{2}(1 + \frac{1}{2})x + \frac$	Level the value of $\alpha^3 + \beta^3$ is 2 1991; BIT Ranchi 1998; MP PET (c) $\frac{3abc-b^3}{a^3}$ $a^{(4)} = 0$, then $\alpha^2 + \beta^2$ is equal (c) n^3 ($a \neq 0$; a, b, c being different (c) Negative	T 1994; Rajasthan PET 1989, 96 (d) $\frac{b^3 - 3abc}{a^3}$ to [Rajasthan PET 1996] (d) $2n^2$), then $(1 + \alpha + \alpha^2)(1 + \beta + \beta^2) = $ [I (d) None of these	
63. 64. 65.	(a) $\frac{3abc + b^3}{a^3}$ If α , β are roots of the (a) $2n$ If α and β are the root (a) Zero If α , β are the roots of (a) $\frac{1}{3}$	e equation $ax^2 + bx + c = 0$, then the [Kurukshetra CEE (b) $\frac{a^3 + b^3}{3ab}$ e equation $x^2 - (1 + n^2)x + \frac{1}{2}(1 + n^2 + \frac{1}{2})x + \frac{1}{2}(1 + \frac$	Level the value of $\alpha^3 + \beta^3$ is 2 1991; BIT Ranchi 1998; MP PET (c) $\frac{3abc - b^3}{a^3}$ $(c) n^3$ (a $\neq 0$; a, b, c being different (c) Negative then the value of $\left(\frac{\alpha^2}{\beta}\right)^{\frac{1}{3}} + \left(\frac{\beta^2}{\alpha}\right)^{\frac{1}{3}}$ (c) $\frac{7}{2}$	T 1994; Rajasthan PET 1989, 96 (d) $\frac{b^3 - 3abc}{a^3}$ to [Rajasthan PET 1996] (d) $2n^2$), then $(1 + \alpha + \alpha^2)(1 + \beta + \beta^2) = [1]$ (d) None of these $\frac{1}{3}$ is [AMU 1990] (d) 4	

67.	If α , β are the roots of t	the equation $x^2 - p(x+1) - c = 0$,	, then $(\alpha+1)(\beta+1) =$	[BITS Ranchi 2000; Him. CET 2001]
	(a) c	(b) c - 1	(c) 1 – c	(d) None of these
58.	If α , β , γ are the roots of	of the equation $x^3 + 4x + 1 = 0$, t	hen $(\alpha + \beta)^{-1} + (\beta + \gamma)^{-1} + (\beta + \gamma)^{-1}$	$(x + \alpha)^{-1} =$ [EAMCET 2003]
	(a) 2	(b) 3	(c) 4	(d) 5
69 .	If roots of $x^2 - 7x + 6 = 0$) are α , β then $\frac{1}{\alpha} + \frac{1}{\beta} =$		[Rajasthan PET 1990, 95; MNR 1981]
	(a) 6/7	(b) 7/6	(c) 7/10	(d) 8/9
70.		$x^2 - 2x + 4 = 0$, then $\alpha^5 + \beta^5$ is e		[EAMCET 1990]
	(a) 16	(b) 32	(c) 64	(d) None of these
71.	If the roots of the equa	tion $ax^2 + bx + c = 0$ are α , β , the	en the value of $\alpha\beta^2 + \alpha^2\beta$	$\beta + \alpha$ will be [EAMCET 1980; AMU 1984]
	(a) $\frac{c(a-b)}{a^2}$	(b) o	(c) $-\frac{bc}{a^2}$	(d) None of these
72.	If α , β be the roots of the	he equation $2x^2 - 35x + 2 = 0$, the	nen the value of $(2\alpha - 35)$	$(2\beta - 35)^3$ is equal to [Bihar CEE 1994]
	(a) 1	(b) 64	(c) 8	(d) None of these
73.	If α and β are roots of α	$ax^{2} + 2bx + c = 0$, then $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}}$	is equal to	[BITS Ranchi 1990]
	(a) $\frac{2b}{a^2}$	(b) $\frac{2b}{\sqrt{ac}}$	(c) $-\frac{2b}{\sqrt{ac}}$	(d) $-\frac{b}{\sqrt{2}}$
	uc		vac	$\sqrt{2}$
74.	If α , β are the roots of t	the equation $x^2 + 2x + 4 = 0$, the	en $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$ is equal to	[Kerala (Engg.) 2002]
	(a) $-\frac{1}{2}$	(b) $\frac{1}{2}$	(c) 32	(d) $\frac{1}{4}$
75.	If α , β , γ are roots of eq	$y = x^3 + ax^2 + bx + c = 0$, then	$\alpha^{-1} + \beta^{-1} + \gamma^{-1} =$	[EAMCET 2002]
	(a) <i>a</i> / <i>c</i>	(b) - <i>b</i> / <i>c</i>	(c) <i>b</i> / <i>a</i>	(d) c / a
76.	If α , β are roots of x^2 –	$3x + 1 = 0$, then the value of α^3	$+\beta^3$ is	[MP 1994; BIT Ranchi 1990]
	(a) 9	(b) 18	(c) - 9	(d) -18
77.				Its is $8/7$, then the equation is [AMU 2001
78.		(b) $7x^2 - 16x + 5 = 0$ h that A.M. of its roots is <i>A</i> and		(d) $3x^2 - 12x + 7 = 0$ [IIT 1968, 74]
	(a) $t^2 - 2At + G^2 = 0$			(d) None of these
79.	will be			on whose roots are sin <i>A</i> and tan <i>A</i> [Roorkee 1972]
	(a) $15x^3 - 8x + 16 = 0$	(b) $15x^2 + 8x - 16 = 0$	(c) $15x^2 - 8\sqrt{2}x + 16$	$= 0 \qquad (d) 15 x^2 - 8x - 16 = 0$
80.	If $x^2 + px + q = 0$ is the	quadratic whose roots are a -	-2 and $b-2$ where a a	nd <i>b</i> are the roots of $x^2 - 3x + 1 = 0$,
	then			
	(a) $p = 1, q = 5$	(b) $p = 1, q = -5$	(c) $p = -1, q = 1$	[Kerala (Engg.) 2002] (d) None of these
81.	The roots of the equation	on $x^2 + ax + b = 0$ are p and q , t	hen the equation whose	roots are p^2q and pq^2 will be [MP PET 1
	(a) $x^2 + abx + b^3 = 0$	(b) $x^2 - abx + b^3 = 0$	(c) $bx^2 + x + a = 0$	(d) $x^2 + ax + ab = 0$
82.		ots are $\frac{1}{3+\sqrt{2}}$ and $\frac{1}{3-\sqrt{2}}$ is		[MP PET 1994]
	(a) $7x^2 - 6x + 1 = 0$	(b) $6x^2 - 7x + 1 = 0$	(c) $x^2 - 6x + 7 = 0$	(d) $x^2 - 7x + 6 = 0$
83.				oots are $\alpha^{3}\beta$ and $\alpha\beta^{3}$ is[MP PET 1997]
-	(a) $l^4 x^2 - nl(m^2 - 2nl)x + nl(m^2 $		(b) $l^4x^2 + nl(m^2 - 2nl)$	

				•	
184.	If α , β are the roots of 9	$x^2 + 6x + 1 = 0$, then the equation	with the roots $\frac{1}{\alpha}, \frac{1}{\beta}$ is	[EAMCET 2000]	
	(a) $2x^2 + 3x + 18 = 0$	(b) $x^2 + 6x - 9 = 0$	(c) $x^2 + 6x + 9 = 0$	(d) $x^2 - 6x + 9 = 0$	
85.	If α , β are the roots of the	the equation $ax^2 + bx + c = 0$, then	the equation whose roots a	re $\alpha + \frac{1}{\beta}$ and $\beta + \frac{1}{\alpha}$, is[Rajasthan 1]	
	(a) $acx^2 + (a+c)bx + (a+c)bx$	$^{2} = 0$	(b) $abx^2 + (a+c)bx + (a+c)^2 =$	= 0	
	(c) $acx^2 + (a+b)cx + (a+c)^2$	$^{2} = 0$	(d) None of these		
86.	If α , β are the roots of x	$x^2 - 3x + 1 = 0$, then the equation y	whose roots are $\frac{1}{\alpha-2}, \frac{1}{\beta-2}$	is [Rajasthan PET 1999]	
	(a) $x^2 + x - 1 = 0$		(c) $x^2 - x - 1 = 0$		
87.	If α , β are the roots of a	$x^2 + bx + c = 0$, then the equation	whose roots are $2 + \alpha, 2 + \beta$	is [EAMCET 1994]	
	(a) $ax^2 + x(4a-b) + 4a - 2b$	b + c = 0	(b) $ax^2 + x(4a-b) + 4a + 2b + a + 2b$		
	(c) $ax^2 + x(b-4a) + 4a + 2b$	b + c = 0	(d) $ax^2 + x(b-4a) + 4a - 2b + a^2 + a^2$	c = 0	
88.	If α , β are the roots of the equation $ax^2 + bx + c = 0$, then the equation with roots $1/\alpha$, $1/\beta$ will be [MNR 1988; SCRA 1990; Rajasthan PET 1994]				
		(b) $cx^2 + bx + a = 0$		(d) $x^2 + bx - a = 0$	
89.		$x^{2} + x + 1 = 0$, then the equation		[AMU 1999]	
			(c) $x^2 + x + 1 = 0$		
90.				$\beta^{n/2}$, $\beta^{n/2}$ will be [Rajasthan PET 1998]	
		(b) $x^2 + 2nx \cos n\theta + 1 = 0$			
91.	-	ts are reciprocal of the roots of	-	= 0 is [DCE 2002]	
		(b) $17x^2 - 20x + 3 = 0$		(d) None of these	
92.		a equation is 2 and sum of their	_		
		(b) $x^2 + 15x + 2 = 0$		(d) $x^2 - 2x - 15 = 0$	
93.	Sum of roots is –1 and s	um of their reciprocals is $\frac{1}{6}$, th		[Karnataka CET 1998]	
			(c) $x^2 + x + 1 = 0$		
94.		ne quadratic equation $x^2 + bx - c$		se roots are <i>b</i> and <i>c</i> is [Pb. CET 198]	
	$(a) x^2 + \alpha \ x - \beta = 0$		(b) $x^2 - [(\alpha + \beta) + \alpha \beta]x - \alpha \beta (\alpha + \beta) + \alpha \beta - \alpha \beta (\alpha + \beta) + \alpha \beta - \alpha \beta (\alpha + \beta) + \alpha \beta - \alpha \beta -$		
	(c) $x^2 + [(\alpha + \beta) + \alpha\beta]x + \alpha\beta$	$\beta(\alpha+\beta)=0$	(d) $x^2 + [\alpha\beta + (\alpha + \beta)]x - \alpha\beta(\alpha + \beta)$	$(\alpha + \beta) = 0$	
95.	If α , β are roots of $x^2 - 5$	x-3=0, then the equation with	n roots $\frac{1}{2\alpha - 3}$ and $\frac{1}{2\beta - 3}$ is	[Rajasthan PET 1998]	
		(b) $33x^2 - 4x + 1 = 0$			
96.	Given that $tan \alpha$ and $tan \beta$	β are the roots of $x^2 - px + q = 0$,	then the value of $\sin^2(\alpha + \beta)$	= [Rajasthan PET 2000]	
	(a) $\frac{p^2}{p^2 + (1-q)^2}$	(b) $\frac{p^2}{p^2 + q^2}$	(c) $\frac{q^2}{p^2 + (1-q)^2}$	$(d) \frac{p^2}{\left(p+q\right)^2}$	
97.	If $2 + i\sqrt{3}$ is a root of the	e equation $x^2 + px + q = 0$, then (p, q) is equal to	[IIT 1982; MP 1997]	
	(a) (7, - 4)	(b) (- 4, 7)	(c) (4, 7)	(d) (7, 4)	
98.	In the equation $x^2 + px + px$	q=0, the coefficient of x was t	aken as 17 in place of 13 and		
		oots of the original equation are		[Rajasthan PET 1994; IIT 1979]	
	(a) -10, - 3	(b) 10, 3	(c) -10, 3	(d) 10, - 3	
99.		lving a quadratic equation in x	-		
		r copied the constant term and	coefficient of x^2 correctly a		
	correct roots are			[EAAMCET 1991]	

100	Qualitatic Equations	and moquations		
	(a) 3, - 2	(b) - 3, 2	(c) - 6, -1	(d) 6, -1
200.	If 8, 2 are the roots of x	$a^2 + a x + \beta = 0$ and 3, 3 are the ro	ots of $x^2 + \alpha x + b = 0$, then t	he roots of $x^2 + ax + b = 0$ are[EAN
	(a) 8, -1	(b) -9, 2	(c) - 8, - 2	(d) 9, 1
201.		decreasing each root of $ax^2 + bx$	-	
	(a) $a = -b$	(b) $b = -c$	(c) $c = -a$	(d) $b = a + c$
202.	has roots	constants, the equation $x^2 + px + px$	q=0 has roots u and v , the	In the equation $qx + px + 1 = 0$
	1143 10013			[MNR 1988]
	(a) u and $\frac{1}{v}$	(b) $\frac{1}{u}$ and v	(c) $\frac{1}{u}$ and $\frac{1}{v}$	(d) None of these
203.	If the sum of the roots o	of the equation $x^2 + px + q = 0$ is e	equal to the sum of their squ	ares, then [Pb. CET 1999]
	(a) $p^2 - q^2 = 0$	(b) $p^2 + q^2 = 2q$	(c) $p^2 + p = 2q$	(d) None of these
204.	If the sum of the roots	s of the equation $x^2 + px + q = 0$	is three times their differ	ence, then which one of the
	following is true			
	(-) $(-)$	(b) $2q^2 = 9p$	(c) $2p^2 = 9q$	[Dhanbad Engg. 1968]
205.		s of the quadratic equation ax^2	a + bx + c = 0 is equal to the	sum of the squares of their
	reciprocals, then $\frac{b^2}{ac} + \frac{bc}{a^2}$	$\frac{2}{2} =$		[BITS Ranchi 1996]
	(a) 2	(b) - 2	(c) 1	(d) – 1
206.	If the sum of the two ro	ots of the equation $4x^3 + 16x^2 - 9$	x - 36 = 0 is zero, then the r	
	(a) 1, 2, - 2	(b) $-2, \frac{2}{3}, -\frac{2}{3}$	(c) $-3, \frac{3}{2}, -\frac{3}{2}$	(d) $-4, \frac{3}{2}, -\frac{3}{2}$
207.	If the roots of the equat	ion $ax^2 + bx + c = 0$ are <i>l</i> and 2 <i>l</i> , the second seco	hen	[MP PET 1986]
	(a) $b^2 = 9ac$	(b) $2b^2 = 9ac$	(c) $b^2 = -4ac$	(d) $a^2 = c^2$
208.	If α , β are the roots of the	ne equation $x^2 - px + 36 = 0$ and a		f <i>p</i> are [AMU 1991]
	(a) ± 3	(b) ± 6	(c) ± 8	(d) ± 9
209.		$(\sum \alpha \beta)^{2} = 0$, then $(\sum \alpha \beta)^{2} =$		[EAMCET 2002]
	(a) - 1	(b) 3	(c) 2	(d) 1
210.	D. If α , β be the roots of $x^2 + px + q = 0$ and $\alpha + h$, $\beta + h$ are the roots of $x^2 + rx + s = 0$, then [AMU]			
	(a) $\frac{p}{r} = \frac{q}{s}$	(b) $2h = \left\lfloor \frac{p}{q} + \frac{r}{s} \right\rfloor$	(c) $p^2 - 4q = r^2 - 4s$	(d) $pr^2 = qs^2$
211.				a (Engg.) 2001, 02; Rajasthan PET 1
	(a) $x^2 - 14x - 74 = 0$			(d) $x^2 - 14x + 74 = 0$
212.		with one root as the square root	t of $-47 + 8\sqrt{-3}$ is	[IIT 1995] (d) $x^2 \pm 2x - 49 = 0$
				(d) $x^2 \pm 2x - 49 = 0$
213.	The quadratic equation	whose one root is $\frac{1}{2+\sqrt{5}}$ will b	e	[Rajasthan PET 1987]
	(a) $x^2 + 4x - 1 = 0$	(b) $x^2 - 4x - 1 = 0$	(c) $x^2 + 4x + 1 = 0$	(d) None of these
214.	The quadratic equation	with one root $2 - \sqrt{3}$ is		[Rajasthan PET 1985]
	(a) $x^2 - 4x + 1 = 0$	(b) $x^2 - 4x - 1 = 0$	(c) $x^2 + 4x + 1 = 0$	(d) $x^2 + 4x - 1 = 0$
215.	The quadratic equation	whose roots are three times the	roots of the equation $3ax^2$ -	
	(a) $ax^2 + bx + c = 0$	(b) $ax^2 + 3bx + c = 0$	(c) $ax^2 + bx + 3c = 0$	(d) $ax^2 + 3bx + 3c = 0$
216.	If α , β are the roots of x	$x^2 + px + q = 0$ then $-\frac{1}{\alpha}, -\frac{1}{\beta}$ are the	he roots of the equation	[TS Rajendra 1991]
	· ·	$\alpha \beta$	*	

	(a) $qx^2 - px + 1 = 0$	(b) $qx^2 + px + 1 = 0$	(c) $x^2 + px + q = 0$	(d) $x^2 - px + q = 0$		
217.	If a root of the equation	$ax^2 + bx + c = 0$ be reciprocal of a	a root of the equation $a'x^2 + b'$	b'x + c' = 0, then [IIT 1968]		
	(a) $(cc' - aa')^2 = (ba' - cb')(aa)$	b'-bc')	(b) $(bb'-aa')^2 = (ca'-bc')(ab')^2$	-bc')		
	(c) $(cc' - aa')^2 = (ba' + cb')(ab')$	b'+bc')	(d) None of these			
218.	One root of $ax^2 + bx + c = 0$ is reciprocal of other root if		[Rajasthan PET 1985]			
	(a) $a + c = 0$	(b) $b + c = 0$	(c) $b - c = 0$	(d) $a - c = 0$		
19.	If the roots of the equation	ion $5x^2 + 13x + k = 0$ be reciproca	ls of each other, then <i>k</i> is ea	qual to[MNR 1980; Rajasthan PI		
	(a) 0	(b) 5	(c) 1/6	(d) 6		
20.	If one root of the equation	If one root of the equation $x^2 = px + q$ is reciprocal of the other, then the correct relationship is [AMU 1987, 89]				
	(a) $q = -1$	(b) $q = 1$	(c) $pq = -1$	(d) $pq = 1$		
21.	If the roots of the quadratic equation $\frac{x-m}{mx+1} = \frac{x+n}{nx+1}$ are reciprocal to each other, then [MP PET 2001]					
	(a) $n = 0$	(b) $m = n$	(c) $m+n=1$	(d) $m^2 + n^2 = 1$		
22.	The roots of the quadrat	The roots of the quadratic equation $ax^2 + bx + c = 0$ will be reciprocal to each other if				
	(a) $a = \frac{1}{c}$	(b) $a = c$	(c) $b = ac$	(d) $a = b$		
23.	If the absolute difference between two roots of the equation $x^2 + px + 3 = 0$ is \sqrt{p} , then <i>p</i> equals [Bihar CEE 1998]					
	(a) - 3, 4	(b) 4	(c) - 3	(d) None of these		
24.	If the roots of equation	$x^2 - px + q = 0$ differ by 1, then		[MP PET 1999]		
	(a) $p^2 = 4q$	(b) $p^2 = 4q + 1$	(c) $p^2 = 4q - 1$	(d) None of these		
25.	The numerical differenc	e of the roots of $x^2 - 7x - 9 = 0$ is	3			
	(a) 5	(b) $2\sqrt{85}$	(c) $9\sqrt{7}$	(d) $\sqrt{85}$		
26.	If the difference of the r	oots of $x^2 - px + 8 = 0$ be 2, then	the value of <i>p</i> is	[Roorkee 1992]		
	(a) ± 2	(b) ± 4	(c) ± 6	(d) ± 8		

227. If the difference of the roots of the equation $x^2 - bx + c = 0$ be 1, then [Rajasthan PET 1991] (a) $b^2 - 4c - 1 = 0$ (b) $b^2 - 4c = 0$ (c) $b^2 - 4c + 1 = 0$ (d) $b^2 + 4c - 1 = 0$ **228.** If the roots of the equations $x^2 - bx + c = 0$ and $x^2 - cx + b = 0$ differ by the same quantity, then b + c is equal to [BIT Ranchi 1969; MP PET 1993] (b) 1 (c) 0 (d) - 4 (a) 4 **229.** If the roots of $x^2 - bx + c = 0$ are two consecutive integers, then $b^2 - 4c$ is [Kurukshetra CEE 1998] (b) 2 (c) 3 (d) 4 **230.** If α , β are the roots of $x^2 - 3x + a = 0, a \in R$ and $\alpha < 1 < \beta$ then (b) $a \in \left(-\infty, \frac{9}{4}\right)$ (c) $a \in \left(2, \frac{9}{4}\right)$ (a) $a \in (-\infty, 2)$ (d) None of these **231.** If α , β be the roots of $4x^2 - 16x + \lambda = 0$, $\lambda \in R$ such that $1 < \alpha < 2$ and $2 < \beta < 3$ then the number of integral solutions of λ is (b) 6 (c) 2 (d) 3 (a) 5 **232.** If *X* denotes the set of real numbers *p* for which the equation $x^2 = p(x + p)$ has its roots greater than *p* then *X* is equal to (a) $\left(-2, -\frac{1}{2}\right)$ (b) $\left(-\frac{1}{2}, \frac{1}{4}\right)$ (c) Null set (d) (-∞, 0) **233.** If one root of the quadratic equation $ax^2 + bx + c = 0$ is equal to the n^{th} power of the other root, then the value of $(ac^{n})^{\frac{1}{n+1}} + (a^{n}c)^{\frac{1}{n+1}} =$ [IIT 1983] (c) $b^{\frac{1}{n+1}}$ (d) $-b^{\frac{1}{n+1}}$ (a) b (b) – *b* **234.** If one root of the equation $ax^2 - bx + c = 0$ is square of the other, then [Rajasthan PET 1998] (a) $a^2c + ac^2 + 3abc - b^3 = 0$ (b) $a^2c + ac^2 - 3abc + b^3 = 0$ (c) $a^3 + b^3 = 3abc$ (d) $(a+b)^3 = 3abc$ **235.** For the equation $3x^2 + px + 3$, p > 0 if one of the root is square of the other, then p is equal to [IIT Screening 2000] (a) $\frac{1}{2}$ (d) $\frac{2}{2}$ (b) 1 (c) 3 **236.** If one root of equation $px^2 - qx + r = 0$ is double of the other, then (a) $9q^2 = 2pr$ (b) $2q^2 = 9pr$ (c) $3q^2 = 4pr$ (d) $4q^2 = 3pr$ **237.** The value of k for which one of the roots of $x^2 - x + 3k = 0$ is double of one of the roots of $x^2 - x + k = 0$ is **[UPSEAT 200**] (b) - 2 (c) 2 (d) None of these **238.** The function $f(x) = ax^2 + 2x + 1$ has one double root if [AMU 1989] (a) a = 0(b) a = -1(c) a = 1(d) a = 2**239.** If $\sin \alpha$, $\cos \alpha$ are the roots of the equation $ax^2 + bx + c = 0$, then [MP PET 1993] (a) $a^2 - b^2 + 2ac = 0$ (b) $(a-c)^2 = b^2 + c^2$ (c) $a^2 + b^2 - 2ac = 0$ (d) $a^2 + b^2 + 2ac = 0$ **240.** If the roots of $ax^2 + bx + c = 0$ are α, β and root of $Ax^2 + Bx + c = 0$ are $\alpha - k, \beta - k$, then $\frac{B^2 - 4AC}{b^2 - 4ac}$ is equal to [Rajasthan PET 1999] (c) $\left(\frac{a}{A}\right)^2$ (d) $\left(\frac{A}{a}\right)^2$ (a) $\frac{a}{4}$ (b) $\frac{A}{a}$ **241.** If the product of roots of the equation $x^2 - 3k x + 2e^{2\log k} - 1 = 0$ is 7, then its roots will real when [Pb. CET 1990; IIT 1984]

(a) k = 1 (b) k = 2 (c) k = 3 (d) None of these

242. If a and b are rational and b is not a perfect square then the quadratic equation with rational coefficients whose one root is $\frac{1}{\sqrt{1-1}}$ is (a) $x^2 - 2ax + (a^2 - b) = 0$ (b) $(a^2 - b)x^2 - 2ax + 1 = 0$ (c) $(a^2 - b)x^2 - 2bx + 1 = 0$ (d) None of these **243.** If $\frac{1}{4-3i}$ is a root of $ax^2 + bx + 1 = 0$, where *a*, *b* are real, then (a) a = 25, b = -8(b) a = 25, b = 8(c) a = 5, b = 4(d) None of these **244.** If α , β , γ be the roots of the equation $x(1+x^2) + x^2(6+x) + 2 = 0$ then the value of $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$ is (c) $-\frac{1}{2}$ (b) $\frac{1}{2}$ (a) - 3 (d) None of these **245.** If the roots of $x^3 - 12x^2 + 39x - 28 = 0$ are in A.P. then their common difference is (b) ±2 (c) ±3 (d) ±4 **246.** The roots of the equation $x^3 + 14x^2 - 84x - 216 = 0$ are in (a) A.P. (b) G.P. (d) None of these (c) H.P. **247.** If 3 and $1 + \sqrt{2}$ are two roots of a cubic equation with rational coefficients, then the equation is (a) $x^3 - 5x^2 + 9x - 9 = 0$ (b) $x^3 - 3x^2 - 4x + 12 = 0$ (c) $x^3 - 5x^2 + 7x + 3 = 0$ (d) None of these **248.** What is the sum of the squares of roots of $x^2 - 3x + 1 = 0$ [Karnataka CET 1993] (b) 7 (c) 9 (d) 10 (a) 5 **249.** If $\alpha + \beta = 3$ and $\alpha^3 + \beta^3 = 27$, then α and β are the roots of (c) $2x^2 - 6x + 15 = 0$ (a) $3x^2 + 9x + 7 = 0$ (b) $9x^2 - 27x + 20 = 0$ (d) None of these **250.** For what value of λ the sum of the squares of the roots of $x^2 + (2 + \lambda)x - \frac{1}{2}(1 + \lambda) = 0$ is minimum [AMU 1999] (b) 1 (a) 3/2(c) 1/2(d) 11/4 **251.** The value of $a(a \ge 3)$ for which the sum of the cubes of the roots of $x^2 - (a-2)x + (a-3) = 0$, assumes the least value is [Orissa JEE 2002] (a) 3 (b) 4 (c) 5 (d) None of these **252.** Let α , β be the roots of $x^2 + (3 - \lambda)x - \lambda = 0$. The value of λ for which $\alpha^2 + \beta^2$ is minimum, is [AMU 2000] (b) 1 (c) 2 (d) 3 **253.** If the sum of squares of the roots of the equation $x^2 - (a-2)x - (a+1) = 0$ is least, then the value of a is [Rajasthan PET 2000. Pb. CET 2002] (a) 0 (c) - 1 (b) 2 (d) 1 **254.** If α , β are roots of $Ax^2 + Bx + C = 0$ and α^2 , β^2 are roots of $x^2 + px + q = 0$, then p is equal to [Rajasthan PET 1986] (b) $(2AC - B^2)/A^2$ (c) $(B^2 - 4AC)/A^2$ (a) $(B^2 - 2AC)/A^2$ (d) $(4AC - B^2)/A^2$ **255.** If α , β are roots of the equation $x^2 + x + 1 = 0$ and $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$ are roots of the equation $x^2 + px + q = 0$, then *p* equals [Rajasthan PET 1987, 93] (c) -2 (b) 1 (a) -1 (d) 2 **256.** If α , β are real and α^2 , β^2 are the roots of the equation $a^2x^2 + x + 1 - a^2 = 0 (a > 1)$, then $\beta^2 =$ [EAMCET 1999] (b) $1 - \frac{1}{a^2}$ (c) $1-a^2$ (d) $1 + a^2$ (a) a^2 **257.** The H.M. of the roots of the equation $x^2 - 8x + 4 = 0$ is [Rajasthan PET 1988] (b) 2 (a) 1 (c) 3 (d) None of these **258.** If α , β are the roots of the equation $x^2 + x\sqrt{\alpha} + \beta = 0$, then the value of α and β are [AMU 1990, 92] (a) $\alpha = 1$ and $\beta = -1$ (b) $\alpha = 1$ and $\beta = -2$ (c) $\alpha = 2$ and $\beta = 1$ (d) $\alpha = 2$ and $\beta = -2$ **259.** If *p* and *q* are the roots of $x^2 + px + q = 0$, then [IIT 1995, AIEEE 2002] (a) p = 1(b) p = -2(c) p = 1 or 0(d) p = -2 or o

If roots	of the equation 2	$x^{2} - (a^{2} + 8a + 1)x + a^{2} - 4a = 0$ are	e in opposite sign. then	[AMU 1998]
(a) 0 <			(c) <i>a</i> < 8	(d) -4 < a < 0
I. Which o	of the following eq	uation has 1 and -2 as the roots	S	[SCRA 1999]
(a) x^2 .	-x - 2 = 0	(b) $x^2 + x - 2 = 0$	(c) $x^2 - x + 2 = 0$	(d) $x^2 + x + 2 = 0$
	-	n $x^2 + x + 1 = 0$ are in the ratio		[Rajasthan PET 1994]
		(b) $\sqrt{m} + \sqrt{n} + 1 = 0$		
. If the ro	oots of the equatio	n $lx^2 + nx + n = 0$ are in the ratio	$p : q$ then $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}}$ is equ	al to [Rajasthan PET 1997; BIT
(a) $\sqrt{n/2}$	/1	(b) $\sqrt{l/n}$	(c) $\pm \sqrt{n/l}$	(d) $-\sqrt{l/n}$
If the ro	oots of the equatio	on $12x^2 - mx + 5 = 0$ are in the rate	atio $2:3$, then $m =$	[Rajasthan PET 2002]
(a) 5√1	10	(b) $3\sqrt{10}$	(c) $2\sqrt{10}$	(d) None of these
J. If the ra	atio of the roots of	the equation $ax^2 + bx + c = 0$ be	p:q, then	[Pb. CET 1994]
(a) <i>pqb</i>	$p^2 + (P+q)^2 ac = 0$	(b) $pqb^2 - (P+q)^2ac = 0$	(c) $pqa^2 - (P+q)^2bc = 0$	(d) None of these
6. The two (a) 6, 4	-	tion $x^3 - 9x^2 + 14x + 24 = 0$ are in (b) 6, 4, 1		will be [UPSEAT 1999] (d) -6, -4, 1
7. The con	ndition that one ro	ot of the equation $ax^2 + bx + c =$	0 is three times the other is	S [DCE 2002]
(a) b^2 :	= 8 <i>ac</i>	(b) $3b^2 + 16ac = 0$	(c) $3b^2 = 16ac$	(d) $b^2 + 3ac = 0$
8. If the ro	oots of the equatio	n $\frac{x^2 - bx}{2} = \frac{\lambda - 1}{\lambda + 1}$ are such that	$\alpha + \beta = 0$, then the value of	λis
		$dx - c \qquad \lambda + 1$		
<i>a</i> –	h		1	96, 2002; Rajasthan PET 2001]
(a) $\frac{a}{a+1}$	D	(h) -	(a)	$(a) u \neq v$
a +	b	(b) c	(c) $\frac{1}{c}$	(d) $\frac{a+b}{a-b}$
		$\frac{1}{x+b} = \frac{1}{x+c}$, if the product of the	C	u - v
	equation $\frac{1}{x+a} - \frac{1}{x}$	$\frac{1}{x+b} = \frac{1}{x+c}$, if the product of the	e roots is zero, then the sum	u - v
). For the (a) 0	equation $\frac{1}{x+a} - \frac{1}{x}$	$\frac{1}{x+b} = \frac{1}{x+c}$, if the product of the	c roots is zero, then the sum (c) $\frac{2bc}{b+c}$	of the roots is [AMU 1992]
). For the (a) 0). If the static (a) -r 	equation $\frac{1}{x+a} - \frac{1}{x}$ um of two of the re	$\frac{1}{x+b} = \frac{1}{x+c}$, if the product of the (b) $\frac{2ab}{b+c}$ pots of $x^3 + px^2 + qx + r = 0$ is zer (b) r	c c c c c c c c c c c c c c c c c c c	of the roots is [AMU 1992] (d) $-\frac{2bc}{b+c}$ [EAMCET 2003] (d) $-2r$
). For the (a) 0). If the static (a) -r 	equation $\frac{1}{x+a} - \frac{1}{x}$ um of two of the re	$\frac{1}{x+b} = \frac{1}{x+c}$, if the product of the (b) $\frac{2ab}{b+c}$ pots of $x^3 + px^2 + qx + r = 0$ is zer (b) r	c c c c c c c c c c c c c c c c c c c	of the roots is [AMU 1992] (d) $-\frac{2bc}{b+c}$ [EAMCET 2003] (d) $-2r$
 9. For the (a) 0 0. If the static (a) -r 	equation $\frac{1}{x+a} - \frac{1}{x}$ um of two of the re	$\frac{1}{x+b} = \frac{1}{x+c}$, if the product of the (b) $\frac{2ab}{b+c}$ pots of $x^3 + px^2 + qx + r = 0$ is zer	c c c c c c c c c c c c c c c c c c c	of the roots is [AMU 1992] (d) $-\frac{2bc}{b+c}$ [EAMCET 2003] (d) $-2r$
 6. For the (a) 0 6. If the standard (a) -r 6. If the root 	equation $\frac{1}{x+a} - \frac{1}{x}$ um of two of the rest ts of the equation $\frac{1}{x+a}$	$\frac{1}{x+b} = \frac{1}{x+c}$, if the product of the (b) $\frac{2ab}{b+c}$ pots of $x^3 + px^2 + qx + r = 0$ is zer (b) r $\frac{1}{p} + \frac{1}{x+q} = \frac{1}{r}$ are equal in magnitude to	e roots is zero, then the sum (c) $\frac{2bc}{b+c}$ ro, then $pq =$ (c) $2r$ but opposite in sign, then the produce	of the roots is [AMU 1992] (d) $-\frac{2bc}{b+c}$ [EAMCET 2003] (d) $-2r$ ct of the roots will be [IIT 1967]
 6. For the (a) 0 6. If the static (a) -r 	equation $\frac{1}{x+a} - \frac{1}{x}$ um of two of the rest ts of the equation $\frac{1}{x+a}$	$\frac{1}{x+b} = \frac{1}{x+c}$, if the product of the (b) $\frac{2ab}{b+c}$ pots of $x^3 + px^2 + qx + r = 0$ is zer (b) r $\frac{1}{p} + \frac{1}{x+q} = \frac{1}{r}$ are equal in magnitude to	e roots is zero, then the sum (c) $\frac{2bc}{b+c}$ ro, then $pq =$ (c) $2r$ but opposite in sign, then the produce	of the roots is [AMU 1992] (d) $-\frac{2bc}{b+c}$ [EAMCET 2003] (d) $-2r$ ct of the roots will be
9. For the (a) 0 1. If the sum (a) $-r$ 1. If the root (a) $\frac{p^2}{2}$ 2. The value	equation $\frac{1}{x+a} - \frac{1}{x}$ um of two of the rest ts of the equation $\frac{1}{x+a}$ $\frac{1}{x+a}$ e of <i>m</i> for which the	$\frac{1}{x+b} = \frac{1}{x+c}, \text{ if the product of the}$ (b) $\frac{2ab}{b+c}$ pots of $x^3 + px^2 + qx + r = 0$ is zer (b) r $\frac{1}{p} + \frac{1}{x+q} = \frac{1}{r} \text{ are equal in magnitude the}$ (b) $-\frac{(p^2 + q^2)}{2}$ equation $x^3 - mx^2 + 3x - 2 = 0$ has	e roots is zero, then the sum (c) $\frac{2bc}{b+c}$ ro, then $pq =$ (c) $2r$ but opposite in sign, then the production (c) $\frac{p^2 - q^2}{2}$ as two roots equal in magnitute	of the roots is [AMU 1992] (d) $-\frac{2bc}{b+c}$ [EAMCET 2003] (d) $-2r$ ct of the roots will be [IIT 1967] (d) $-\frac{(p^2 - q^2)}{2}$ but opposite in sign, is [Kurukhestra CEE 1996]
9. For the (a) 0 1. If the sum (a) $-r$ 1. If the root (a) $\frac{p^2}{r^2}$ 2. The valu (a) $1/2$	equation $\frac{1}{x+a} - \frac{1}{x}$ um of two of the rest ts of the equation $\frac{1}{x+a}$ $\frac{+q^2}{2}$ the of <i>m</i> for which the	$\frac{1}{x+b} = \frac{1}{x+c}, \text{ if the product of the}$ (b) $\frac{2ab}{b+c}$ pots of $x^3 + px^2 + qx + r = 0$ is zer (b) r $\frac{1}{p} + \frac{1}{x+q} = \frac{1}{r} \text{ are equal in magnitude the}$ (b) $-\frac{(p^2 + q^2)}{2}$ equation $x^3 - mx^2 + 3x - 2 = 0$ has (b) 2/3	e roots is zero, then the sum (c) $\frac{2bc}{b+c}$ ro, then $pq =$ (c) $2r$ but opposite in sign, then the produ- (c) $\frac{p^2 - q^2}{2}$ as two roots equal in magnitute (c) $3/4$	of the roots is [AMU 1992] (d) $-\frac{2bc}{b+c}$ [EAMCET 2003] (d) $-2r$ ct of the roots will be [IIT 1967] (d) $-\frac{(p^2 - q^2)}{2}$ but opposite in sign, is [Kurukhestra CEE 1996] (d) 4/5
). For the (a) 0). If the sum (a) $-r$. If the root (a) $\frac{p^2}{2}$ 2. The valu (a) $1/2$ 3. If $ax^2 + b^2$	equation $\frac{1}{x+a} - \frac{1}{x}$ um of two of the real to of the equation $\frac{1}{x+a} + \frac{1}{x+a} + \frac{1}$	$\frac{1}{x+b} = \frac{1}{x+c}, \text{ if the product of the}$ (b) $\frac{2ab}{b+c}$ pots of $x^3 + px^2 + qx + r = 0$ is zer (b) r $\frac{1}{p} + \frac{1}{x+q} = \frac{1}{r} \text{ are equal in magnitude b}$ (b) $-\frac{(p^2 + q^2)}{2}$ equation $x^3 - mx^2 + 3x - 2 = 0$ has (b) $2/3$ β), then $a(\alpha x + 1)(\beta x + 1)$ is equal	c e roots is zero, then the sum (c) $\frac{2bc}{b+c}$ ro, then $pq =$ (c) $2r$ but opposite in sign, then the produ- (c) $\frac{p^2 - q^2}{2}$ as two roots equal in magnitute (c) $3/4$ l to	of the roots is [AMU 1992] (d) $-\frac{2bc}{b+c}$ [EAMCET 2003] (d) $-2r$ ct of the roots will be [IIT 1967] (d) $-\frac{(p^2-q^2)}{2}$ but opposite in sign, is [Kurukhestra CEE 1996] (d) 4/5 [AMU 1986]
). For the (a) 0). If the sum (a) $-r$. If the root (a) $\frac{p^2}{r^2}$ 2. The valut (a) $1/2$ 3. If $ax^2 + (a) ax^2$	equation $\frac{1}{x+a} - \frac{1}{x}$ um of two of the re- ts of the equation $\frac{1}{x+a}$ $\frac{1}{x+a} - \frac{1}{x}$ ts of the equation $\frac{1}{x+a}$ $\frac{1}{x+a} - \frac{1}{x+a}$ $\frac{1}{x+a} - \frac{1}{x+a}$	$\frac{1}{x+b} = \frac{1}{x+c}, \text{ if the product of the}$ (b) $\frac{2ab}{b+c}$ pots of $x^3 + px^2 + qx + r = 0$ is zer (b) r $\frac{1}{p} + \frac{1}{x+q} = \frac{1}{r} \text{ are equal in magnitude tr}$ (b) $-\frac{(p^2 + q^2)}{2}$ equation $x^3 - mx^2 + 3x - 2 = 0$ has (b) $2/3$ β , then $a(\alpha x + 1)(\beta x + 1)$ is equal (b) $cx^2 - bx + a$	e roots is zero, then the sum (c) $\frac{2bc}{b+c}$ ro, then $pq =$ (c) $2r$ but opposite in sign, then the produ- (c) $\frac{p^2 - q^2}{2}$ as two roots equal in magnitute (c) $3/4$ 1 to (c) $cx^2 - bx - a$	of the roots is [AMU 1992] (d) $-\frac{2bc}{b+c}$ [EAMCET 2003] (d) $-2r$ ct of the roots will be [IIT 1967] (d) $-\frac{(p^2 - q^2)}{2}$ but opposite in sign, is [Kurukhestra CEE 1996] (d) 4/5 [AMU 1986] (d) $cx^2 + bx + a$
b. For the (a) 0 c. If the sum (a) $-r$ c. If the root (a) $\frac{p^2}{r}$ c. The valut (a) $1/2$ c. If $ax^2 + ax^2$ (a) ax^2 c. If α, β and because the second se	equation $\frac{1}{x+a} - \frac{1}{x}$ um of two of the re- ts of the equation $\frac{1}{x+a}$ $\frac{1}{x+a} - \frac{1}{x}$ ts of the equation $\frac{1}{x+a}$ $\frac{1}{x+a} - \frac{1}{x+a}$ ts of the equation $\frac{1}{x+a} - \frac{1}{x+a}$ ts of the equation $\frac{1}{x+a} - \frac{1}{x+a} - \frac{1}{x}$ ts of the equation $\frac{1}{x+a} - \frac{1}{x+a} - \frac{1}{x}$ ts of the equation $\frac{1}{x+a} - \frac{1}{x}$ ts of the equation $\frac{1}{x+a} - \frac{1}{x+a} - \frac{1}{x+a} - \frac{1}{x}$ ts of the equation $\frac{1}{x+a} - \frac{1}{x+a} - \frac{1}{x}$ ts of the equation $\frac{1}{x+a} - \frac{1}{x+a} - \frac$	$\frac{1}{x+b} = \frac{1}{x+c}, \text{ if the product of the}$ (b) $\frac{2ab}{b+c}$ pots of $x^3 + px^2 + qx + r = 0$ is zer (b) r $\frac{1}{p} + \frac{1}{x+q} = \frac{1}{r} \text{ are equal in magnitude b}$ (b) $-\frac{(p^2 + q^2)}{2}$ equation $x^3 - mx^2 + 3x - 2 = 0$ has (b) $2/3$ β), then $a(\alpha x + 1)(\beta x + 1)$ is equal	e roots is zero, then the sum (c) $\frac{2bc}{b+c}$ ro, then $pq =$ (c) $2r$ but opposite in sign, then the produ- (c) $\frac{p^2 - q^2}{2}$ as two roots equal in magnitute (c) $3/4$ 1 to (c) $cx^2 - bx - a$	of the roots is [AMU 1992] (d) $-\frac{2bc}{b+c}$ [EAMCET 2003] (d) $-2r$ (d) $-2r$ (d) $-\frac{(p^2 - q^2)}{2}$ but opposite in sign, is [Kurukhestra CEE 1996] (d) $4/5$ [AMU 1986] (d) $cx^2 + bx + a$ f $Ax^2 + Bx + C = 0$ $(A \neq 0)$ for
). For the (a) 0). If the sum (a) $-r$. If the root (a) $\frac{p^2}{2}$ 2. The valut (a) $1/2$ 3. If $ax^2 + ax^2 + ax^2 + bx^2 + ax^2 + bx^2 $	equation $\frac{1}{x+a} - \frac{1}{x}$ um of two of the re- ts of the equation $\frac{1}{x+a}$ $\frac{1}{x+a} - \frac{1}{x}$ ts of the equation $\frac{1}{x+a}$ $\frac{1}{x+a} - \frac{1}{x+a}$ $\frac{1}{x+a} - \frac{1}{x+a}$ 1	$\frac{1}{x+b} = \frac{1}{x+c}, \text{ if the product of the}$ (b) $\frac{2ab}{b+c}$ pots of $x^3 + px^2 + qx + r = 0$ is zer (b) r $\frac{1}{p} + \frac{1}{x+q} = \frac{1}{r} \text{ are equal in magnitude tr}$ (b) $-\frac{(p^2 + q^2)}{2}$ equation $x^3 - mx^2 + 3x - 2 = 0$ has (b) $2/3$ β , then $a(\alpha x + 1)(\beta x + 1)$ is equal (b) $cx^2 - bx + a$ equation $ax^2 + bx + c = 0$ $(a \neq 0)$ and	e roots is zero, then the sum (c) $\frac{2bc}{b+c}$ ro, then $pq =$ (c) $2r$ but opposite in sign, then the produ- (c) $\frac{p^2 - q^2}{2}$ as two roots equal in magnitute (c) $3/4$ I to (c) $cx^2 - bx - a$ and $\alpha + \delta$, $\beta + \delta$ are the roots of	of the roots is [AMU 1992] (d) $-\frac{2bc}{b+c}$ [EAMCET 2003] (d) $-2r$ (d) $-2r$ (ct of the roots will be [IIT 1967] (d) $-\frac{(p^2 - q^2)}{2}$ but opposite in sign, is [Kurukhestra CEE 1996] (d) $4/5$ [AMU 1986] (d) $cx^2 + bx + a$ f $Ax^2 + Bx + C = 0$ $(A \neq 0)$ for [IIT 2000]
9. For the (a) 0 1. If the sum (a) $-r$ 1. If the root (a) $\frac{p^2}{r^2}$ 2. The valu (a) $1/2$ 3. If $ax^2 + ax^2 + ax^2$ (a) ax^2 4. If $\alpha, \beta ax^2$	equation $\frac{1}{x+a} - \frac{1}{x}$ um of two of the re- ts of the equation $\frac{1}{x+a}$ $\frac{1}{x+a} - \frac{1}{x}$ ts of the equation $\frac{1}{x+a}$ $\frac{1}{x+a} - \frac{1}{x+a}$ $\frac{1}{x+a} - \frac{1}{x+a}$ 1	$\frac{1}{x+b} = \frac{1}{x+c}, \text{ if the product of the}$ (b) $\frac{2ab}{b+c}$ pots of $x^3 + px^2 + qx + r = 0$ is zer (b) r $\frac{1}{p} + \frac{1}{x+q} = \frac{1}{r} \text{ are equal in magnitude tr}$ (b) $-\frac{(p^2 + q^2)}{2}$ equation $x^3 - mx^2 + 3x - 2 = 0$ has (b) $2/3$ β , then $a(\alpha x + 1)(\beta x + 1)$ is equal (b) $cx^2 - bx + a$	e roots is zero, then the sum (c) $\frac{2bc}{b+c}$ ro, then $pq =$ (c) $2r$ but opposite in sign, then the produ- (c) $\frac{p^2 - q^2}{2}$ as two roots equal in magnitute (c) $3/4$ I to (c) $cx^2 - bx - a$ and $\alpha + \delta$, $\beta + \delta$ are the roots of	of the roots is [AMU 1992] (d) $-\frac{2bc}{b+c}$ [EAMCET 2003] (d) $-2r$ (d) $-2r$ (ct of the roots will be [IIT 1967] (d) $-\frac{(p^2 - q^2)}{2}$ but opposite in sign, is [Kurukhestra CEE 1996] (d) $4/5$ [AMU 1986] (d) $cx^2 + bx + a$ f $Ax^2 + Bx + C = 0$ $(A \neq 0)$ for [IIT 2000]
9. For the (a) 0 1. If the solution (a) $-r$ 1. If the root (a) $\frac{p^2}{r^2}$ 2. The valu (a) $1/2$ 3. If $ax^2 + (a) ax^2$ 4. If $\alpha, \beta a$ some co (a) $\frac{b^2}{r^2}$	equation $\frac{1}{x+a} - \frac{1}{x}$ um of two of the re- ts of the equation $\frac{1}{x+a}$ $\frac{1}{x+a} - \frac{1}{x}$ ts of the equation $\frac{1}{x+a}$ $\frac{1}{x+a} - \frac{1}{x}$ ts of the equation $\frac{1}{x+a}$ $\frac{1}{x+a} - \frac{1}{x}$ ts of the equation $\frac{1}{x+a} - \frac{1}{x}$ $\frac{1}{x+a} - \frac{1}{x}$ ts of the equation $\frac{1}{x+a} - \frac{1}{x}$	$\frac{1}{x+b} = \frac{1}{x+c}, \text{ if the product of the}$ (b) $\frac{2ab}{b+c}$ pots of $x^3 + px^2 + qx + r = 0$ is zer (b) r $\frac{1}{p} + \frac{1}{x+q} = \frac{1}{r} \text{ are equal in magnitude tr}$ (b) $-\frac{(p^2 + q^2)}{2}$ equation $x^3 - mx^2 + 3x - 2 = 0$ has (b) $2/3$ β , then $a(\alpha x + 1)(\beta x + 1)$ is equal (b) $cx^2 - bx + a$ equation $ax^2 + bx + c = 0$ $(a \neq 0)$ and	c e roots is zero, then the sum (c) $\frac{2bc}{b+c}$ ro, then $pq =$ (c) $2r$ but opposite in sign, then the produ- (c) $\frac{p^2 - q^2}{2}$ as two roots equal in magnitute (c) $3/4$ I to (c) $cx^2 - bx - a$ and $\alpha + \delta$, $\beta + \delta$ are the roots of (c) $\frac{b^2 - 8ac}{a^2} = \frac{B^2 - 8AC}{A^2}$	of the roots is [AMU 1992] (d) $-\frac{2bc}{b+c}$ [EAMCET 2003] (d) $-2r$ ct of the roots will be [IIT 1967] (d) $-\frac{(p^2 - q^2)}{2}$ but opposite in sign, is [Kurukhestra CEE 1996] (d) $4/5$ [AMU 1986] (d) $cx^2 + bx + a$ f $Ax^2 + Bx + C = 0$ ($A \neq 0$) for [IIT 2000] (d) None of these

276.	The product of all real r	oots of the equation $x^2 - x - 6$	=0 is	[Roorkee 2000]
	(a) -9	(b) 6	(c) 9	(d) 36
277.	If the sum of the roots of the ed	quation $ax^2 + bx + c = 0$ is equal to the	sum of the squares of their recipro	cals then bc^2 , ca^2 , ab^2 are
	in	(h) C D		[IIT 1976]
278	(a) A.P. The roots of the equation r^2 -	(b) G.P. -2x + A = 0 are p, q and the roots of	(c) H.P. the equation $r^2 - 18r + B = 0$ ar	(d) None of these
2/0.	A.P., then	-2x + A = 0 are p, q and the roots of	the equation $x = 10x + b = 0$ at	[IIT 1997]
		(b) $A = -3, B = 77$	(c) $A = 3, B = -77$	
279.		ion $x^2 + bx + c = 0$ and $x^2 + qx + c$		
, 0	-	(b) $r^2 b = qc^2$		(d) $b^2 r = q^2 c$
280	•	on $x^2 + px + q = 0$ is $2 + \sqrt{3}$, then	· · · · ·	[UPSEAT 2002]
200.	_	(b) 4, -1	(c) $2,\sqrt{3}$	(d) $-2, -\sqrt{3}$
	(a) -4, 1		$(C) 2, \sqrt{5}$,
281.	If $1-i$ is a root of the eq (a) -2	(b) -1 under $x^2 - ax + b = 0$, then $b = 0$	(c) 1	[EAMCET 2002] (d) 2
	(u) 2			(u) 2
		Advance I	Level	
282.	If α , β are the roots of	$x^2 + px + 1 = 0$ and γ , δ are the r	roots of $x^2 + ax + 1 = 0$, then	$a^2 - p^2 = $ [IIT 1978: DCE 2000]
	(a) $(\alpha - \gamma)(\beta - \gamma)(\alpha + \delta)(\beta - \alpha)(\beta $		(b) $(\alpha + \gamma)(\beta + \gamma)(\alpha - \delta)(\beta + \delta)$	
	(c) $(\alpha + \gamma)(\beta + \gamma)(\alpha + \delta)(\beta + \delta)(\beta + \gamma)(\alpha + \delta)(\beta + \gamma)(\alpha + \delta)(\beta + \gamma)(\alpha + \delta)(\beta + \gamma)(\alpha + \delta)(\beta $		(d) None of these)
283.		$^{2} - px + q = 0$ and α', β' be the r		the value of
0.	$(\alpha - \alpha')^2 + (\beta - \alpha')^2 + (\alpha - \beta')^2$		······································	
	(a) $2\{p^2 - 2q + p'^2 - 2q' - p_1$		(b) $2\{p^2 - 2q + p'^2 - 2q' - qq'\}$	
	(c) $2\{p^2 - 2q - p'^2 - 2q' - p_1$ (c) $2\{p^2 - 2q - p'^2 - 2q' - p_1$		(d) $2\{p^2 - 2q - p'^2 - 2q' - qq'\}$	
284		s of the equation $x^2 - ax + b = 0$		h of the following is two
204.	If α and β are the root	s of the equation $x^2 - ax + b = 0$	and $A_n = \alpha + p$, then which	[Karnataka CET 2000]
	(a) $A_{n+1} = aA_n + bA_{n-1}$	(b) $A_{n+1} = bA_n + aA_{n-1}$	(c) $A_{n+1} = aA_n - bA_{n-1}$	
285.	If roots of an equation x	$a^n - 1 = 0$ are 1, a_1, a_2, \dots, a_{n-1} , the		
	1	n-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		[UPSEAT 1999]
	(a) <i>n</i>	(b) <i>n</i> ²	(c) n^n	(d) 0
286.	If α and β are the root	s of $6x^2 - 6x + 1 = 0$, then the va	lue of $\frac{1}{2}[a+b\alpha+c\alpha^2+d\alpha^3]$ +	$+\frac{1}{2}[a+b\beta+c\beta^2+d\beta^3]$ is
			2	2 [Rajasthan PET 2000]
	(a) $\frac{1}{(a+b+a+d)}$	(b) $\frac{a}{1} + \frac{b}{2} + \frac{c}{3} + \frac{d}{4}$	(a) a b c d	
	(a) $\frac{-(a+b+c+a)}{4}$	(0) -+-++-++-+-+	(c) $\frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}$	(d) None of these
287.	If α_1, α_2 are the roots of e	quation $x^2 - px + 1 = 0$ and β_1, β_2	be those of equation $x^2 - qx + qx + qx$	$1 = 0$ and vector $\alpha_1 \hat{i} + \beta_1 \hat{j}$ is
	parallel to $\alpha_2 \hat{i} + \beta_2 \hat{j}$, the	en		
	(a) $p = \pm q$	(b) $p = \pm 2q$	(c) $p = 2q$	(d) None of these
288.	If the roots of $a_1x^2 + b_1x + c_1$	$a_1 = 0$ are α_1 and β_1 and those of $a_2 x$	$b^2 + b_2 x + c_2 = 0$ are α_2 and β_2 s	such that $ lpha_1 lpha_2 = eta_1 eta_2 = 1$,
	then			
	(a) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	(b) $\frac{a_1}{a_1} = \frac{b_1}{a_1} = \frac{c_1}{a_1}$	(c) $a_1a_2 = b_1b_2 = c_1c_2$	(d) None of these
	a_2 b_2 c_2	c_2 b_2 a_2		

289. If the sum of the roots of the equation $qx^2 + 2x + 3q = 0$ is equal to their product, then the value of q is equal to

(a) $-\frac{2}{3}$	(b) $\frac{3}{2}$	(c) 3	(d) -6
90. If $x = (\beta - \gamma)(\alpha - \delta)$,	$y = (\gamma - \alpha)(\beta - \delta), \ z = (\alpha - \beta)(\gamma - \delta), \ the$	en the value of $x^3 + y^3 + z^3 - z^3$	3.xyz is
(a) O		(c) $\alpha^6 \beta^6 \gamma^6 \delta^6$	(d) None of these
91. If α , β , γ are the i	coots of the equation $x^3 + px^2 + qx^2$	+ $r = 0$, then $(1 - \alpha^2)(1 - \beta^2)(1 $	$-\gamma^2$) is equal to
(a) $(1+q)^2 - (p+r)^2$	(b) $(1+q)^2 + (p+r)^2$	(c) $(1-q)^2 + (p-r)^2$	(d) None of these
92. If α , β , γ are the 1	roots of the equation $x^3 + ax + b = 0$, then $\frac{\alpha^3 + \beta^3 + \gamma^3}{\alpha^2 + \beta^2 + \gamma^2} =$	
(a) $\frac{3b}{2a}$	(b) $\frac{-3b}{2a}$	(c) 3 <i>b</i>	(d) 2 <i>a</i>
93. If α , β are the roo	ots of $6x^2 - 2x + 1 = 0$ and $s_x = a^n + $	β^n , then $\lim_{n\to\infty}\sum_{r=1}^n S_r$ is	
(a) $\frac{5}{17}$	(b) O	(c) $\frac{3}{37}$	(d) None of these
94. Let α , β be the root	s of the equation $ax^2 + bx + c = 0$ and	let $\alpha^n + \beta^n = S_n$ for $n \ge 1$. Th	en the value of the determinant
$\begin{vmatrix} 3 & 1 + S_1 & 1 + \\ 1 + S_1 & 1 + S_2 & 1 + \\ 1 + S_2 & 1 + S_3 & 1 + \end{vmatrix}$	$\begin{bmatrix} S_2 \\ S_3 \\ S_4 \end{bmatrix}$ is		
(a) $\frac{b^2 - 4ac}{a^4}$	(b) $\frac{(a+b+c)(b^2+4ac)}{a^4}$	(c) $\frac{(a+b+c)(b^2-4ac)}{a^4}$	(d) $\frac{(a+b+c)^2(b^2-4ac)}{a^4}$
95. If α , β are roots of	f the equation $2x^2 + 6x + b = 0$ ($b < 0$), then $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ is less then	
(a) 2	(b) -2	(c) 18	(d) None of these
96. If α , β are roots of	of the equation $ax^2 + 3x + 2 = 0$ ($a < 0$)), then $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ is greater	then
(a) 0	(b) 1	(c) 2	(d) None of these
97. If α , β , γ , σ are the	roots of the equation $x^4 + 4x^3 - 6x^2$	+7x-9=0, then the value of	$(1 + \alpha^2)(1 + \beta^2)(1 + \gamma^2)(1 + \sigma^2)$ is
(a) 5	(b) 9	(c) 11	(d) 13
98. If α and β are the	e roots of the equation $x^2 - p(x+1)$	$q - q = 0$, then the value of $\frac{\alpha}{\alpha}$	$\frac{\beta^{2}+2\alpha+1}{\beta^{2}+2\alpha+q} + \frac{\beta^{2}+2\beta+1}{\beta^{2}+2\beta+q}$ is
(a) 2	(b) 3	(c) 0	(d) 1
99. If <i>A</i> , <i>G</i> , <i>H</i> be respective given by	ly, the A.M., G.M. and H.M. of three positive	number <i>a</i> , <i>b</i> , <i>c</i> then the equation where the eq	hose roots are the se number is
(a) $x^3 - 3Ax^2 + G^3$	(3x-1) = 0	(b) $x^3 - 3Ax^2 + 3(G^3 / H)$	$G(x - G^3) = 0$
(c) $x^3 + 3Ax^2 + 3(0)$		(d) $x^3 - 3Ax^2 - 3(G^3 / H)$	·
•••	$a\frac{2\pi}{7}, A = a + a^2 + a^4$ and $B = a^3 + a^5$		
(a) $x^2 - x + 2 = 0$	(b) $x^2 - x - 2 = 0$	(c) $x^2 + x + 2 = 0$	(d) None of these
	s of the equation $x^2 - px + q = 0$, then		
$\alpha^3\beta^2 + \alpha^2\beta^3$ is			[Roorkee 1994]
	(b) $x^2 + Sx + P = 0$ $(5p^2q + 5q^2)$ and $P = p^2q^2(p^4 - 5p^2q + 4)$		(d) None of these
	A.M., G.M. and H.M. respectively of two uned		ation $Ax^2 - G x - H = 0$
has			
(a) Both roots as	fractions (b) At least one root w	hich is a negative fraction	

(c) Exactly one positive root (d) At least one root which is an integer

303. Let
$$x^2 - px + q = 0$$
, where $p = R$, $q = R$, have the roots a , β such that $a + 2\beta = 0$ then
(a) $2p^2 + q = 0$ (b) $2q^2 + p = 0$ (c) $q < o$ (d) None of these
304. The cubic equation whose roots are the A.M., G.M. and H.M. of the roots of $x^2 - 2px + q^2 = 0$ is
(a) $(x - p)(x - q)(x - p - q) = 0$ (b) $(x - p)(x - q)(x - q^2) = 0$
(c) $x^3 - \left(p + |q| + \frac{q}{p}\right)x^3 + \left(p|q| + q^3 + \frac{|q|^2}{p}\right)x - |q|^2 = 0$ (d) None of these
305. If a , β are the roots of $x^2 + px + q = 0$ and also of $x^{2n} + p^n x^n + q^n = 0$ and if $\frac{\alpha}{\beta} + \frac{\beta}{a}$ are the roots of $x^n + 1 + (x + 1)^n = 0$, then
n is
(a) An odd integer (b) An even integer (c) Any integer (d) None of these
306. If $\cos^4 x + \sin^4 x - p = 0$, $p \in R$ has real solutions then
(a) $p \leq 1$ (b) $\frac{3}{4} \le p \leq 1$ (c) $p \ge \frac{3}{4}$ (d) None of these
307. If the ratio of the roots of $\lambda^2 + \mu x + v = 0$ is equal to the ratio of the roots of $x^2 + x + 1 = 0$ then $2, \mu, v$ are in
(a) A, P (b) G, P . (c) H, P . (d) None of these
308. P, q, r and s are integers. If the A.M. of the roots of $x^2 - px + q^2 = 0$ and G.M. of the roots of $x^2 - rx + s^3 = 0$ are equal then
(a) q is an odd integer (b) r is an even integer (c) p is an even integer
(d) s is an odd integer
(b) $-\frac{1}{5}$ (c) $-\frac{3}{5}$ (d) None of these
310. The harmonic mean of the roots of the equation $(5 + \sqrt{3})x^2 - (4 + \sqrt{5})x + 8 + 2\sqrt{5} = 0$ is
(a) -3 (b) $-\frac{1}{5}$ (c) $-\frac{3}{5}$ (d) None of these
311. If a, β are the roots of $ax^2 + c = bx$ then the equative value of k is
(a) x^{-1}, β^{-1} (b) e^{-1}, β^{-2} (c) $-\frac{3}{5}$ (d) None of these
313. If the roots of $ax^2 + bx - c = 0$ change by the same quantity then the expression in a, b, c that does not change is
(a) $\frac{b^2 - 4ac}{a^2}$ (b) $\frac{b^{-4}a}{a}$ (c) $\frac{b^2 + 4ac}{a^2}$ (d) None of these
314. If the roots of $ax^2 + bx - c = 0$ then the product of the roots of the equation whose roots are $a^2 - \beta^2$ and
 $a^2 - \beta^3$ is
(a) $p(y^2 - q)(x^2)$ (b)

19. The set of possible values of λ for which $x^2 - (\lambda^2 - 5\lambda + 5)x + (2\lambda^2 - 3\lambda - 4) = 0$ has roots whose sum and product are both bess then 1 is (a) $\left(-1, \frac{5}{2}\right)$ (b) $(0, 4)$ (c) $\left[1, \frac{5}{2}\right]$ (d) $\left(1, \frac{5}{2}\right)$ 20. The set of the possible values of x such that $5^+ + (2\sqrt{3})^{2x} - 16^0$ is always positive is (a) $(3, +\infty)$ (b) $(2, +\infty)$ (c) $(2, +\infty)$ (c) $(2, +\infty)$ (d) None of these 21. If all real value of x obtained from the equation $4^+ - (a - 3)^{2x} + a - 4 - 0$ are nonpositive then (a) $a c(4, 5)$ (b) $a c(0, 4)$ (c) $a c(4, +\infty)$ (d) None of these 22. If $ax^2 + bx + 6 = 0$ does not have two distinct real roots $a \in R, b \in R$, then the least value of $3a + b$ is (a) 4 (b) -1 (c) 1^- (c) 1^- (d) None of these 23. If $ax^2 + bx + 6 = 0$ does not have two distinct real roots $a \in R, b \in R$, then the least value of $3a + b$ is (a) 1^- (b) 2^- (c) $\frac{1}{4}$ (d) None of these 24. The number of values of k for which $\{x^2 - (k - 2)x + k^2\}\{x^3 + kx + (2k - 1)\}$ is a perfect square is (a) 1^- (b) 2^- (c) 0^- (d) None of these 25. If $x^2 - bx + c = 0$ has equal integral roots then (a) $b and c$ are even integers (b) b and c are even integers (c) $b^- x^2 - (A^2 + A^2)x + AAC^2 - 0$ (d) None of these 26. Let A, G and H be the A.M., G.M. and H.M. of two positive number a and b . The quadratic equation whose roots are A and H if (a) $Ax^2 - (A^2 + G^2)x + BC^2 = 0$ (d) None of these 27. If $x^2 + y^2 + z^2 = 1$, then the value of $xy + yz + zx$ lies in the interval (a) $\left \frac{1}{2}, \frac{1}{2}\right $ (b) $\left -1, \frac{2}{2}\right $ (c) $\left -\frac{1}{2}, 1\right $ (d) $\left -1, \frac{1}{2}\right $ 28. If $px^2 + qx^2 + x^2 = 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these 29. The quadratic equation whose roots and p, g, r are real root that $p + r > 0$, then (a) $A - q + r + c = 0$ has no real root if $a^2 - 1 < a < a^3 + 2n$ where $a = 0, 1, 2, 3$ (d) None of these 39. A quadratic equation whose roots are $\left\{\frac{x}{a}\right\}^2 = a - 2 - (a < a)^2 +$					
(1 -) (-) (-) (2 -) (-) (-) (-) (-) (-) (-) (-	319.		A for which $x^2 - (\lambda^2 - 5\lambda + 5)x + (2\lambda^2)$	$(2^2 - 3\lambda - 4) = 0$ has roots whose su	m and product are both less
(a) $[3, +\infty)$ (b) $[2, +\infty)$ (c) $(2, +\infty)$ (d) None of these (a) $a \in (4, 5]$ (b) $a \in (0, 4)$ (c) $a = -(a - 3)2^{+} a - 4 = 0$ are nonpositive then (a) $a \in (4, 5]$ (b) $a \in (0, 4)$ (c) $a \in (4, +\infty)$ (d) None of these (a) $a \in (4, 5]$ (d) None of these (a) $a \in (4, 5]$ (e) None of these (a) $a \in (4, 5]$ (c) $a \in (6, 4, \infty)$ (d) None of these (a) $a = (2, 5)$ (b) $a = (0, 4)$ (c) $a \in (6, 4, \infty)$ (d) None of these (a) $1 = (2, 2 + 3b, a > 0, b > 0$ then the minimum value of ab is (a) 12 (b) 24 (c) $\frac{1}{4}$ (d) None of these (a) 12 (b) 24 (c) $\frac{1}{4}$ (d) None of these (a) $1 = (b) 2$ (c) $0 = (d)$ None of these (a) $1 = (b) 2$ (c) $0 = (d)$ None of these (b) b and c are even integers (c) b is an even integer and c is a perfect square of a positive integer (d) None of these (e) b is an even integer and c is a perfect square of a positive integer (d) None of these (e) b is an even integer and c is a perfect square of a positive integer (d) None of these (e) b is an even integer and c is a perfect square of a positive integer (f) None of these (g) $ba a (2 - a(2^{+})a^{2})x + AG^{2} = 0$ (c) $b) Ax^{2} - (A^{2} + H^{2})x + AH^{2} = 0$ (c) $Hx^{2} - (A^{2} + G^{2})x + AG^{2} = 0$ (d) None of these (f) $x^{2} - (A^{2} + G^{2})x + HG^{2} = 0$ (d) None of these (g) If $x^{2} + y^{2} + z^{2} = 1$, then the value of $xy + yz + zz$ lies in the interval (a) $\left(\frac{1}{2}, \frac{1}{2}\right$ (b) $[-1, 2]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ (28. If $px^{3} + qx + r = 0$ has no real roots and p, q, r are real such that $p + r > 0$, then (a) $p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these (c) Cannot have a rational root if A is a perfect square (c) Cannot have a rational root if $A = 1 - z^{2} - x^{2} + 2m$ where $n = 0, 1, 2, 3$ (d) None of these (30. A quadratic equation $x^{2} - 2x - z = 0, z = 0$ (c) $x^{2} + x + 1 = 0$ (d) $x^{2} - 3x + 9 = 0$ (c) $x^{2} - x + 1 = 0$ (d) $x^{2} - 3x + 9 = 0$ (c) $x^{2} - x + 1 = 0$ (d) $x^{2} - 3x +$		(a) $\left(-1, \frac{5}{2}\right)$	(b) (1, 4)	(c) $\left[1, \frac{5}{2}\right]$	(d) $\left(1,\frac{5}{2}\right)$
21. If all real value of x obtained from the equation $4^{-} - (a^{-}3)2^{+} + a^{-} = 0$ are nonpositive then (a) $a \in (4, 5]$ (b) $a \in (0, 4)$ (c) $a \in (4, +\infty)$ (d) None of these 22. If $ax^{2} + bx + 6 = 0$ does not have two distinct real roots $a \notin R, b \in R$, then the least value of $3a + b$ is (a) 4 (b) -1 (c) 1 (d) -2 23. If $ab = 2a + 3b, a > 0, b > 0$ then the minimum value of ab is (a) 12 (b) 24 (c) $\frac{1}{4}$ (d) None of these 24. The number of values of k for which $\{x^{2} - (k - 2)x + k^{2}\}\{x^{2} + kx + (2k - 1)\}$ is a perfect square is (a) 1 (b) 2 (c) 0 (d) None of these 25. If $x^{2} - bx + c = 0$ has equal integral roots then (a) b and c are integers (b) b and c are integers (c) b is an even integers (d) None of these 26. Let A, G and H be the A.M., G.M. and H.M. of two positive number a and b. The quadratic equation whose roots are A and H is (a) $Ax^{2} - (A^{2} + G^{2})x + HG^{2} = 0$ (d) None of these 27. If $x^{2} + yx^{2} + z^{2} = 1$, then the value of $xy + yz + zx$ lies in the interval (a) $\left[\frac{1}{2}, 2\right]$ (b) $[-1, 2]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ 28. If $px^{2} + qx + r = 0$ has no real roots and p, q, r are real such that $p + r > 0$, then (a) $p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these 29. The quadratic equation whose roots are $\left[\frac{\gamma}{R}\right]^{2}$ and $\left(\frac{\beta}{a}\right)^{2}$, where $n = 0, 1, 2, 3$ (d) None of these 30. A quadratic equation whose roots are $\left[\frac{\gamma}{R}\right]^{2}$ and $\left(\frac{\beta}{a}\right)^{2}$, where $n = 0, 1, 2, 3$ (d) None of these 31. If $x_{0} + 2r + 1 = 0$ (b) $x^{2} + 3x + 9 = 0$ (c) $x^{2} + x + 1 = 0$ (d) $x^{2} - 3x + 9 = 0$ (a) Cannot have a nitegral root if $\lambda < 1$ are the reat roots of $x^{3} + 27 = 0$, is (a) $x^{2} - x + 1 = 0$ (b) $x^{2} + 3x + 9 = 0$ (c) $x^{2} + x + 1 = 0$ (d) $x^{2} - 3x + 9 = 0$ 31. If $x_{0} > 2r + 2r + 1 = 0$ and $c, d are the reat root of x^{3} + 4r + 1 = 0, then (a - c)(b - c)(a + d)(b + d) is divisibleby(a) a + b + c + d (b) a + b - c - d (c) a - b + c - d (d) $	320.	The set of the possible v	values of x such that $5^x + (2\sqrt{3})^2$	x - 169 is always positive is	
(a) $a \in (4, 5]$ (b) $a \in (0, 4)$ (c) $a \in (4, +\infty)$ (d) None of these (a) $a \in (4, 5]$ (b) $a = (0, 4)$ (c) $a \in (4, +\infty)$ (d) None of these (a) 4 (b) -1 (c) 1 (d) -2 (c) 1 (d) None of these (a) 12 (b) 24 (c) $\frac{1}{4}$ (d) None of these (a) 12 (b) 24 (c) $\frac{1}{4}$ (d) None of these (a) 1 (b) 2 (c) 0 (d) None of these (a) 1 (b) 2 (c) 0 (d) None of these (a) 1 (b) 2 (c) 0 (d) None of these (c) 0 (d) None of these (c) 1 is a perfect square is (c) 1 is a even integers (d) None of these (e) 1 is a even integers (f) 1 is a even integers (g) 1 is a even integers (h) 2 (c) 1 (f) 1 (h) 2 (c) 1 (f) 1 (h)		(a) $[3, +\infty)$	(b) $[2, +\infty)$	(c) $(2, +\infty)$	(d) None of these
122. If $ax^2 + bx + 6 = 0$ does not have two distinct real roots $a \in R, b \in R$, then the least value of $3a + b$ is (a) 4 (b) -1 (c) 1 (d) -2 133. If $ab = 2a + 3b, a > 0, b > 0$ then the minimum value of ab is (a) 12 (b) 24 (c) $\frac{1}{4}$ (d) None of these 144. The number of values of k for which $\{x^2 - (k - 2)x + k^2\}\{x^2 + kx + (2k - 1)\}$ is a perfect square is (a) 1 (b) 2 (c) 0 (d) None of these 145. The number of values of k for which $\{x^2 - (k - 2)x + k^2\}\{x^2 + kx + (2k - 1)\}$ is a perfect square is (a) 1 (b) 2 (c) 0 (d) None of these 145. The number of values of k for which $\{x^2 - (k - 2)x + k^2\}\{x^2 + kx + (2k - 1)\}$ is a perfect square is (a) b and c are integers (b) b and c are even integers (c) b is an even integer and c is a perfect square of a positive integer (d) None of these 145. Let A, G and H be the A.M., G.M. and H.M. of two positive number a and b. The quadratic equation whose roots are A and H is (a) $Ax^2 - (A^2 + G^2)x + AG^2 = 0$ (d) None of these 147. $(A^2 - G^2)x + AG^2 = 0$ (d) None of these 147. $(A^2 - g^2)x + 2g^2 = 1$, then the value of $xy + yz + zx$ lies in the interval (a) $\left[\frac{1}{2}, 2\right]$ (b) $[-1, 2]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ 128. If $px^2 + qx + r = 0$ has no real roots and p, q, r are real such that $p + r > 0$, then (a) $p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these 149. (d) Cannot have a rational root if $\lambda < -1$ (b) Can have a rational root if $\lambda < -1$ (c) Cannot have a rational root if $\lambda^2 - 1 < 0$, $\lambda < 0^2 - x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ 153. If $a^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$, then $(a - c)(b) - c)(at - d)(b + d)$ is divisible by (a) $a^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + 4x + 1 = 0$, then $(a - c)(b) - c)(at - d)(b + d)$ is divisible by (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b - c - d$ (d) $a - b - c - d$ 153. If $0 < a < 5$, $0 < b < 5$ and $\frac{x^2 + 5}{2} = x - 2\cos(a + bx)$ is satisfied for at least on	321.	If all real value of <i>x</i> obt	ained from the equation $4^x - (a$	$(-3)2^x + a - 4 = 0$ are nonposi	tive then
(a) 4 (b) -1 (c) 1 (d) -2 (a) 4 (b) -1 (c) 1 (d) -2 (c) 1 (d) -2 (c) 1 (d) None of these (a) 1 (b) 24 (c) 1 (d) None of these (a) 1 (b) 2 (c) 0 (d) None of these (a) 1 (b) 2 (c) 0 (d) None of these (a) 1 (b) 2 (c) 0 (d) None of these (a) 1 (c) 1 (c) 0 (d) None of these (a) 1 (c) 1 (c) 0 (d) None of these (c) 0 (c) 0 (d) None of these (c) 0 is an even integers (b) b and c are integers (c) b is an even integers (c) b is an even integer and c is a perfect square of a positive integer (d) None of these (e) $hx^2 - (A^2 + G^2)x + AG^2 = 0$ (b) $Ax^2 - (A^2 + H^2)x + AH^2 = 0$ (c) $Hx^2 - (H^2 + G^2)x + HG^2 = 0$ (d) None of these (a) $Ax^2 - (A^2 + G^2)x + HG^2 = 0$ (c) $[-\frac{1}{2}, 1]$ (d) $[-1, \frac{1}{2}]$ (25) If $x^2 + y^2 + z^2 = 1$, then the value of $xy + yz + zx$ lies in the interval (a) $\left[\frac{1}{2}, 2\right]$ (b) $[-1, 2]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ (26) If $px^3 + qx + r = 0$ has no real roots and p, q, r are real such that $p + r > 0$, then (a) $p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these (27) The quadratic equation $x^2 - 2x - \lambda = 0, \lambda \neq 0$ (a) Cannot have a real not if $\lambda < -1$ (b) Can have a rational root if $\lambda < -1$ (c) Chave a rational root if $\lambda < -1$ (d) None of these (e) Cannot have a rational root if $x^2 - 1 - (\lambda < n^2 + 2n)$ where $n = 0, 1, 2, 3$ (d) None of these (30) A quadratic equation whose roots are $\left[\frac{Z}{a}\right]^2$ and $\left(\frac{B}{a}\right)^2$, where a, β, γ are the roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^3 + 3x + 9 = 0$ (c) $x^3 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ (31) If a, b are the real roots of $x^2 + px + 1 = 0$ and c, d are the real roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^3 + 3x + 9 = 0$ (c) $x^2 + 4x + 1 = 0$, then $(a - c)(b - c)(a + d)(b + d)$ is divisible by (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b - c - d$ (d) $a - b - c - d$ (32) If $0 < a < 5, 0 < b < 5$ and $\frac{x^2 + 5}{2} = x - 2\cos(a + bx)$ is satisfied for at least one real x then the greatest value of $a + b$		(a) $a \in (4, 5]$	(b) $a \in (0, 4)$	(c) $a \in (4, +\infty)$	(d) None of these
123. If $ab = 2a + 3b$, $a > 0$, $b > 0$ then the minimum value of ab is (a) 12 (b) 24 (c) $\frac{1}{4}$ (d) None of these 124. The number of values of k for which $\{x^2 - (k - 2)x + k^2\}\{x^2 + kx + (2k - 1)\}$ is a perfect square is (a) 1 (b) 2 (c) 0 (d) None of these 125. If $x^2 - bx + c = 0$ has equal integral roots then (a) ba dc car eitegers (b) b and c ar eitegers (c) b is an even integer and c is a perfect square of a positive integer (d) None of these 126. Let A , G and H be the A.M., G.M. and H.M. of two positive number a and b . The quadratic equation whose roots are A and H is (a) $Ax^2 - (A^2 + G^2)x + AG^2 = 0$ (b) $Ax^2 - (A^2 + H^2)x + AH^2 = 0$ (c) $Hx^2 - (H^2 + G^2)x + HG^2 = 0$ (d) None of these 127. If $x^2 + y^2 + z^2 = 1$, then the value of $xy + yz + zx$ lies in the interval (a) $\left[\frac{1}{2}, 2\right]$ (b) $[-1, 2]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ 128. If $px^2 + qx + r = 0$ has no real roots and p, q, r are real such that $p + r > 0$, then (a) $2p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these 129. The quadratic equation $x^2 - 2x - \lambda = 0$, $\lambda \neq 0$ (a) Cannot have a rational root if $\lambda^2 - 1$ (c) Cannot have a rational root if $\lambda^2 - 1$ (d) None of these 130. A quadratic equation whose roots are $\left(\frac{\chi}{a}\right)^2$ and $\left(\frac{\beta}{\alpha}\right)^3$, where a, β, γ are the roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ 131. If a, b are the real roots of $x^2 + px + 1 = 0$ and c, d are the real roots of $x^3 + 27 = 0$, is (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b - c - d$ (d) $a - b - c - d$ 132. If $0 < a < 5$, $0 < b < 5$ and $\frac{x^2 + 5}{2} = x - 2\cos(a + bx)$ is satisfied for at least one real x then the greatest value of $a + b$ is (a) π (b) $\frac{\pi}{2}$ (c) 3π (d) 4π	322.	If $ax^2 + bx + 6 = 0$ does n	not have two distinct real roots	$a \in R, b \in R$, then the least v	alue of $3a+b$ is
(a) 12 (b) 24 (c) $\frac{1}{4}$ (d) None of these (24. The number of values of k for which $(x^2 - (k-2)x + k^2) \{x^2 + kx + (2k-1)\}$ is a perfect square is (a) 1 (b) 2 (c) 0 (d) None of these (25. If $x^2 - bx + c = 0$ has equal integral roots then (a) b and c are integers (b) b and c are integers (c) b is an even integer and c is a perfect square of a positive integer (d) None of these (26. Let A, G and H be the A.M., G.M. and H.M. of two positive number a and b. The quadratic equation whose roots are A and H is (a) $Ax^2 - (A^2 + G^2)x + AG^2 = 0$ (b) $Ax^2 - (A^2 + H^2)x + AH^2 = 0$ (c) $Hx^2 - (H^2 + G^2)x + HG^2 = 0$ (d) None of these (27. If $x^2 + y^2 + z^2 = 1$, then the value of $xy + yz + zx$ lies in the interval (a) $\left[\frac{1}{2}, 2\right]$ (b) $[-1, 2]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ (28. If $px^2 + qx + r = 0$ has no real roots and p, q, r are real such that $p + r > 0$, then (a) $p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these (27. The quadratic equation $x^3 - 2x - \lambda = 0, \lambda \neq 0$ (a) Cannot have a real noot if $\lambda < -1$ (b) Can have a real root if $\lambda < -1$ (c) Cannot have a real root if $\lambda < -1$ (d) None of these (e) Cannot have a root serve serve $\left[\frac{y}{a}\right]^2$ and $\left(\frac{B}{a}\right)^2$, where a, β, γ are the roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ (31. If a, b are the real roots of $x^2 + px + 1 = 0$ and c, a are the real roots of $x^2 + 2x + 1 = 0$, is a use the real roots of $x^2 + 2x + 1 = 0$, is $(a) x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$, into $(a) x^2 - 3x + 9 = 0$ (32. If $a > b + b + c + d$ (b) $a + b - c - d$ (c) $a - b - c - d$ (d) $a - b - c - d$ (33. If $a > b + b + c + d$ (b) $a + b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ (a) $a + b + c + d$ (b) $\frac{\pi}{2}$ (c) 3π (d) 4π					(d) -2
24. The number of values of k for which $\{x^2 - (k-2)x + k^2\}\{x^2 + kx^2 + (2k-1)\}$ is a perfect square is (a) 1 (b) 2 (c) 0 (d) None of these 15. If $x^2 - bx + c = 0$ has equal integral roots then (a) b and c are integers (b) b and c are even integers (c) b is an even integer and c is a perfect square of a positive integer (d) None of these 16. Let A, G and H be the A.M., G.M. and H.M. of two positive number a and b. The quadratic equation whose roots are A and H if (a) $Ax^2 - (A^2 + G^2)x + AG^2 = 0$ (b) $Ax^2 - (A^2 + H^2)x + AH^2 = 0$ (c) $Hx^2 - (H^2 + G^2)x + HG^2 = 0$ (d) None of these 17. If $x^2 + y^2 + z^2 = 1$, then the value of $xy + yz + zx$ lies in the interval (a) $\left[\frac{1}{2}, 2\right]$ (b) $[-1, 2]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ 18. If $px^2 + qx + r = 0$ has no real roots and p, q, r are real such that $p + r > 0$, then (a) $p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these 19. Cannot have a real root if $\lambda < =1$ (b) Can have a rational root if $\lambda = 1 < 0$ (c) Cannot have a rational root if $\lambda^2 = 1 < 2 < x^2 + 2n$ where $n = 0, 1, 2, 3$ (d) None of these 19. A quadratic equation whose roots are $\left(\frac{r}{\alpha}\right)^2$ and $\left(\frac{\beta}{\alpha}\right)^2$, where α, β, γ are the roots of $x^2 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ 19. A quadratic equation so the $x^2 + px + 1 = 0$ and c, d are the real root of $x^2 + qx + 1 = 0$, then $(a - c)(b - c)(a + d)(b + d)$ is divisible by (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ 19. $(a - x) + (b) - \frac{\pi}{2}$ (c) 3π (d) 4π	323.	If $ab = 2a + 3b$, $a > 0$, $b > 0$	0 then the minimum value of al	bis	
(a) 1 (b) 2 (c) 0 (d) None of these (a) $1 x^2 - bx + c = 0$ has equal integral roots then (a) <i>b</i> and <i>c</i> are integers (b) <i>b</i> and <i>c</i> are even integers (c) <i>b</i> is an even integer and <i>c</i> is a perfect square of a positive integer (d) None of these (26. Let <i>A</i> , <i>G</i> and <i>H</i> be the A.M., <i>G</i> .M. and H.M. of two positive number <i>a</i> and <i>b</i> . The quadratic equation whose roots are <i>A</i> and <i>H</i> is (a) $Ax^2 - (A^2 + G^2)x + AG^2 = 0$ (b) $Ax^2 - (A^2 + H^2)x + AH^2 = 0$ (c) $Hx^2 - (H^2 + G^2)x + HG^2 = 0$ (d) None of these (27. If $x^2 + y^2 + z^2 = 1$, then the value of $xy + yz + zx$ lies in the interval (a) $\left[\frac{1}{2}, 2\right]$ (b) $[-1, 2]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ (28. If $px^2 + qx + r = 0$ has no real roots and <i>p</i> , <i>q</i> , <i>r</i> are real such that $p + r > 0$, then (a) $p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these (29. The quadratic equation $x^2 - 2x - \lambda = 0, \lambda \neq 0$ (a) Cannot have a real root if $\lambda < -1$ (b) Can have a rational root if $n^2 - 1 < \lambda < n^2 + 2n$ where $n = 0, 1, 2, 3$ (d) None of these (30. A quadratic equation whose roots are $\left(\frac{r}{\alpha}\right)^2$ and $\left(\frac{\beta}{\alpha}\right)^2$, where α, β, γ are the roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ (31. If n_k bare the real roots of $x^2 + px + 1 = 0$ and <i>c</i> , <i>d</i> are the real roots of $x^2 + qx + 1 = 0$, then $(a - c)(b - c)(a + d)(b + d)$ is divisible by (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ (32. If $0 < a < 5, 0 < b < 5$ and $\frac{x^2 + 5}{2} = x - 2\cos(a + bx)$ is satisfied for at least one real <i>x</i> then the greatest value of $a + b$ is (a) π (b) $\frac{\pi}{2}$ (c) 3π (d) 4π		(a) 12	(b) 24	(c) $\frac{1}{4}$	(d) None of these
225. If $x^2 - bx + c = 0$ has equal integral roots then (a) <i>b</i> and <i>c</i> are integers (b) <i>b</i> and <i>c</i> are even integers (c) <i>b</i> is an even integer and <i>c</i> is a perfect square of a positive integer (d) None of these 226. Let <i>A</i> , <i>G</i> and <i>H</i> be the A.M., G.M. and H.M. of two positive number <i>a</i> and <i>b</i> . The quadratic equation whose roots are <i>A</i> and <i>H</i> is (a) $Ax^2 - (A^2 + G^2)x + AG^2 = 0$ (b) $Ax^2 - (A^2 + H^2)x + AH^2 = 0$ (c) $Hx^2 - (H^2 + G^2)x + HG^2 = 0$ (d) None of these 227. If $x^2 + y^2 + z^2 = 1$, then the value of $xy + yz + zx$ lies in the interval (a) $\left[\frac{1}{2}, 2\right]$ (b) $[-1, 2]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ 238. If $px^2 + qx + r = 0$ has no real roots and <i>p</i> , <i>q</i> , <i>r</i> are real such that $p + r > 0$, then (a) $p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these 229. The quadratic equation $x^2 - 2x - \lambda = 0, \lambda \neq 0$ (a) Cannot have a real root if $\lambda < -1$ (b) Can have a rational root if $\lambda^2 = 1 - (\lambda < n^2 + 2n)$ where $n = 0, 1, 2, 3$ (d) None of these 330. A quadratic equation whose roots are $\left(\frac{y}{\alpha}\right)^2$ and $\left(\frac{\beta}{\alpha}\right)^2$, where α, β, γ are the roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ (f) $x_0 + a^2 + a^2 + 1 = 0$ and <i>c</i> , <i>d</i> are the real roots of $x^2 + qx + 1 = 0$, then $(a - c)(b - c)(a + d)(b + d)$ is divisible by (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b - c - d$ (d) $a - b - c - d$ (d) $a - b - c - d$ (e) 3π (f) $\frac{\pi}{2}$ (c) 3π (d) 4π	324.	The number of values of	f k for which $\{x^2 - (k-2)x + k^2\}$	$x^2 + kx + (2k-1)$ is a perfect s	square is
(a) <i>b</i> and <i>c</i> are even integers (b) <i>b</i> and <i>c</i> are even integers (c) <i>b</i> is an even integer and <i>c</i> is a perfect square of a positive integer (d) None of these (26. Let <i>A</i> , <i>G</i> and <i>H</i> be the A.M., <i>G</i> .M. and H.M. of two positive number <i>a</i> and <i>b</i> . The quadratic equation whose roots are <i>A</i> and <i>H</i> if (a) $Ax^2 - (A^2 + G^2)x + AG^2 = 0$ (b) $Ax^2 - (A^2 + H^2)x + AH^2 = 0$ (c) $Hx^2 - (H^2 + G^2)x + HG^2 = 0$ (d) None of these (27. If $x^2 + y^2 + z^2 = 1$, then the value of $xy + yz + zx$ lies in the interval (a) $\left[\frac{1}{2}, 2\right]$ (b) $[-1, 2]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ (28. If $px^2 + qx + r = 0$ has no real roots and <i>p</i> , <i>q</i> , <i>r</i> are real such that $p + r > 0$, then (a) $p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these (29. The quadratic equation $x^2 - 2x - \lambda = 0, \lambda \neq 0$ (a) Cannot have a real root if $\lambda < -1$ (b) Can have a rational root if $n^2 - 1 < \lambda < n^2 + 2n$ where $n = 0, 1, 2, 3$ (d) None of these (21. Gaudratic equation whose roots are $\left(\frac{\gamma}{\alpha}\right)^2$ and $\left(\frac{\beta}{\alpha}\right)^2$, where <i>a</i> , <i>β</i> , <i>γ</i> are the roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ (f) $x^2 - 3x + 9 = 0$ (g) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ (d) $a - b - c - d$ (e) $a - b - c - d$ (f) $a - b - c - d$ (g) $a - b - c - d$ (h)				(c) 0	(d) None of these
(b) <i>b</i> and <i>c</i> are even integers (c) <i>b</i> is an even integer and <i>c</i> is a perfect square of a positive integer (d) None of these (e) None of these (f) $Ax^2 - (A^2 + G^2)x + AG^2 = 0$ (g) $Ax^2 - (A^2 + G^2)x + AG^2 = 0$ (h) $Ax^2 - (A^2 + H^2)x + AH^2 = 0$ (c) $Hx^2 - (H^2 + G^2)x + HG^2 = 0$ (d) None of these (e) $Ax^2 - (H^2 + G^2)x + HG^2 = 0$ (f) $Ax^2 - (H^2 + G^2)x + HG^2 = 0$ (g) $Ax^2 - (H^2 + G^2)x + HG^2 = 0$ (h) $Ax^2 - (A^2 + H^2)x + AH^2 = 0$ (c) $Hx^2 - (H^2 + G^2)x + HG^2 = 0$ (d) None of these (e) $Hx^2 - (H^2 + G^2)x + HG^2 = 0$ (f) $(x^2 + y^2 + z^2) = 1$, then the value of $xy + yz + zx$ lies in the interval (a) $\left[\frac{1}{2}, 2\right]$ (b) $[-1, 2]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ (e) $p - q + r > 0$, then (a) $p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these (e) Cannot have a real root if $\lambda < -1$ (b) Can have a rational root if λ is a perfect square (c) Cannot have an integral root if $n^2 - 1 < \lambda < n^2 + 2n$ where $n = 0, 1, 2, 3$ (d) None of these (30. A quadratic equation whose roots are $\left(\frac{y}{\alpha}\right)^2$ and $\left(\frac{\beta}{\alpha}\right)^2$, where α, β, γ are the roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ (f) $x^2 - 3x + 9 = 0$ (g) $a + b + c + d$ (h) $a + b - c - d$ (c) $a - b + c -$	325.				
(c) <i>b</i> is an even integer and c is a perfect square of a positive integer (d) None of these (26) Let <i>A</i> , <i>G</i> and <i>H</i> be the A.M., <i>G</i> .M. and H.M. of two positive number <i>a</i> and <i>b</i> . The quadratic equation whose roots are <i>A</i> and <i>H</i> is (a) $Ax^2 - (A^2 + G^2)x + AG^2 = 0$ (b) $Ax^2 - (A^2 + H^2)x + AH^2 = 0$ (c) $Hx^2 - (H^2 + G^2)x + HG^2 = 0$ (d) None of these (27) If $x^2 + y^2 + z^2 = 1$, then the value of $xy + yz + zx$ lies in the interval (a) $\left[\frac{1}{2}, 2\right]$ (b) $[-1, 2]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ (28) If $px^2 + qx + r = 0$ has no real roots and <i>p</i> , <i>q</i> , <i>r</i> are real such that $p + r > 0$, then (a) $p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these (a) Cannot have a reational root if $\lambda < -1$ (b) Can have a rational root if $\lambda < -1$ (c) Cannot have a national root if $\lambda < -1$ (d) None of these (c) Cannot have an integral root if $n^2 - 1 < \lambda < n^2 + 2n$ where $n = 0, 1, 2, 3$ (d) None of these (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ (a) $x^2 - x + 1 = 0$ (b) $a + b - c - d$ (c) $a - b - c - d$ (d) $a - b - c - d$ (e) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ (f) $a - b - c - d$ (g) $a - b - c - d$ (g) π (h) $\frac{\pi}{2}$ (c) 3π (d) 4π					
(d) None of these 26. Let A, G and H be the A.M., G.M. and H.M. of two positive number a and b. The quadratic equation whose roots are A and H is (a) $Ax^2 - (A^2 + G^2)x + AG^2 = 0$ (b) $Ax^2 - (A^2 + H^2)x + AH^2 = 0$ (c) $Hx^2 - (H^2 + G^2)x + HG^2 = 0$ (d) None of these 27. If $x^2 + y^2 + z^2 = 1$, then the value of $xy + yz + zx$ lies in the interval (a) $\left[\frac{1}{2}, 2\right]$ (b) $\left[-1, 2\right]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ 28. If $px^2 + qx + r = 0$ has no real roots and p, q, r are real such that $p + r > 0$, then (a) $p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these 29. The quadratic equation $x^2 - 2x - \lambda = 0, \lambda \neq 0$ (a) Cannot have a rational root if $\lambda < -1$ (b) Can have a rational root if $n^2 - 1 < \lambda < n^2 + 2n$ where $n = 0, 1, 2, 3$ (d) None of these 30. A quadratic equation whose roots are $\left(\frac{y}{a}\right)^2$ and $\left(\frac{\beta}{a}\right)^2$, where a, β, y are the roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ 31. If a, b are the real roots of $x^2 + px + 1 = 0$ and c, d are the real roots of $x^2 + qx + 1 = 0$, then $(a - c)(b - c)(a + d)(b + d)$ is divisible by (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ 32. If $0 < a < 5, 0 < b < 5$ and $\frac{x^2 + 5}{2} = x - 2\cos(a + bx)$ is satisfied for at least one real x then the greatest value of $a + b$ is (a) π (b) $\frac{\pi}{2}$ (c) 3π (d) 4π			•	ositive integer	
(a) $Ax^2 - (A^2 + G^2)x + AG^2 = 0$ (b) $Ax^2 - (A^2 + H^2)x + AH^2 = 0$ (c) $Hx^2 - (H^2 + G^2)x + HG^2 = 0$ (d) None of these 27. If $x^2 + y^2 + z^2 = 1$, then the value of $xy + yz + zx$ lies in the interval (a) $\left[\frac{1}{2}, 2\right]$ (b) $[-1, 2]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ 28. If $px^2 + qx + r = 0$ has no real roots and p, q, r are real such that $p + r > 0$, then (a) $p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these 29. The quadratic equation $x^2 - 2x - \lambda = 0, \lambda \neq 0$ (a) Cannot have a real root if $\lambda < -1$ (b) Can have a rational root if $n^2 - 1 < \lambda < n^2 + 2n$ where $n = 0, 1, 2, 3$ (d) None of these 30. A quadratic equation whose roots are $\left(\frac{\gamma}{\alpha}\right)^2$ and $\left(\frac{\beta}{\alpha}\right)^2$, where α, β, γ are the roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ 31. If a, b are the real root sof $x^2 + px + 1 = 0$ and c, d are the real roots of $x^2 + qx + 1 = 0$, then $(a - c)(b - c)(a + d)(b + d)$ is divisible by (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ 32. If $0 < a < 5, 0 < b < 5$ and $\frac{x^2 + 5}{2} = x - 2\cos(a + bx)$ is satisfied for at least one real x then the greatest value of $a + b$ is (a) π (b) $\frac{\pi}{2}$ (c) 3π (d) 4π				000000000000000000000000000000000000000	
(c) $Hx^2 - (H^2 + G^2)x + HG^2 = 0$ (d) None of these (a) $\left[\frac{1}{2}, 2\right]$ (b) $\left[-1, 2\right]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ (e) $\left[-1, \frac{1}{2}\right]$ (f) $x^2 + y^2 + z^2 = 1$, then the value of $xy + yz + zx$ lies in the interval (a) $\left[\frac{1}{2}, 2\right]$ (b) $\left[-1, 2\right]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ (e) $\left[-1, \frac{1}{2}\right]$ (f) $p - q + r < 0$ (g) $p - q + r > 0$ (g) $p + r = q$ (g) All of these (a) $p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these (a) Cannot have a real root if $\lambda < -1$ (b) Can have a rational root if $\lambda < i = 1$ (c) Cannot have a rational root if $n^2 - 1 < \lambda < n^2 + 2n$ where $n = 0, 1, 2, 3$ (d) None of these (e) Cannot have an integral root if $n^2 - 1 < \lambda < n^2 + 2n$ where a, β, γ are the roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ (f) $x^2 - x + 1 = 0$ (g) $x^2 + 3x + 9 = 0$ (g) $x^2 + 4x + 1 = 0$ (g) $x^2 - 3x + 9 = 0$ (g) $(a) a + b + c + d$ (g) $a + b - c - d$ (g) $a - b - c - d$ (g) $a - b - c - d$ (g) $a - b - c - d$ (g) π (h) $\frac{\pi}{2}$ (c) 3π (d) 4π	326.	Let A , G and H be the A.M.	, G.M. and H.M. of two positive nur	nber a and b. The quadratic equ	ation whose roots are A and H i
(c) $Hx^2 - (H^2 + G^2)x + HG^2 = 0$ (d) None of these (a) $\left[\frac{1}{2}, 2\right]$ (b) $\left[-1, 2\right]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ (e) $\left[-1, \frac{1}{2}\right]$ (f) $x^2 + y^2 + z^2 = 1$, then the value of $xy + yz + zx$ lies in the interval (a) $\left[\frac{1}{2}, 2\right]$ (b) $\left[-1, 2\right]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ (e) $\left[-1, \frac{1}{2}\right]$ (f) $p - q + r < 0$ (g) $p - q + r > 0$ (g) $p + r = q$ (g) All of these (a) $p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these (a) Cannot have a real root if $\lambda < -1$ (b) Can have a rational root if $\lambda < i = 1$ (c) Cannot have a rational root if $n^2 - 1 < \lambda < n^2 + 2n$ where $n = 0, 1, 2, 3$ (d) None of these (e) Cannot have an integral root if $n^2 - 1 < \lambda < n^2 + 2n$ where a, β, γ are the roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ (f) $x^2 - x + 1 = 0$ (g) $x^2 + 3x + 9 = 0$ (g) $x^2 + 4x + 1 = 0$ (g) $x^2 - 3x + 9 = 0$ (g) $(a) a + b + c + d$ (g) $a + b - c - d$ (g) $a - b - c - d$ (g) $a - b - c - d$ (g) $a - b - c - d$ (g) π (h) $\frac{\pi}{2}$ (c) 3π (d) 4π			2		
127. If $x^2 + y^2 + z^2 = 1$, then the value of $xy + yz + zx$ lies in the interval (a) $\left[\frac{1}{2}, 2\right]$ (b) $[-1, 2]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ 128. If $px^2 + qx + r = 0$ has no real roots and p, q, r are real such that $p + r > 0$, then (a) $p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these 129. The quadratic equation $x^2 - 2x - \lambda = 0, \lambda \neq 0$ (a) Cannot have a real root if $\lambda < -1$ (b) Can have a real root if $\lambda < -1$ (c) Cannot have a real root if $\lambda < 1$ (d) None of these 130. A quadratic equation whose roots are $\left(\frac{\gamma}{\alpha}\right)^2$ and $\left(\frac{\beta}{\alpha}\right)^2$, where α, β, γ are the roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ 131. If a, b are the real roots of $x^2 + px + 1 = 0$ and c, d are the real roots of $x^2 + qx + 1 = 0$, then $(a - c)(b - c)(a + d)(b + d)$ is divisible by (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ 132. If $0 < a < 5, 0 < b < 5$ and $\frac{x^2 + 5}{2} = x - 2\cos(a + bx)$ is satisfied for at least one real x then the greatest value of $a + b$ is (a) π (b) $\frac{\pi}{2}$ (c) 3π (d) 4π					$2^{2} = 0$
(a) $\left[\frac{1}{2}, 2\right]$ (b) $[-1, 2]$ (c) $\left[-\frac{1}{2}, 1\right]$ (d) $\left[-1, \frac{1}{2}\right]$ (28. If $px^2 + qx + r = 0$ has no real roots and p, q, r are real such that $p + r > 0$, then (a) $p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these (a) $2p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these (a) Cannot have a real root if $\lambda < -1$ (b) Can have a rational root if $n^2 - 1 < \lambda < n^2 + 2n$ where $n = 0, 1, 2, 3$ (d) None of these (30. A quadratic equation whose roots are $\left(\frac{\gamma}{\alpha}\right)^2$ and $\left(\frac{\beta}{\alpha}\right)^2$, where α, β, γ are the roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ (31. If a, b are the real roots of $x^2 + px + 1 = 0$ and c, d are the real roots of $x^2 + qx + 1 = 0$, then $(a - c)(b - c)(a + d)(b + d)$ is divisible by (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ (32. If $0 < a < 5, 0 < b < 5$ and $\frac{x^2 + 5}{2} = x - 2\cos(a + bx)$ is satisfied for at least one real x then the greatest value of $a + b$ is (a) π (b) $\frac{\pi}{2}$ (c) 3π (d) 4π					
128. If $px^2 + qx + r = 0$ has no real roots and p, q, r are real such that $p + r > 0$, then (a) $p - q + r < 0$ (b) $p - q + r > 0$ (c) $p + r = q$ (d) All of these 29. The quadratic equation $x^2 - 2x - \lambda = 0, \lambda \neq 0$ (a) Cannot have a real root if $\lambda < -1$ (b) Can have a rational root if $\lambda < -1$ (c) Cannot have an integral root if $n^2 - 1 < \lambda < n^2 + 2n$ where $n = 0, 1, 2, 3$ (d) None of these 30. A quadratic equation whose roots are $\left(\frac{\gamma}{\alpha}\right)^2$ and $\left(\frac{\beta}{\alpha}\right)^2$, where α, β, γ are the roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ 31. If a, b are the real roots of $x^2 + px + 1 = 0$ and c, d are the real roots of $x^2 + qx + 1 = 0$, then $(a - c)(b - c)(a + d)(b + d)$ is divisible by (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ 32. If $0 < a < 5, 0 < b < 5$ and $\frac{x^2 + 5}{2} = x - 2\cos(a + bx)$ is satisfied for at least one real x then the greatest value of $a + b$ is (a) π (b) $\frac{\pi}{2}$ (c) 3π (d) 4π	27.	If $x^2 + y^2 + z^2 = 1$, then	the value of $xy + yz + zx$ lies in	the interval	
(a) $p-q+r<0$ (b) $p-q+r>0$ (c) $p+r=q$ (d) All of these (a) Cannot have a real root if $\lambda < -1$ (b) Can have a rational root if λ is a perfect square (c) Cannot have an integral root if $n^2 - 1 < \lambda < n^2 + 2n$ where $n = 0, 1, 2, 3$ (d) None of these (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ (e) $a + b + c + d$ (f) $a + b - c - d$ (f) $a - b - c - d$ (f) $a - b - c - d$ (g) π (h) $\frac{\pi}{2}$ (c) 3π (f) 4π		(a) $\left[\frac{1}{2}, 2\right]$	(b) [-1, 2]	(c) $\left[-\frac{1}{2}, 1\right]$	(d) $\left[-1, \frac{1}{2}\right]$
(a) $p-q+r<0$ (b) $p-q+r>0$ (c) $p+r=q$ (d) All of these (a) Cannot have a real root if $\lambda < -1$ (b) Can have a rational root if λ is a perfect square (c) Cannot have an integral root if $n^2 - 1 < \lambda < n^2 + 2n$ where $n = 0, 1, 2, 3$ (d) None of these (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ (e) $a + b + c + d$ (f) $a + b - c - d$ (f) $a - b - c - d$ (f) $a - b - c - d$ (g) π (h) $\frac{\pi}{2}$ (c) 3π (f) 4π	28.	If $px^2 + qx + r = 0$ has no	preal roots and p, q, r are reals	such that $p + r > 0$, then	
29. The quadratic equation $x^2 - 2x - \lambda = 0$, $\lambda \neq 0$ (a) Cannot have a real root if $\lambda < -1$ (b) Can have a rational root if λ is a perfect square (c) Cannot have an integral root if $n^2 - 1 < \lambda < n^2 + 2n$ where $n = 0, 1, 2, 3$ (d) None of these 30. A quadratic equation whose roots are $\left(\frac{\gamma}{\alpha}\right)^2$ and $\left(\frac{\beta}{\alpha}\right)^2$, where α , β , γ are the roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ 31. If a , b are the real roots of $x^2 + px + 1 = 0$ and c , d are the real roots of $x^2 + qx + 1 = 0$, then $(a - c)(b - c)(a + d)(b + d)$ is divisible by (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ 32. If $0 < a < 5$, $0 < b < 5$ and $\frac{x^2 + 5}{2} = x - 2\cos(a + bx)$ is satisfied for at least one real x then the greatest value of $a + b$ is (a) π (b) $\frac{\pi}{2}$ (c) 3π (d) 4π					(d) All of these
(a) Cannot have a real root if $\lambda < -1$ (b) Can have a rational root if λ is a perfect square (c) Cannot have an integral root if $n^2 - 1 < \lambda < n^2 + 2n$ where $n = 0, 1, 2, 3$ (d) None of these 30. A quadratic equation whose roots are $\left(\frac{\gamma}{\alpha}\right)^2$ and $\left(\frac{\beta}{\alpha}\right)^2$, where α, β, γ are the roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ 31. If <i>a</i> , <i>b</i> are the real roots of $x^2 + px + 1 = 0$ and <i>c</i> , <i>d</i> are the real roots of $x^2 + qx + 1 = 0$, then $(a - c)(b - c)(a + d)(b + d)$ is divisible by (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ 32. If $0 < a < 5, 0 < b < 5$ and $\frac{x^2 + 5}{2} = x - 2\cos(a + bx)$ is satisfied for at least one real <i>x</i> then the greatest value of $a + b$ is (a) π (b) $\frac{\pi}{2}$ (c) 3π (d) 4π	29.				
 (b) Can have a rational root if λ is a perfect square (c) Cannot have an integral root if n² -1 < λ < n² + 2n where n = 0, 1, 2, 3 (d) None of these 30. A quadratic equation whose roots are (^γ/_α)² and (^β/_α)², where α, β, γ are the roots of x³ + 27 = 0, is (a) x² - x + 1 = 0 (b) x² + 3x + 9 = 0 (c) x² + x + 1 = 0 (d) x² - 3x + 9 = 0 31. If a, b are the real roots of x² + px + 1 = 0 and c, d are the real roots of x² + qx + 1 = 0, then (a - c)(b - c)(a + d)(b + d) is divisible by (a) a+b+c+d (b) a+b-c-d (c) a-b+c-d (d) a-b-c-d 32. If 0 < a < 5, 0 < b < 5 and x² + 5/2 = x - 2 cos(a+bx) is satisfied for at least one real x then the greatest value of a + b is (a) π (b) π/2 (c) 3π (d) 4π 					
(d) None of these 330. A quadratic equation whose roots are $\left(\frac{\gamma}{\alpha}\right)^2$ and $\left(\frac{\beta}{\alpha}\right)^2$, where α , β , γ are the roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ 31. If a, b are the real roots of $x^2 + px + 1 = 0$ and c, d are the real roots of $x^2 + qx + 1 = 0$, then $(a - c)(b - c)(a + d)(b + d)$ is divisible by (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ 32. If $0 < a < 5$, $0 < b < 5$ and $\frac{x^2 + 5}{2} = x - 2\cos(a + bx)$ is satisfied for at least one real x then the greatest value of $a + b$ is (a) π (b) $\frac{\pi}{2}$ (c) 3π (d) 4π					
30. A quadratic equation whose roots are $\left(\frac{\gamma}{\alpha}\right)^2$ and $\left(\frac{\beta}{\alpha}\right)^2$, where α , β , γ are the roots of $x^3 + 27 = 0$, is (a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ 31. If <i>a</i> , <i>b</i> are the real roots of $x^2 + px + 1 = 0$ and <i>c</i> , <i>d</i> are the real roots of $x^2 + qx + 1 = 0$, then $(a - c)(b - c)(a + d)(b + d)$ is divisible by (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ 32. If $0 < a < 5$, $0 < b < 5$ and $\frac{x^2 + 5}{2} = x - 2\cos(a + bx)$ is satisfied for at least one real <i>x</i> then the greatest value of $a + b$ is (a) π (b) $\frac{\pi}{2}$ (c) 3π (d) 4π		(c) Cannot have an inte	egral root if $n^2 - 1 < \lambda < n^2 + 2n$ v	where $n = 0, 1, 2, 3$	
(a) $x^2 - x + 1 = 0$ (b) $x^2 + 3x + 9 = 0$ (c) $x^2 + x + 1 = 0$ (d) $x^2 - 3x + 9 = 0$ 31. If <i>a</i> , <i>b</i> are the real roots of $x^2 + px + 1 = 0$ and <i>c</i> , <i>d</i> are the real roots of $x^2 + qx + 1 = 0$, then $(a - c)(b - c)(a + d)(b + d)$ is divisible by (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ 32. If $0 < a < 5$, $0 < b < 5$ and $\frac{x^2 + 5}{2} = x - 2\cos(a + bx)$ is satisfied for at least one real <i>x</i> then the greatest value of $a + b$ is (a) π (b) $\frac{\pi}{2}$ (c) 3π (d) 4π		(d) None of these			
31. If a, b are the real roots of $x^2 + px + 1 = 0$ and c, d are the real roots of $x^2 + qx + 1 = 0$, then $(a - c)(b - c)(a + d)(b + d)$ is divisible by (a) $a + b + c + d$ (b) $a + b - c - d$ (c) $a - b + c - d$ (d) $a - b - c - d$ 32. If $0 < a < 5$, $0 < b < 5$ and $\frac{x^2 + 5}{2} = x - 2\cos(a + bx)$ is satisfied for at least one real x then the greatest value of $a + b$ is (a) π (b) $\frac{\pi}{2}$ (c) 3π (d) 4π	30.	A quadratic equation w	hose roots are $\left(\frac{\gamma}{\alpha}\right)^2$ and $\left(\frac{\beta}{\alpha}\right)^2$,	where α , β , γ are the roots	of $x^3 + 27 = 0$, is
by (a) $a+b+c+d$ (b) $a+b-c-d$ (c) $a-b+c-d$ (d) $a-b-c-d$ (32. If $0 < a < 5$, $0 < b < 5$ and $\frac{x^2+5}{2} = x - 2\cos(a+bx)$ is satisfied for at least one real x then the greatest value of $a+b$ is (a) π (b) $\frac{\pi}{2}$ (c) 3π (d) 4π		(a) $x^2 - x + 1 = 0$	(b) $x^2 + 3x + 9 = 0$	(c) $x^2 + x + 1 = 0$	(d) $x^2 - 3x + 9 = 0$
(a) $a+b+c+d$ (b) $a+b-c-d$ (c) $a-b+c-d$ (d) $a-b-c-d$ (32. If $0 < a < 5, 0 < b < 5$ and $\frac{x^2+5}{2} = x - 2\cos(a+bx)$ is satisfied for at least one real x then the greatest value of $a+b$ is (a) π (b) $\frac{\pi}{2}$ (c) 3π (d) 4π	31.	If <i>a</i> , <i>b</i> are the real roots of x^2	+ px + 1 = 0 and <i>c</i> , <i>d</i> are the real roots	s of $x^2 + qx + 1 = 0$, then $(a - c)(b)$	(b-c)(a+d)(b+d) is divisible
32. If $0 < a < 5$, $0 < b < 5$ and $\frac{x^2 + 5}{2} = x - 2\cos(a + bx)$ is satisfied for at least one real x then the greatest value of $a + b$ is (a) π (b) $\frac{\pi}{2}$ (c) 3π (d) 4π		by			
(a) π (b) $\frac{\pi}{2}$ (c) 3π (d) 4π					
	32.	If $0 < a < 5, 0 < b < 5$ and	$\frac{x^2+5}{2} = x - 2\cos(a+bx)$ is satisfied	ed for at least one real x then th	e greatest value of $a+b$ is
33. $q(x^2 - y^2) + \lambda \{x(y+1)+1\}$ can be resolved into linear rational factors. Then		(a) <i>π</i>	(b) $\frac{\pi}{2}$	(c) 3 <i>π</i>	(d) 4π
$\mathbf{x}_{\mathbf{x}} = \mathbf{x}_{\mathbf{x}} = $	33.	$a(x^2 - y^2) + \lambda \{x(y+1)+1\}$	can be resolved into linear ratio	nal factors. Then	

	(a) $\lambda = 1$	(b) $\lambda = \frac{4a^2}{a-1}, a \neq 1$	(c) $\lambda = 0, a = 1$	(d) None of these
34.	If α , β are the roots of	the equation $x^2 + x + 3 = 0$ then	equation $3x^2 + 5x + 3 = 0$ has	as a root
	(a) $\frac{\alpha}{\beta}$	(b) $\frac{\beta}{\alpha}$	(c) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$	(d) None f these
35.	If α , β are the roots of	$x^2 - 2ax + b^2 = 0$ and γ , δ are the	he roots of $x^2 - 2bx + a^2 = 0$,	then
	(a) A.M. of α , β = G.M.	of γ, δ	(b)	G.M. of α , β = A.M. of γ , δ
	(c) α , β , γ , δ are in A.I.	2.	(d) α , β , γ , δ are in G.P.	
}6 .	If the roots of the equatio (a) -2	n $ax^{2} - 4x + a^{2} = 0$ are imaginary (b) 4	and the sum of the roots is equ (c) 2	al to their product then a is (d) None of these
			Conc	dition for common roots ()
		Basic L	evel	
37.	If equations $x^2 + bx + a$	$= 0$ and $x^2 + ax + b = 0$ have one	e root common and $a \neq b$, the	en
	(a) a + b = 1	(b) $a = b = 1$	(c) $a+b=1$	[Rajasthan PET 1992; IIT 1986] (d) $a+b=0$
۰Q		(b) $a-b=1$ $\lambda = 0$ and $2x^2 + 3x + 5\lambda = 0$ have c	(c) $a+b=-1$	(d) $a+b=0$
50.	(a) 2	(b) -1	(c) 1	(d) 3
		$a^2 + bx - 10 = 0$ have a common re-		
(9 .	11 x + ax + 10 = 0 and y	10 = 0 have a common re-		
39.	(a) 10 (a) 10	(b) 20	(c) 30	(d) 40
	(a) 10		(c) 30	(d) 40 f $(a_1b_2 - a_2b_1).(b_1c_2 - c_1b_2)$ is
	(a) 10 If two equations $a_1x^2 + b_1x$	(b) 20 + $c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ has	(c) 30 ave a common root, then the value of	(d) 40 f $(a_1b_2 - a_2b_1).(b_1c_2 - c_1b_2)$ is [Roorkee 1992]
40 .	(a) 10 If two equations $a_1 x^2 + b_1 x$ (a) $-(a_1 c_2 - a_2 c_1)^2$	(b) 20 + $c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ ha (b) $(a_1a_2 - c_1c_2)^2$	(c) 30 ave a common root, then the value of (c) $(a_1c_1 - a_2c_2)^2$	(d) 40 f $(a_1b_2 - a_2b_1).(b_1c_2 - c_1b_2)$ is [Roorkee 1992] (d) $(a_1c_2 - c_1a_2)^2$
40 .	(a) 10 If two equations $a_1x^2 + b_1x^2$ (a) $-(a_1c_2 - a_2c_1)^2$ If the roots of $a_1x^2 + b_1$	(b) 20 + $c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ ha (b) $(a_1a_2 - c_1c_2)^2$ $x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$	(c) 30 ave a common root, then the value of (c) $(a_1c_1 - a_2c_2)^2$ are the same, then	(d) 40 f $(a_1b_2 - a_2b_1).(b_1c_2 - c_1b_2)$ is [Roorkee 1992]
40 .	(a) 10 If two equations $a_1 x^2 + b_1 x$ (a) $-(a_1 c_2 - a_2 c_1)^2$	(b) 20 + $c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ ha (b) $(a_1a_2 - c_1c_2)^2$ $x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$	(c) 30 ave a common root, then the value of (c) $(a_1c_1 - a_2c_2)^2$	(d) 40 f $(a_1b_2 - a_2b_1).(b_1c_2 - c_1b_2)$ is [Roorkee 1992] (d) $(a_1c_2 - c_1a_2)^2$
10 .	(a) 10 If two equations $a_1x^2 + b_1x^2$ (a) $-(a_1c_2 - a_2c_1)^2$ If the roots of $a_1x^2 + b_1$	(b) 20 + $c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ ha (b) $(a_1a_2 - c_1c_2)^2$ $x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$	(c) 30 ave a common root, then the value of (c) $(a_1c_1 - a_2c_2)^2$ are the same, then	(d) 40 f $(a_1b_2 - a_2b_1).(b_1c_2 - c_1b_2)$ is [Roorkee 1992] (d) $(a_1c_2 - c_1a_2)^2$ [Kurukshetra CEE 1995]
40. 41.	(a) 10 If two equations $a_1 x^2 + b_1 x$ (a) $-(a_1 c_2 - a_2 c_1)^2$ If the roots of $a_1 x^2 + b_1$ (a) $a_1 = a_2, b_1 = b_2, c_1 = c_1$ (c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	(b) 20 + $c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ has (b) $(a_1a_2 - c_1c_2)^2$ $x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ c_2 therefore $(k^2 + 1)x^2 + 13x + 4k = 0$ is real	(c) 30 ave a common root, then the value of (c) $(a_1c_1 - a_2c_2)^2$ are the same, then (b) $c_1 = c_2 = 0$ (d) $a_1 = b_1 = c_1; a_2 = b_2 = c_1$	(d) 40 f $(a_1b_2 - a_2b_1).(b_1c_2 - c_1b_2)$ is [Roorkee 1992] (d) $(a_1c_2 - c_1a_2)^2$ [Kurukshetra CEE 1995] c_2
10. 11. 12.	(a) 10 If two equations $a_1 x^2 + b_1 x$ (a) $-(a_1 c_2 - a_2 c_1)^2$ If the roots of $a_1 x^2 + b_1$ (a) $a_1 = a_2, b_1 = b_2, c_1 = a_1$ (c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ If one root of the equation (a) $-2 + \sqrt{3}$	(b) 20 + $c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ has (b) $(a_1a_2 - c_1c_2)^2$ $x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ c_2 tion $(k^2 + 1)x^2 + 13x + 4k = 0$ is real (b) $2 - \sqrt{3}$	(c) 30 we a common root, then the value of (c) $(a_1c_1 - a_2c_2)^2$ are the same, then (b) $c_1 = c_2 = 0$ (d) $a_1 = b_1 = c_1; a_2 = b_2 = c_1$ ciprocal of the other then k (c) 1	(d) 40 f $(a_1b_2 - a_2b_1).(b_1c_2 - c_1b_2)$ is [Roorkee 1992] (d) $(a_1c_2 - c_1a_2)^2$ [Kurukshetra CEE 1995] c_2
40. 41. 42.	(a) 10 If two equations $a_1 x^2 + b_1 x$ (a) $-(a_1 c_2 - a_2 c_1)^2$ If the roots of $a_1 x^2 + b_1$ (a) $a_1 = a_2, b_1 = b_2, c_1 = a_1$ (c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ If one root of the equation (a) $-2 + \sqrt{3}$	(b) 20 + $c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ has (b) $(a_1a_2 - c_1c_2)^2$ $x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ c_2 therefore $(k^2 + 1)x^2 + 13x + 4k = 0$ is real	(c) 30 we a common root, then the value of (c) $(a_1c_1 - a_2c_2)^2$ are the same, then (b) $c_1 = c_2 = 0$ (d) $a_1 = b_1 = c_1; a_2 = b_2 = c_1$ ciprocal of the other then k (c) 1	(d) 40 f $(a_1b_2 - a_2b_1).(b_1c_2 - c_1b_2)$ is [Roorkee 1992] (d) $(a_1c_2 - c_1a_2)^2$ [Kurukshetra CEE 1995] c_2 has the value
ļ0. ļ1.	(a) 10 If two equations $a_1 x^2 + b_1 x$ (a) $-(a_1 c_2 - a_2 c_1)^2$ If the roots of $a_1 x^2 + b_1$ (a) $a_1 = a_2, b_1 = b_2, c_1 = a_1$ (c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ If one root of the equation (a) $-2 + \sqrt{3}$	(b) 20 + $c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ has (b) $(a_1a_2 - c_1c_2)^2$ $x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ c_2 tion $(k^2 + 1)x^2 + 13x + 4k = 0$ is real (b) $2 - \sqrt{3}$	(c) 30 we a common root, then the value of (c) $(a_1c_1 - a_2c_2)^2$ are the same, then (b) $c_1 = c_2 = 0$ (d) $a_1 = b_1 = c_1; a_2 = b_2 = c_1$ ciprocal of the other then k (c) 1	(d) 40 f $(a_1b_2 - a_2b_1).(b_1c_2 - c_1b_2)$ is [Roorkee 1992] (d) $(a_1c_2 - c_1a_2)^2$ [Kurukshetra CEE 1995] c_2 has the value
40. 41. 42. 43.	(a) 10 If two equations $a_1 x^2 + b_1 x$ (a) $-(a_1 c_2 - a_2 c_1)^2$ If the roots of $a_1 x^2 + b_1$ (a) $a_1 = a_2, b_1 = b_2, c_1 = a_1$ (c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ If one root of the equation (a) $-2 + \sqrt{3}$ If the product of the root (a) $\pm 2\sqrt{2}$	(b) 20 $+c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ have (b) $(a_1a_2 - c_1c_2)^2$ $x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ $= c_2$ tion $(k^2 + 1)x^2 + 13x + 4k = 0$ is real (b) $2 - \sqrt{3}$ ots of the equation $x^2 - 5x + 4^{\log 3}$	(c) 30 we a common root, then the value of (c) $(a_1c_1 - a_2c_2)^2$ are the same, then (b) $c_1 = c_2 = 0$ (d) $a_1 = b_1 = c_1; a_2 = b_2 = c_1^2$ ciprocal of the other then k (c) 1 $2^{\lambda} = 0$ is 8 then λ is (c) 3	(d) 40 f $(a_1b_2 - a_2b_1).(b_1c_2 - c_1b_2)$ is [Roorkee 1992] (d) $(a_1c_2 - c_1a_2)^2$ [Kurukshetra CEE 1995] c_2 has the value (d) None of these
10. 11. 12.	(a) 10 If two equations $a_1 x^2 + b_1 x$ (a) $-(a_1 c_2 - a_2 c_1)^2$ If the roots of $a_1 x^2 + b_1$ (a) $a_1 = a_2, b_1 = b_2, c_1 = a_1$ (c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ If one root of the equation (a) $-2 + \sqrt{3}$ If the product of the root (a) $\pm 2\sqrt{2}$	(b) 20 $+c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ have (b) $(a_1a_2 - c_1c_2)^2$ $x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ $= c_2$ find $(k^2 + 1)x^2 + 13x + 4k = 0$ is real (b) $2 - \sqrt{3}$ obtain $x^2 - 5x + 4^{\log 3}$ (b) $2\sqrt{2}$	(c) 30 we a common root, then the value of (c) $(a_1c_1 - a_2c_2)^2$ are the same, then (b) $c_1 = c_2 = 0$ (d) $a_1 = b_1 = c_1; a_2 = b_2 = c_1^2$ ciprocal of the other then k (c) 1 $2^{\lambda} = 0$ is 8 then λ is (c) 3	(d) 40 f $(a_1b_2 - a_2b_1).(b_1c_2 - c_1b_2)$ is [Roorkee 1992] (d) $(a_1c_2 - c_1a_2)^2$ [Kurukshetra CEE 1995] c_2 has the value (d) None of these
40. 41. 42. 43.	(a) 10 If two equations $a_1x^2 + b_1x$ (a) $-(a_1c_2 - a_2c_1)^2$ If the roots of $a_1x^2 + b_1$ (a) $a_1 = a_2, b_1 = b_2, c_1 = a_1$ (c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ If one root of the equation (a) $-2 + \sqrt{3}$ If the product of the root (a) $\pm 2\sqrt{2}$ If the absolute value of (a) $p < -1$ or $p > 4$	(b) 20 $+c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ have (b) $(a_1a_2 - c_1c_2)^2$ $x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ $+c_2$ therefore $(k^2 + 1)x^2 + 13x + 4k = 0$ is reac (b) $2 - \sqrt{3}$ outs of the equation $x^2 - 5x + 4^{\log 3}$ (b) $2\sqrt{2}$ The difference of roots of the equation	(c) 30 we a common root, then the value of (c) $(a_1c_1 - a_2c_2)^2$ are the same, then (b) $c_1 = c_2 = 0$ (d) $a_1 = b_1 = c_1; a_2 = b_2 = 0$ ciprocal of the other then k (c) 1 $2^{\lambda} = 0$ is 8 then λ is (c) 3 quation $x^2 + px + 1 = 0$ exceed (c) -1	(d) 40 f $(a_1b_2 - a_2b_1).(b_1c_2 - c_1b_2)$ is [Roorkee 1992] (d) $(a_1c_2 - c_1a_2)^2$ [Kurukshetra CEE 1995] c_2 has the value (d) None of these (d) None of these eds $\sqrt{3p}$ then (d) $0 \le p < 4$
40. 41. 42. 43.	(a) 10 If two equations $a_1x^2 + b_1x$ (a) $-(a_1c_2 - a_2c_1)^2$ If the roots of $a_1x^2 + b_1$ (a) $a_1 = a_2, b_1 = b_2, c_1 = a_1$ (c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ If one root of the equation (a) $-2 + \sqrt{3}$ If the product of the root (a) $\pm 2\sqrt{2}$ If the absolute value of (a) $p < -1$ or $p > 4$	(b) 20 $+c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ have (b) $(a_1a_2 - c_1c_2)^2$ $x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ $= c_2$ find $(k^2 + 1)x^2 + 13x + 4k = 0$ is real (b) $2 - \sqrt{3}$ outs of the equation $x^2 - 5x + 4^{\log 3}$ (b) $2\sqrt{2}$ The difference of roots of the equation (b) $p > 4$	(c) 30 we a common root, then the value of (c) $(a_1c_1 - a_2c_2)^2$ are the same, then (b) $c_1 = c_2 = 0$ (d) $a_1 = b_1 = c_1; a_2 = b_2 = 0$ ciprocal of the other then k (c) 1 $2^{\lambda} = 0$ is 8 then λ is (c) 3 quation $x^2 + px + 1 = 0$ exceed (c) -1	(d) 40 f $(a_1b_2 - a_2b_1).(b_1c_2 - c_1b_2)$ is [Roorkee 1992] (d) $(a_1c_2 - c_1a_2)^2$ [Kurukshetra CEE 1995] c_2 has the value (d) None of these (d) None of these eds $\sqrt{3p}$ then (d) $0 \le p < 4$
40. 41. 42. 43. 44.	(a) 10 If two equations $a_1x^2 + b_1x^2$ (a) $-(a_1c_2 - a_2c_1)^2$ If the roots of $a_1x^2 + b_1$ (a) $a_1 = a_2, b_1 = b_2, c_1 = a_1$ (c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ If one root of the equation (a) $-2 + \sqrt{3}$ If the product of the root (a) $\pm 2\sqrt{2}$ If the absolute value of (a) $p < -1$ or $p > 4$ If α, β are roots of x^2 (a) $q + r$	(b) 20 $+c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ have (b) $(a_1a_2 - c_1c_2)^2$ $x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ $= c_2$ find $(k^2 + 1)x^2 + 13x + 4k = 0$ is reac (b) $2 - \sqrt{3}$ ots of the equation $x^2 - 5x + 4^{\log 3}$ (b) $2\sqrt{2}$ f the difference of roots of the equation (b) $p > 4$ $+ px + q = 0$ and γ , δ are the roots	(c) 30 Ave a common root, then the value of (c) $(a_1c_1 - a_2c_2)^2$ are the same, then (b) $c_1 = c_2 = 0$ (d) $a_1 = b_1 = c_1$; $a_2 = b_2 = c_1$ ciprocal of the other then k (c) 1 $2^{\lambda} = 0$ is 8 then λ is (c) 3 quation $x^2 + px + 1 = 0$ exceents (c) $-1 ts of x^2 + px - r = 0, then (\alpha(c) -(q + r)$	(d) 40 (d) 40 (a ₁ b ₂ - a ₂ b ₁).(b ₁ c ₂ - c ₁ b ₂) is [Roorkee 1992] (d) $(a_1c_2 - c_1a_2)^2$ [Kurukshetra CEE 1995] (c ₂ has the value (d) None of these (d) None of these eds $\sqrt{3p}$ then (d) $0 \le p < 4$ $-\gamma)(\alpha - \delta)$ is equal to (d) $-(p + q + r)$
40. 41. 42. 43. 44. 45.	(a) 10 If two equations $a_1x^2 + b_1x$ (a) $-(a_1c_2 - a_2c_1)^2$ If the roots of $a_1x^2 + b_1$ (a) $a_1 = a_2, b_1 = b_2, c_1 = a_1$ (c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ If one root of the equation (a) $-2 + \sqrt{3}$ If the product of the root (a) $\pm 2\sqrt{2}$ If the absolute value of (a) $p < -1$ or $p > 4$ If α, β are roots of x^2 (a) $q + r$ If the equation $2x^2 + 3$. (a) 0	(b) 20 $+c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ have (b) $(a_1a_2 - c_1c_2)^2$ $x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ $= c_2$ find $(k^2 + 1)x^2 + 13x + 4k = 0$ is reac (b) $2 - \sqrt{3}$ ots of the equation $x^2 - 5x + 4^{\log 3}$ (b) $2\sqrt{2}$ The difference of roots of the equation (b) $p > 4$ $+ px + q = 0$ and γ , δ are the root (b) $q - r$ $x + 5\lambda = 0$ and $x^2 + 2x + 3\lambda = 0$ have (b) -1	(c) 30 Ave a common root, then the value of (c) $(a_1c_1 - a_2c_2)^2$ are the same, then (b) $c_1 = c_2 = 0$ (d) $a_1 = b_1 = c_1; a_2 = b_2 = 0$ ciprocal of the other then k (c) 1 $2^{\lambda} = 0$ is 8 then λ is (c) 3 quation $x^2 + px + 1 = 0$ excees (c) $-1 ts of x^2 + px - r = 0, then (\alpha(c) -(q + r)ave a common root, then \lambda =(c) 0, -1$	(d) 40 f $(a_1b_2 - a_2b_1).(b_1c_2 - c_1b_2)$ is [Roorkee 1992] (d) $(a_1c_2 - c_1a_2)^2$ [Kurukshetra CEE 1995] c_2 has the value (d) None of these (d) None of these (d) None of these eds $\sqrt{3p}$ then (d) $0 \le p < 4$ $-\gamma)(\alpha - \delta)$ is equal to (d) $-(p + q + r)$ [Rajasthan PET 1989] (d) 2, -1
40. 41. 42. 43. 44. 45.	(a) 10 If two equations $a_1x^2 + b_1x$ (a) $-(a_1c_2 - a_2c_1)^2$ If the roots of $a_1x^2 + b_1$ (a) $a_1 = a_2, b_1 = b_2, c_1 = a_1$ (c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ If one root of the equation (a) $-2 + \sqrt{3}$ If the product of the root (a) $\pm 2\sqrt{2}$ If the absolute value of (a) $p < -1$ or $p > 4$ If α, β are roots of x^2 (a) $q + r$ If the equation $2x^2 + 3$. (a) 0	(b) 20 $+c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ have (b) $(a_1a_2 - c_1c_2)^2$ $x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ $+c_2$ from $(k^2 + 1)x^2 + 13x + 4k = 0$ is reac (b) $2 - \sqrt{3}$ outs of the equation $x^2 - 5x + 4^{\log 3}$ (b) $2\sqrt{2}$ f the difference of roots of the equation (b) $p > 4$ $+px + q = 0$ and γ , δ are the root (b) $q - r$ $x + 5\lambda = 0$ and $x^2 + 2x + 3\lambda = 0$ have	(c) 30 Ave a common root, then the value of (c) $(a_1c_1 - a_2c_2)^2$ are the same, then (b) $c_1 = c_2 = 0$ (d) $a_1 = b_1 = c_1; a_2 = b_2 = d$ ciprocal of the other then k (c) 1 $2^{\lambda} = 0$ is 8 then λ is (c) 3 quation $x^2 + px + 1 = 0$ exceet (c) $-1 the of x^2 + px - r = 0, then (\alpha + 1)^2 + (1 $	(d) 40 (d) 40 (a ₁ b ₂ - a ₂ b ₁).(b ₁ c ₂ - c ₁ b ₂) is [Roorkee 1992] (d) $(a_1c_2 - c_1a_2)^2$ [Kurukshetra CEE 1995] (c ₂ has the value (d) None of these (d) None of these (d) None of these eds $\sqrt{3p}$ then (d) $0 \le p < 4$ $-\gamma)(\alpha - \delta)$ is equal to (d) $-(p + q + r)$ [Rajasthan PET 1989] (d) 2, -1 He (where $p \ne \alpha$ and $q \ne \beta$)
40. 41. 42. 43. 44. 45.	(a) 10 If two equations $a_1x^2 + b_1x$ (a) $-(a_1c_2 - a_2c_1)^2$ If the roots of $a_1x^2 + b_1$ (a) $a_1 = a_2, b_1 = b_2, c_1 = a_1$ (c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ If one root of the equation (a) $-2 + \sqrt{3}$ If the product of the root (a) $\pm 2\sqrt{2}$ If the absolute value of (a) $p < -1$ or $p > 4$ If α, β are roots of x^2 (a) $q + r$ If the equation $2x^2 + 3$. (a) 0	(b) 20 $+c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ have (b) $(a_1a_2 - c_1c_2)^2$ $x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ $= c_2$ find $(k^2 + 1)x^2 + 13x + 4k = 0$ is reac (b) $2 - \sqrt{3}$ ots of the equation $x^2 - 5x + 4^{\log 3}$ (b) $2\sqrt{2}$ The difference of roots of the equation (b) $p > 4$ $+ px + q = 0$ and γ , δ are the root (b) $q - r$ $x + 5\lambda = 0$ and $x^2 + 2x + 3\lambda = 0$ have (b) -1	(c) 30 Ave a common root, then the value of (c) $(a_1c_1 - a_2c_2)^2$ are the same, then (b) $c_1 = c_2 = 0$ (d) $a_1 = b_1 = c_1; a_2 = b_2 = d$ ciprocal of the other then k (c) 1 $2^{\lambda} = 0$ is 8 then λ is (c) 3 quation $x^2 + px + 1 = 0$ exceet (c) $-1 the of x^2 + px - r = 0, then (\alpha + 1)^2 + (1 $	(d) 40 f $(a_1b_2 - a_2b_1).(b_1c_2 - c_1b_2)$ is [Roorkee 1992] (d) $(a_1c_2 - c_1a_2)^2$ [Kurukshetra CEE 1995] c_2 has the value (d) None of these (d) None of these (d) None of these eds $\sqrt{3p}$ then (d) $0 \le p < 4$ $-\gamma)(\alpha - \delta)$ is equal to (d) $-(p + q + r)$ [Rajasthan PET 1989] (d) 2, -1

			t 1	1
348.	If $ax^2 + bx + c = 0$ and bx	$a^{2} + cx + a = 0$ have a common roo	t and $a \neq 0$, then $\frac{a^3 + b^3 + abc}{abc}$	$\frac{c^3}{c^3} =$ [IIT 1982; MNR 1983]
	(a) 1	(b) 2	(c) 3	(d) None of these
349.	If the equation $x^2 + px + px$	$q = 0$ and $x^2 + qx + p = 0$, have	a common root, then $p+q$	y + 1 = [Orissa JEE 2002
	(a) 0	(b) 1	(c) 2	(d) -1
		Advance	Level	
350.	If every pair from amor then the product of thre	ng the equation $x^2 + px + qr = 0$, e common roots is	$x^{2} + qx + rp = 0$ and $x^{2} + qx + rp = 0$	rx + pq = 0 has a common roo
	(a) <i>pqr</i>	(b) 2 <i>pqr</i>	(c) $p^2 q^2 r^2$	(d) None of these
351.	If the equation $x^2 + px + roots$ are respectively	$qr = 0$ and $x^2 + qx + pr = 0$ have	a common root, then the	sum and product of their othe
	(a) <i>r, pq</i>	(b) <i>-r, pq</i>	(c) <i>pq, r</i>	(d) <i>-pq, r</i>
3 52.		h the equations $x^3 + ax + 1 = 0$ a		
	(a) 2	(b) -2	(c) 0	(d) None of these
53.	-	$c = 0$ and $cx^2 + bx + a = 0$, $a \neq c$ has	U U	
	(a) 0	(b) 2	(c) 1	(d) None of these
54.		$+bx + a = 0, a \neq b$, have a comm		
	(a) $a+b=1$	(b) $\alpha + 1 = 0$	(c) $\alpha = 1$	(d) $a+b+1=0$
55.		ation $2x(2x+1) = 1$ then the other		
	. ,	(b) $-2\alpha(\alpha + 1)$		(d) None of these
56.	The common roots of the equat	ions $x^{3} + 2x^{2} + 2x + 1 = 0$ and $1 + x$		s a nonreal cube root of unity)
	(a) ω	(b) ω^2	(c) -1	(d) $\omega - \omega^2$
57.	If <i>a</i> , <i>b</i> , <i>c</i> are rational an	d no two of them are equal the	the equations $(b-c)x^2 + c$	$(c-a)x + a - b = 0$ and $a(b-c)x^2$
	b(c-a)x + c(a-b) = 0			
	(a) Have rational roots(c) Have exactly one root		(b) Will be such at least(d) Have at least one root	ot common
58.	If the equations $ax^2 + bx$ (a) $a = b \neq c$	+ $c = 0$ and $x^3 + 3x^2 + 3x + 2 = 0$ (b) $a = -b = c$		(d) None of these
		(b) $a = -b = c$ $a = 0$ and $x^3 - 2x^2 + 2x - 1 = 0$ has		
	(a) 1	(b) -1	(c) 0	(d) None of these
60.	If <i>a</i> , <i>b</i> , <i>c</i> are in G.P. then the	e equations $ax^2 + 2bx + c = 0$ and c	$dx^2 + 2ex + f = 0$ have a commute	mon root if $\frac{a}{a}, \frac{c}{b}, \frac{f}{c}$ are in
	(a) A.P.	(b) G.P.	(c) H.P.	T 1985; Pb. CET 2000; DCE 200 (d) None of these
61.	If the equations $x^2 + ix + ix$	$a = 0$, $x^2 - 2x + ia = 0$, $a \neq 0$ hav	e a common root then	
	(a) a is real		(b) $a = \frac{1}{2} + i$	
	(c) $a = \frac{1}{2} - i$		(d) The other root is als	o common
62.		, 2, 3 are three quadratic equa	tions of which each pair	has exactly one root commo
	then the number of solu	tions of the triplet (p_1, p_2, p_3) is		
_	(a) 2	(b) 1	(c) 9	(d) 27
63.	If <i>x</i> , <i>y</i> , <i>z</i> are three consecutive	terms of a G.P., where $x > 0$ and the co	mmon ratio is <i>r</i> , then the inequal	ity $z + 3x > 4y$ holds for

	(a) $r \in (-\infty, 1)$	(b) $r = \frac{24}{5}$	(c) $r \in (3, +\infty)$	(d) $r = \frac{1}{2}$
54.	If x is real, then the val	lue of $x^2 - 6x + 13$ will not be	e less then	[Rajasthan PET 1986]
	(a) 4	(b) 6	(c) 7	(d) 8
5 5.	If <i>x</i> be real, the least va	alue of $x^2 - 6x + 10$ is		[Kurukshetra CEE 1998]
	(a) 1	(b) 2	(c) 3	(d) 10
56.	The smallest value of x	$x^2 - 3x + 3$ in the interval (-3,	3/2) is	[EAMCET 1991]
	(a) 3/4	(b) 5	(c) -15	(d) -20
-	If $x = 2 + 2^{1/3} + 2^{2/3}$, the			
•/•	(a) 2	(b) -2	(c) 0	[Rajasthan PET 1995; MNR 1985] (d) 1
:0		inimum value of $x^2 - 8x + 17$		
0.		(b) O		[MNR 1980]
	(a) -1		(c) 1	(d) 2
9.		aximum value of $5 + 4x - 4x^2$		[MNR 1979]
	(a) 5	(b) 6	(c) 1	(d) 2
0.		c + c has the same sign as of c		[Kurukshetra CEE 1995]
	(a) $b^2 - 4ac > 0$		(b) $b^2 - 4ac = 0$	
	(c) $b^2 - 4ac \le 0$		(d) b and c have the	e same sign as <i>a</i> .
1.	The value of $x^2 + 2bx + bx$	c is positive if		[Roorkee 1995]
	(a) $b^2 - 4c > 0$		(c) $c^2 < b$	(d) $b^2 < c$
		nich $(a^2 - 1)x^2 + 2(a - 1)x + 2$ is	positive for any x are	[UPSEAT 2001]
72.			1	
72.		(b) $a < 1$	(c) $a > -3$	(d) $a < -3$ or $a > 1$
	(a) <i>a</i> ≥1		(c) <i>a</i> > -3	(d) <i>a</i> < -3 or <i>a</i> > 1 Quadratic Expressions
	(a) <i>a</i> ≥1		c Level	Quadratic Expressions
	(a) <i>a</i> ≥1	Basi	c Level	Quadratic Expressions
/3.	 (a) <i>a</i> ≥ 1 If <i>x</i> is real, then the matrix (a) 2, 1 	Basi	for Level s of the expression $\frac{x^2 - 3x}{x^2 + 3x}$ (c) 7, $\frac{1}{7}$	Quadratic Expressions $\frac{x+4}{x+4}$ will be [IIT 1984] (d) None of these
/3.	 (a) <i>a</i> ≥ 1 If <i>x</i> is real, then the matrix (a) 2, 1 If <i>x</i> is real, then the value 	Basi eximum and minimum values (b) 5, $\frac{1}{5}$ lue of $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ does not	for Level a of the expression $\frac{x^2 - 3x}{x^2 + 3x}$ (c) 7, $\frac{1}{7}$ lie between	Quadratic Expressions $\frac{2+4}{2+4}$ will be [IIT 1984] (d) None of these [Roorkee 1983, 89]
73. 74.	 (a) <i>a</i> ≥ 1 If <i>x</i> is real, then the matrix (a) 2, 1 If <i>x</i> is real, then the value (a) -9 and -5 	Basi eximum and minimum values (b) $5, \frac{1}{5}$ lue of $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ does not (b) -5 and 9	for <i>Level</i> s of the expression $\frac{x^2 - 3x}{x^2 + 3x}$ (c) 7, $\frac{1}{7}$ lie between (c) 0 and 9	Quadratic Expressions $\frac{x+4}{x+4}$ will be [IIT 1984] (d) None of these
'3. '4.	 (a) <i>a</i> ≥ 1 If <i>x</i> is real, then the matrix (a) 2, 1 If <i>x</i> is real, then the value (a) -9 and -5 	Basi eximum and minimum values (b) 5, $\frac{1}{5}$ lue of $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ does not	for <i>Level</i> s of the expression $\frac{x^2 - 3x}{x^2 + 3x}$ (c) 7, $\frac{1}{7}$ lie between (c) 0 and 9	Quadratic Expressions 2 + 4 will be [IIT 1984] (d) None of these [Roorkee 1983, 89]
3.	 (a) <i>a</i> ≥ 1 If <i>x</i> is real, then the matrix (a) 2, 1 If <i>x</i> is real, then the value (a) -9 and -5 	Basi eximum and minimum values (b) $5, \frac{1}{5}$ lue of $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ does not (b) -5 and 9	for <i>Level</i> s of the expression $\frac{x^2 - 3x}{x^2 + 3x}$ (c) 7, $\frac{1}{7}$ lie between (c) 0 and 9	Quadratic Expressions $\frac{2+4}{2+4}$ will be[IIT 1984](d) None of these[Roorkee 1983, 89]
3.	 (a) <i>a</i> ≥ 1 If <i>x</i> is real, then the matrix (a) 2, 1 If <i>x</i> is real, then the value (a) -9 and -5 	Basi eximum and minimum values (b) $5, \frac{1}{5}$ lue of $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ does not (b) -5 and 9	for <i>Level</i> s of the expression $\frac{x^2 - 3x}{x^2 + 3x}$ (c) 7, $\frac{1}{7}$ lie between (c) 0 and 9	Quadratic Expressions $\frac{2+4}{2+4}$ will be[IIT 1984](d) None of these[Roorkee 1983, 89]
73. 74.	 (a) <i>a</i> ≥ 1 If <i>x</i> is real, then the matrix (a) 2, 1 If <i>x</i> is real, then the value (a) -9 and -5 	Basi eximum and minimum values (b) $5, \frac{1}{5}$ lue of $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ does not (b) -5 and 9	for <i>Level</i> s of the expression $\frac{x^2 - 3x}{x^2 + 3x}$ (c) 7, $\frac{1}{7}$ lie between (c) 0 and 9	Quadratic Expressions $\frac{2+4}{2+4}$ will be [IIT 1984] (d) None of these [Roorkee 1983, 89]
73.	 (a) <i>a</i> ≥ 1 If <i>x</i> is real, then the matrix (a) 2, 1 If <i>x</i> is real, then the value (a) -9 and -5 	Basi eximum and minimum values (b) $5, \frac{1}{5}$ lue of $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ does not (b) -5 and 9	for <i>Level</i> s of the expression $\frac{x^2 - 3x}{x^2 + 3x}$ (c) 7, $\frac{1}{7}$ lie between (c) 0 and 9	Quadratic Expressions 2 + 4 will be [IIT 1984] (d) None of these [Roorkee 1983, 89]
73.	 (a) <i>a</i> ≥ 1 If <i>x</i> is real, then the matrix (a) 2, 1 If <i>x</i> is real, then the value (a) -9 and -5 	Basi eximum and minimum values (b) $5, \frac{1}{5}$ lue of $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ does not (b) -5 and 9	for <i>Level</i> s of the expression $\frac{x^2 - 3x}{x^2 + 3x}$ (c) 7, $\frac{1}{7}$ lie between (c) 0 and 9	Quadratic Expressions 2 + 4 will be [IIT 1984] (d) None of these [Roorkee 1983, 89]
73. 74.	 (a) <i>a</i> ≥ 1 If <i>x</i> is real, then the matrix (a) 2, 1 If <i>x</i> is real, then the value (a) -9 and -5 	Basi eximum and minimum values (b) $5, \frac{1}{5}$ lue of $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ does not (b) -5 and 9	for <i>Level</i> s of the expression $\frac{x^2 - 3x}{x^2 + 3x}$ (c) 7, $\frac{1}{7}$ lie between (c) 0 and 9	Quadratic Expressions 2 + 4 will be [IIT 1984] (d) None of these [Roorkee 1983, 89]
3. 4.	 (a) <i>a</i> ≥ 1 If <i>x</i> is real, then the matrix (a) 2, 1 If <i>x</i> is real, then the value (a) -9 and -5 	Basi Eximum and minimum values (b) 5, $\frac{1}{5}$ Hue of $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ does not (b) -5 and 9 Hows the graph of $y = ax^2 + bx$	for <i>Level</i> s of the expression $\frac{x^2 - 3x}{x^2 + 3x}$ (c) 7, $\frac{1}{7}$ lie between (c) 0 and 9	Quadratic Expressions 2 + 4 will be [IIT 1984] (d) None of these [Roorkee 1983, 89]
'3. '4.	 (a) <i>a</i> ≥ 1 If <i>x</i> is real, then the matrix (a) 2, 1 If <i>x</i> is real, then the value (a) -9 and -5 	Basi eximum and minimum values (b) $5, \frac{1}{5}$ lue of $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ does not (b) -5 and 9 hows the graph of $y = ax^2 + bx$	for <i>Level</i> s of the expression $\frac{x^2 - 3x}{x^2 + 3x}$ (c) 7, $\frac{1}{7}$ lie between (c) 0 and 9	Quadratic Expressions 2 + 4 will be [IIT 1984] (d) None of these [Roorkee 1983, 89]
'3. '4.	 (a) <i>a</i> ≥ 1 If <i>x</i> is real, then the matrix (a) 2, 1 If <i>x</i> is real, then the value (a) -9 and -5 	Basi Eximum and minimum values (b) 5, $\frac{1}{5}$ Hue of $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ does not (b) -5 and 9 Hows the graph of $y = ax^2 + bx$	for <i>Level</i> s of the expression $\frac{x^2 - 3x}{x^2 + 3x}$ (c) 7, $\frac{1}{7}$ lie between (c) 0 and 9	Quadratic Expressions 2 + 4 will be [IIT 1984] (d) None of these [Roorkee 1983, 89]
'3. '4.	 (a) <i>a</i> ≥ 1 If <i>x</i> is real, then the mathematical (a) 2, 1 If <i>x</i> is real, then the value (a) -9 and -5 The adjoining figure shows the adjoining f	Basi Eximum and minimum values (b) 5, $\frac{1}{5}$ Hue of $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ does not (b) -5 and 9 Hows the graph of $y = ax^2 + bx$	for Level s of the expression $\frac{x^2 - 3x}{x^2 + 3x}$ (c) 7, $\frac{1}{7}$ lie between (c) 0 and 9 + c. Then (b) $b^2 < 4ac$	Quadratic Expressions 2 + 4 will be (d) None of these [Roorkee 1983, 89] (d) 5 and 9
73. 74. 75.	(a) $a \ge 1$ If x is real, then the matrix (a) 2, 1 If x is real, then the value (a) -9 and -5 The adjoining figure shows (a) $a < 0$ (c) $c > 0$	Basic example and minimum values (b) 5, $\frac{1}{5}$ (b) 6, $\frac{1}{5}$ (c) $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ does not (c) -5 and 9 hows the graph of $y = ax^2 + bx$ (c) $\frac{y}{x^2 + 34x - 71}$ does not (c) $\frac{y}{x^2 + 2x - 7}$ does not (c) $\frac{y}{x^$	for Level s of the expression $\frac{x^2 - 3x}{x^2 + 3x}$ (c) 7, $\frac{1}{7}$ lie between (c) 0 and 9 + c. Then (b) $b^2 < 4ac$ (d) a and b are of op	Quadratic Expressions
73.	(a) $a \ge 1$ If x is real, then the matrix (a) 2, 1 If x is real, then the value (a) -9 and -5 The adjoining figure shows (a) $a < 0$ (c) $c > 0$ If $x + 2$ is a common factor	Basic eximum and minimum values (b) 5, $\frac{1}{5}$ thue of $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ does not (b) -5 and 9 hows the graph of $y = ax^2 + bx$ $y = \frac{1}{2} \int_{(x_1, 0)}^{1} \frac{1}{(x_2, 0)} \int_{(x_2, 0)}^{1} \frac{1}{(x_1, 0)} \frac{1}{(x_2, 0)} \int_{(x_2, 0)}^{1} \frac{1}{(x_1, 0)} \frac{1}{(x_2, 0)} \frac{1}{(x_2, 0)}$	for Level s of the expression $\frac{x^2 - 3x}{x^2 + 3x}$ (c) 7, $\frac{1}{7}$ lie between (c) 0 and 9 + c. Then (b) $b^2 < 4ac$ (d) a and b are of op px + r, then	Quadratic Expressions (111) <td< td=""></td<>
73. 74. 75.	(a) $a \ge 1$ If x is real, then the matrix (a) 2, 1 If x is real, then the value (a) -9 and -5 The adjoining figure shows (a) $a < 0$ (c) $c > 0$ If $x + 2$ is a common factor (a) $p = q = r$	Basic eximum and minimum values (b) 5, $\frac{1}{5}$ thue of $\frac{x^2 + 34x - 71}{x^2 + 2x - 7}$ does not (b) -5 and 9 hows the graph of $y = ax^2 + bx$ $y = \frac{1}{2} \int_{(x_1, 0)}^{1} \frac{1}{(x_2, 0)} \int_{(x_2, 0)}^{1} \frac{1}{(x_1, 0)} \frac{1}{(x_2, 0)} \int_{(x_2, 0)}^{1} \frac{1}{(x_1, 0)} \frac{1}{(x_2, 0)} \frac{1}{(x_2, 0)}$	s of the expression $\frac{x^2 - 3x}{x^2 + 3x}$ (c) 7, $\frac{1}{7}$ lie between (c) 0 and 9 + c. Then (b) $b^2 < 4ac$ (d) a and b are of op px + r, then (c) $p = r$ or $p + q + r$	Quadratic Expressions

			· · ·	1
	(a) 24	(b) 0, 24	(c) 3, 24	(d) 0, 3
378.	If $x^2 - 3x + 2$ is a factor	of $x^4 - px^2 + q$, then		[IIT 1974; MP PET 1995]
	(a) $p = 4, q = 5$	(b) $p = 5, q = 4$	(c) $p = -5, q = -4$	(d) None of these
79 .	If $x + 1$ is a factor of x^4	$-(p-3)x^{3} - (3p-5)x^{2} + (2p-7)x +$	6 , then p is equal to	[IIT 1975]
	(a) - 4	(b) 4	(C) -1	(d) 1
80.	If $x^2 + px + 1$ is a factor of	of the expression $ax^3 + bx + c$, the	nen	[IIT 1980]
	(a) $a^2 + c^2 = -ab$	(b) $a^2 - c^2 = -ab$	(c) $a^2 - c^2 = ab$	(d) None of these
81.	The condition that $x^3 - x^3$	3px + 2q may be divisible by a factor	actor of the form $x^2 + 2ax + a$	a ² is [AMU 2002]
	(a) $3p = 2q$	(b) $3p + 2q = 0$	(c) $p^3 = q^2$	(d) $27p^3 = 4q^2$
82.	If x be real then $\frac{(x-a)(x-a)}{x-a}$	$\frac{(b-b)}{c}$ will take all real values where $\frac{b}{c}$	nen [[IIT 1984; Karnataka CET 2002]
	(a) $a < b < c$		(c) <i>a</i> < <i>c</i> < <i>b</i>	(d) Always
;83.	Let $y = \sqrt{\frac{(x+1)(x-3)}{(x-2)}}$, the	en all real values of <i>x</i> for which	y takes real values, are	[IIT 1980]
	(a) $-1 \le x < 2$ or $x \ge 3$	(b) $-1 \le x < 3 \text{ or } x > 2$	(c) $1 \le x < 2$ or $x \ge 3$	(d) None of these
384.	The graph of the curve	$x^2 = 3x - y - 2$ is		
	(a) Between the lines <i>x</i>	-1 and x^3	(b) Between the lines $x =$	1 and $x = 2$
		2		
	(c) Strictly below the line		(d)	None of these
85.		of the expression $ax^3 + bx + c$ th		
	(a) $a^2 + c^2 = -ab$		(c) $a^2 - c^2 = ab$	
86.	If $x + \lambda y - 2$ and $x - \mu y +$	1 are factors of the expression	$6x^2 - xy - y^2 - 6x + 8y - 12$, t	then
	(a) $\lambda = \frac{1}{3}, \ \mu = \frac{1}{2}$	(b) $\lambda = 2, \ \mu = 3$	(c) $\lambda = \frac{1}{3}, \ \mu = -\frac{1}{2}$	(d) None of these
		Advance	Level	
87.	Given that, for all real	x, the expression $\frac{x^2 - 2x + 4}{x^2 + 2x + 4}$	lies between $\frac{1}{3}$ and 3. The	e values between which the
	expression $\frac{9.3^{2x} + 6.3^{x} + 6.3^{x}}{9.3^{2x} - 6.3^{x} + 6.3^{x}}$	$\frac{-4}{-4}$ lies are		[Karanataka CET 1998]
	(a) $\frac{1}{3}$ and 3	(b) -2 and O	(c) -1 and 1	(d) 0 and 2
	5			
88.	-	stinct, then $u = x^2 + 4y^2 + 9z^2 - 6$	-	[IIT 1979]
_	(a) Non-negative	(b) Non-positive	(c) Zero	(d) None of these
89.		wo factors of the expression λx^2		
	(a) $y + 3x$	(b) $y - 3x$	(c) $y - x$	(d) None of these
90.		the smallest possible value of		
91.	(a) 10 If α be the number of	(b) 30 solutions of equation $[\sin x] \neq x$	(c) 20 $ $, where $[x]$ denote the int	(d) None of these tegral part of x and m be the
	greatest value of $\cos(x^2)$	$+xe^{x} - [x]$) on the interval [-1, 1]],then	
	(a) $\alpha = m$	(b) $\alpha < m$	(c) $\alpha > m$	(d) $\alpha \neq m$
92.	If $f(x) = 3^x + 4^x + 5^x - 6^x$, then $f(x) < f(3)$ for		
fv	(a) Only one value of <i>x</i>	(b) No value of <i>x</i>	(c) Only two values of x	(d) Infinitely many values
of x				

393. If $f(x) = \sum_{n=1}^{100} a_n x^n$ and f(0) and f(1) are odd numbers, then for any integer x (a) f(x) is odd or even according as x is odd or even (b) f(x) is even or odd according as x is odd or even (c) f(x) is even for all integral values of x (d) f(x) is odd for all integral values of x **394.** If $x \in [2, 4]$ then for the expression $x^2 - 6x + 5 = 0$ (a) The least value = -4 (b) The greatest value = 4(c) The least value = 3(d) The greatest value = -3**395.** The value of 'a' for which $(a^2 - 1)x^2 + 2(a - 1)x + 2$ is positive for any x are (a) $a \ge 1$ (b) $a \le 1$ (c) $a \ge -3$ (d) $a \leq -3$ or $a \geq 1$ **396.** Let f(x) be a quadratic expression which is positive for all real values of x, then for all real x, 10[f(x) + f(-x)] is (a) > 0(b) ≥ 0 (c) < 0(d) ≤ 0 **397.** The constant term of the quadratic expression $\sum_{k=1}^{n} \left(x - \frac{1}{k+1}\right) \left(x - \frac{1}{k}\right)$ as $n \to \infty$ is (d) None of these (a) -1 (b) O **398.** Let $f(x) = (1 + b^2)x^2 + 2bx + 1$ and let m(b) be the minimum value of f(x). As b varies, the range of m(b) is (b) $\left[0, \frac{1}{2}\right]$ (c) $\left[\frac{1}{2}, 1\right]$ (a) [0, 1] (d) (0, 1] **399.** If p(x) be a polynomial satisfying the identity $p(x^2) + 2x^2 + 10x = 2xp(x+1) + 3$, then p(x) is given by (a) 2x + 3(b) 3x - 4(c) 3x + 2(d) 2x - 3**400.** Let $y = \frac{\sin x \cos 3x}{\cos x \sin 3x}$, then (a) y may be equal to $\frac{1}{2}$ (b) y may be equal to 3 (c) Set of possible value of y is $\left(-\infty, \frac{1}{3}\right) \cup (3, \infty)$ (d) Set of possible values of y is $\left(-\infty, \frac{1}{3}\right] \cup (3, \infty)$ **401.** If $a = \frac{x^2 - 2x + 4}{x^2 + 2x + 4}$, and equation of lines *AB* and *CD* be 3y = x and y = 3x respectively, then for all real x, point $P(a, a^2)$ (a) Lies in the acute angle between lines *AB* and *CD* (b) Lies in the obtuse angle between lines AB and CD (c) Cannot be in the acute angle between lines AB and CD Cannot lie in the obtuse (d) angle between lines AB and CD **Position of roots Basic Level 402.** If *a*, *b*, *c* are real numbers such that a+b+c=0, then the quadratic equation $3ax^2 + 2bx + c = 0$ has[MNR 1992; DCE 1995] (a) At least one root in [0, 1] At least one root in [1, 2](b) (c) At least one root in [-1, 0] (d) None of these **403.** The number of values of k for which the equation $x^2 - 3x + k = 0$ has two real and distinct roots lying in the interval (0, 1), are [UPSEAT 2001; Kurukshetra CEET 2002] (a) 0 (b) 2 (d) Infinitely many (c) 3 **404.** The value of k for which the equation $(k - 2)x^2 + 8x + k + 4 = 0$ has both real, distinct and negative is **[Orissa JEE 2002]** (a) 0 (b) 2 (c) 3 (d) -4

Advance Level

(a) $\gamma = \frac{\alpha + \beta}{\alpha + \beta}$	(b) $\gamma = \alpha + \frac{\beta}{2}$	(c) $\gamma = \alpha$	(d) $\alpha < \gamma < \beta$
2	2		
56. Let <i>a, b, c</i> be non	-zero real numbers such that	$\int_{0}^{0} (1 + \cos^{8} x)(ax^{2} + bx + c) dx$	$= \int_0^2 (1 + \cos^8 x)(ax^2 + bx + c) dx$, then t
	$ax^2 + bx + c = 0$ has		
(a) No root in (o, 2		D, 1) (c) A double root	in (0, 2) (d) Two imaginary roots
D7. For the equation 2.			
(a) Roots are ratio			$p + \sqrt{q}$ then the other is $-p + \sqrt{q}$
(c) Roots are irrat			$p + \sqrt{q}$ then the other is $p - \sqrt{q}$
	which both roots of the equation		
(a) $a > 2$	(b) $1 < a < 2$	(c) $-\infty < a < \infty$	(d) None of these
99. If <i>p</i> , <i>q</i> be non-zero	o real numbers and $f(x) \neq 0$ in [[0, 2] and $\int_0^1 f(x) \cdot (x^2 + px)$	$(x^{2} + q) dx = \int_{0}^{2} f(x) (x^{2} + px + q) dx = 0$ th
equation $x^2 + px + q$	q=0 has		
(a) Two imaginary		(b) No root in (0,	
	1) and other in (1, 2)		∞ , 0) and other in (2, ∞)
	nd $(b-1)^2 < 4ac$, then the number of re		fon (in three unknowns x_1, x_2, x_3)
•	$a_1 + c = x_2, \ ax_2^2 + bx_2 + c = x_3, \ ax_3^2$	9	
(a) O π	(b) 1	(c) 2	(d) 3
1. If $0 < \alpha < \frac{\alpha}{4}$, equation	on $(x - \sin \alpha)(x - \cos \alpha) - 2 = 0$ has		
(a) Both roots in (s		(b) Both roots in	
	$(\sin \alpha, \infty)$ and other in $(\sin \alpha, \infty)$		∞ , sin α) and other in $(\cos \alpha, \infty)$
2. For equation $x^3 - 6$ (a) (- 4, 0)	$5x^{2} + 9x + k = 0$ to have exactly or (b) (1, 3)	ne root in (1, 3), the set c (c) (0, 4)	of values of <i>k</i> is (d) None of these
3. Let $f(x) = x - 6x + 6x$	$-3(1+\pi)x+7$, $p > q > r$, then $\frac{\{x-j\}}{2}$	x - f(q) has no value	
(a) (p, q)	(b) (q, r)	(C) (<i>r</i> ,∞)	(d) None of these
), then equation $ax^2 + bx + c = 0$		
(a) At least one roo(c) At least one roo		(b) (d)	At least one root in (0, 2) None of these
	as two distinct real roots in (0, 1		
(a) $= a^2$	(b) $< a^2$	(c) $> a^2$	(d) $\geq a^2$
		Sol	ution of Quadratic inequations
	Pag	ic Level	
	Das	ic Level	

(a) a < x < b(b) x < a or x > b(c) -b < x < -a(d) x < -b or x < -a**417.** The solution of $6 + x - x^2 > 0$ is
(a) -1 < x < 2(b) -2 < x < 3(c) -2 < x < -1(d) None of these

418.	For all $x \in R$, if $mx^2 - 9n$	nx + 5m + 1 > 0, then <i>m</i> lies in the	e interval	[AMU 1989]
	(a) $\left(-\frac{4}{61}, 0\right)$	(b) $\left[0, \frac{4}{61}\right]$	(c) $\left(\frac{4}{61}, \frac{61}{4}\right)$	(d) $\left(-\frac{61}{4}, 0\right]$
419.	If $x^2 - 1$ is a factor of x^2	$x^{4} + ax^{3} + 3x - b$, then		
	(a) $a = 3, b = -1$	(b) $a = -3, b = 1$	(c) $a = 3, b = 1$	(d) None of these
420.	If $(x-1)^3$ is factor of x^4	$+ax^3 + bx^2 + cx - 1$ then the other	er factor is	
	(a) $x - 3$	(b) $x + 1$	(c) $x + 2$	(d) None of these
421.	The set of values of x wl	nich satisfy $5x + 2 < 3x + 8$ and $\frac{x}{x}$	$\frac{x+2}{x-1} < 4$, is	[EAMCET 1989]
	(a) (2, 3)	(b) (−∞, 1)∪(2, 3)	(c) (-∞, 1)	(d) (1, 3)
422.	The solution of the equa	tion $2x^2 + 3x - 9 \le 0$ is given by		[Kurukshetra CEE 1998]
	(a) $\frac{3}{2} \le x \le 3$	(b) $-3 \le x \le \frac{3}{2}$	(c) $-3 \le x \le 3$	(d) $\frac{3}{2} \le x \le 2$
423.	The complete solution of	f the inequation $x^2 - 4x < 12$ is		[AMU 1999]
	(a) $x < -2$ or $x > 6$	(b) $-6 < x < 2$	(c) $2 < x < 6$	(d) $-2 < x < 6$
424.	If <i>x</i> is real and satisfies	$x+2 > \sqrt{x+4}$, then		[AMU 1999]
	(a) $x < -2$	(b) $x > 0$	(c) $-3 < x < 0$	(d) $-3 < x < 4$
425.	If $a < 0$ then the inequal	ity $ax^2 - 2x + 4 > 0$ has the solut	ion represented by	[AMU 2001]
	(a) $\frac{1+\sqrt{1-4a}}{a} > x > \frac{1-\sqrt{1-4a}}{a}$	$\frac{\sqrt{1-4a}}{a}$	(b) $x < \frac{1 - \sqrt{1 - 4a}}{a}$	
	(c) $x < 2$		(d) $2 > x > \frac{1 + \sqrt{1 - 4a}}{a}$	

Advance Level

426.	If x satisfies $ x-1 + x$	$ -2 + x-3 \ge 6$, then		
	(a) $0 \le x \le 4$	(b) $x \le -2 \text{ or } x \ge 4$	(c) $x \le 0$	(d) None of these
427.	The number of positive i	ntegral solutions of $\frac{x^2(3x-4)^3(x-4)}{(x-5)^5(2x-4)^3}$	$(x-2)^4 = 0$ is	
	(a) 4	(b) 3	(c) 2	(d) 1
428.	If $5^x + (2\sqrt{3})2^x \ge 13^x$, then	the solution set for x is		
	(a) [2,∞)	(b) {2}	(c) (-∞, 2]	(d) [0, 2]
429.	The inequality $ 2x-3 < 2$	1 is valid when x lies in		[IIT 1993]
	(a) (3, 4)	(b) (1, 2)	(C) (-1, 2)	(d) (-4, 3)
430.	The graph of the function <i>y</i>	$y = 16x^2 + 8(a+5)x - 7a - 5$ is strictly	y above the <i>x</i> -axis, then 'a' mus	st satisfy the inequality
	(a) $-15 < a < -2$	(b) $-2 < a < -1$	(c) 5 < a < 7	(d) None of these
431.	If x is a real number su	ach that $x(x^2 + 1), (-1/2)x^2, 6$ are	e three consecutive terms o	of an A.P. then the next two
	consecutive term of the	A.P. are		
	(a) 14, 6	(b) -2, -10	(c) 14, 22	(d) None of these
432.	If <i>x, y</i> are rational numb	there such that $x + y + (x - 2y)\sqrt{2} =$	$2x - y + (x - y - 1)\sqrt{6}$, then	
	(a) x and y connot be de	termined	(b) $x = 2, y = 1$	
	(c) $x = 5, y = 1$		(d) None of these	

433 .				
	If $[x] =$ the greatest interval $[x]^2 + (x)^2 > 25$ then x below $[x]^2 + (x)^2 = 25$ then $x = 10^{-10}$	erger less than or equal to x , ar	ad (x) = the least integer gre	eatest than or equal to x and
	(a) $[3, 4]$	(b) $(-\infty, -4]$	(c) $[4, +\infty)$	(d) $(-\infty, -4] \cup [4, +\infty)$
434.		x satisfying $ x-1 \le 3$ and $ x-1 \le 3$	$1 \geq 1$ is	
	(a) [2, 4]	(b) $(-\infty, 2] \cup [4, +\infty)$		(d) None of these
435.	The set of real values of	x satisfying $ x-1 -1 \le 1$ is		
	(a) [-1, 3]	(b) [0, 2]	(c) [-1, 1]	(d) None of these
436.		ers) such that $x^2 - 3x < 4$ then the		
19-1	(a) 3	(b) 4	(c) 6	(d) None of these
437 .	If x is an interger satisfy	ing $x^2 - 6x + 5 \le 0$ and $x^2 - 2x >$	0 then the number of possil	ole values of x is
	(a) 3	(b) 4	(c) 2	(d) Infinite
438.	The solution set of the ir	neuation $\log_{1/3}(x^2 + x + 1) + 1 > 0$ is		
	(a) $(-\infty, -2) \cup (1, +\infty)$	(b) [-1, 2]	(c) (-2, 1)	(d) $(-\infty, +\infty)$
439 .	If $3^{x/2} + 2^x > 25$ then the	solution set is		
	(a) <i>R</i>	(b) $(2, +\infty)$	(c) $(4, +\infty)$	(d) None of these
440.	The solution set of $\frac{x^2 - x}{x}$	$\frac{3x+4}{x+1} > 1, x \in R$, is		
	(a) $(3, +\infty)$	(b) $(-1, 1) \cup (3, +\infty)$	(c) $[-1, 1] \cup [3, +\infty)$	(d) None of these
441.	The equation $ x + 1 x - x$	$1 = a^2 - 2a - 3$ can have real solution	utions for x if a belongs to	
	(a) $(-\infty, -1] \cup [3, +\infty)$	(b) $[1-\sqrt{5}, 1+\sqrt{5}]$	(c) $[1-\sqrt{5}, -1] \cup [3, 1+\sqrt{5}]$	(d) None of these
			Л	Aiscellaneous Problems
		Pagia La		Aiscellaneous Problems
		Basic Le		Aiscellaneous Problems
442.	If $x^2 + 2x + 2xy + my - 3$ h		evel	Aiscellaneous Problems
442.	If $x^2 + 2x + 2xy + my - 3$ h (a) $-6, -2$	Basic Le as two rational factors, then the (b) -6, 2	evel	
	(a) −6, −2	as two rational factors, then the	e value of m will be (c) $6, -2$	[Rajasthan PET 1990] (d) 6, 2
443.	(a) $-6, -2$ If $x^2 - hx - 21 = 0, x^2 - 3hx$ (a) 1	as two rational factors, then the (b) -6 , 2 +35 = 0 ($h > 0$) has a common ro (b) 2	e value of m will be (c) $6, -2$	[Rajasthan PET 1990] (d) 6, 2
443.	(a) $-6, -2$ If $x^2 - hx - 21 = 0, x^2 - 3hx$	as two rational factors, then the (b) -6 , 2 +35 = 0 ($h > 0$) has a common ro (b) 2	e value of m will be (c) $6, -2$ ot, then the value of h is equ	[Rajasthan PET 1990] (d) 6, 2 Jal to [EAMCET 1986]
443. 444.	(a) $-6, -2$ If $x^2 - hx - 21 = 0, x^2 - 3hx$ (a) 1 Minimum value of $(a + b)$ (a) 4	as two rational factors, then the (b) -6, 2 +35 = 0 (h > 0) has a common ro (b) 2 + $c + d \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} \right)$ is (b) 9	e value of m will be (c) $6, -2$ ot, then the value of h is equ (c) 3 (c) 16	[Rajasthan PET 1990] (d) 6, 2 alal to [EAMCET 1986] (d) 4 (d) 25
443. 444.	(a) $-6, -2$ If $x^2 - hx - 21 = 0, x^2 - 3hx$ (a) 1 Minimum value of $(a + b)$ (a) 4 Let $f(x) = ax^3 + 5x^2 - bx + 1$	as two rational factors, then the (b) -6, 2 +35 = 0 (h > 0) has a common ro (b) 2 + $c + d l \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} \right)$ is (b) 9 1. If $f(x)$ when divided by $2x + 1$ leave	e value of <i>m</i> will be (c) $6, -2$ ot, then the value of <i>h</i> is equ (c) 3 (c) 16 aves 5 as remainder, and $f'(x)$ i	[Rajasthan PET 1990] (d) 6, 2 1al to [EAMCET 1986] (d) 4 (d) 25 s divisible by $3x - 1$ then
443. 444. 445.	(a) $-6, -2$ If $x^2 - hx - 21 = 0, x^2 - 3hx$ (a) 1 Minimum value of $(a + b)$ (a) 4 Let $f(x) = ax^3 + 5x^2 - bx + 1$ (a) $a = 26, b = 10$	as two rational factors, then the (b) -6, 2 + 35 = 0 (h > 0) has a common ro (b) 2 + $c + d$ $\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right)$ is (b) 9 1. If $f(x)$ when divided by $2x + 1$ leas (b) $a = 24, b = 11$	e value of m will be (c) $6, -2$ ot, then the value of h is equ (c) 3 (c) 16	[Rajasthan PET 1990] (d) 6, 2 alal to [EAMCET 1986] (d) 4 (d) 25
443. 444. 445.	(a) $-6, -2$ If $x^2 - hx - 21 = 0, x^2 - 3hx$ (a) 1 Minimum value of $(a + b)$ (a) 4 Let $f(x) = ax^3 + 5x^2 - bx + 1$ (a) $a = 26, b = 10$ $x^{3^n} + y^{3^n}$ is divisible by .	as two rational factors, then the (b) -6, 2 + 35 = 0 (h > 0) has a common ro (b) 2 + $c + d$ $\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right)$ is (b) 9 1. If $f(x)$ when divided by $2x + 1$ leas (b) $a = 24, b = 11$	e value of <i>m</i> will be (c) $6, -2$ ot, then the value of <i>h</i> is equ (c) 3 (c) 16 aves 5 as remainder, and $f'(x)$ i (c) $a = 26, b = 12$	[Rajasthan PET 1990] (d) 6, 2 (al to [EAMCET 1986] (d) 4 (d) 25 (d) 25 (d) is divisible by $3x - 1$ then (d) None of these
443. 444. 445.	(a) $-6, -2$ If $x^2 - hx - 21 = 0, x^2 - 3hx$ (a) 1 Minimum value of $(a + b)$ (a) 4 Let $f(x) = ax^3 + 5x^2 - bx + 1$ (a) $a = 26, b = 10$	as two rational factors, then the (b) -6, 2 +35 = 0 ($h > 0$) has a common ro (b) 2 + $c + d$) $\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right)$ is (b) 9 1. If $f(x)$ when divided by $2x + 1$ leas (b) $a = 24, b = 11$ x + y if	e value of <i>m</i> will be (c) $6, -2$ ot, then the value of <i>h</i> is equ (c) 3 (c) 16 aves 5 as remainder, and $f'(x)$ i	[Rajasthan PET 1990] (d) 6, 2 (a) al to [EAMCET 1986] (d) 4 (d) 25 (d) 25 (c) $3x - 1$ then (d) None of these
443. 444. 445. 446.	(a) $-6, -2$ If $x^2 - hx - 21 = 0, x^2 - 3hx$ (a) 1 Minimum value of $(a + b)$ (a) 4 Let $f(x) = ax^3 + 5x^2 - bx + 1$ (a) $a = 26, b = 10$ $x^{3^n} + y^{3^n}$ is divisible by . (a) <i>n</i> is any integer ≥ 0 (c) <i>n</i> is an even positive	as two rational factors, then the (b) -6, 2 +35 = 0 ($h > 0$) has a common ro (b) 2 + $c + d$) $\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right)$ is (b) 9 1. If $f(x)$ when divided by $2x + 1$ leas (b) $a = 24, b = 11$ x + y if	e value of <i>m</i> will be (c) $6, -2$ ot, then the value of <i>h</i> is equ (c) 3 (c) 16 aves 5 as remainder, and $f'(x)$ i (c) $a = 26, b = 12$ (b) <i>n</i> is an odd positive int	[Rajasthan PET 1990] (d) 6, 2 (a) al to [EAMCET 1986] (d) 4 (d) 25 (d) 25 (c) $3x - 1$ then (d) None of these
443. 444. 445. 446. 447.	(a) $-6, -2$ If $x^2 - hx - 21 = 0, x^2 - 3hx$ (a) 1 Minimum value of $(a + b)$ (a) 4 Let $f(x) = ax^3 + 5x^2 - bx + 1$ (a) $a = 26, b = 10$ $x^{3^n} + y^{3^n}$ is divisible by . (a) <i>n</i> is any integer ≥ 0 (c) <i>n</i> is an even positive The number of solution of (a) One	as two rational factors, then the (b) -6, 2 + 35 = 0 ($h > 0$) has a common ro (b) 2 + $c + d$) $\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right)$ is (b) 9 1. If $f(x)$ when divided by $2x + 1$ leas (b) $a = 24, b = 11$ x + y if integer of the equation $ x = \cos x$ is (b) Two	e value of <i>m</i> will be (c) $6, -2$ ot, then the value of <i>h</i> is equ (c) 3 (c) 16 aves 5 as remainder, and $f'(x)$ i (c) $a = 26, b = 12$ (b) <i>n</i> is an odd positive int (d) <i>n</i> is a rational number (c) Three	[Rajasthan PET 1990] (d) 6, 2 (al to [EAMCET 1986] (d) 4 (d) 25 (d) 25 (d) is divisible by $3x - 1$ then (d) None of these
443. 444. 445. 446. 447.	(a) $-6, -2$ If $x^2 - hx - 21 = 0, x^2 - 3hx$ (a) 1 Minimum value of $(a + b)$ (a) 4 Let $f(x) = ax^3 + 5x^2 - bx + 1$ (a) $a = 26, b = 10$ $x^{3^n} + y^{3^n}$ is divisible by . (a) <i>n</i> is any integer ≥ 0 (c) <i>n</i> is an even positive The number of solution of (a) One	as two rational factors, then the (b) -6, 2 + 35 = 0 (h > 0) has a common ro (b) 2 + $c + d rrac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$ is (b) 9 1. If $f(x)$ when divided by $2x + 1$ leas (b) $a = 24, b = 11$ x + y if integer of the equation $ x = \cos x$ is	e value of <i>m</i> will be (c) $6, -2$ ot, then the value of <i>h</i> is equ (c) 3 (c) 16 aves 5 as remainder, and $f'(x)$ i (c) $a = 26, b = 12$ (b) <i>n</i> is an odd positive int (d) <i>n</i> is a rational number (c) Three	[Rajasthan PET 1990] (d) 6, 2 (al to [EAMCET 1986] (d) 4 (d) 25 (d) 25 (d) 25 (eger (d) None of these (eger (d) Zero

449.	• Let <i>R</i> =the set of real numbers, \downarrow = the set of integers, <i>N</i> = the set of natural numbers. If <i>S</i> be the solution set of											
	the equation $(x)^2 + [x]^2 = (x-1)^2 + [x+1]^2$, where (x) = the least integer greater then or equal to x and $[x]$ = the											
	greatest integer less than or equal to x, then											
	(a) $S = R$	(b) $S = R - Z$	(c) $S = R - N$	(d) None of these								
450.	The number of real roots	or $x^8 - x^5 + x^2 - x + 1 = 0$ is equ	al to									
	(a) 0	(b) 2	(c) 4	(d) 6								
451.	The number of positive real roots of $x^4 - 4x - 1 = 0$ is											
	(a) 3	(b) 2	(c) 1	(d) 0								
452.	The number of negative r	real roots of $x^4 - 4x - 1 = 0$ is										
	(a) 3	(b) 2	(c) 1	(d) 0								
453.	The number of complex r	boots of the equation $x^4 - 4x - 1$	=0 is									
	(a) 3	(b) 2	(c) 1	(d) 0								
454 .	$x^2 - 4$ is a factor of $f(x) =$	$= (a_1x^2 + b_1x + c_1).(a_2x^2 + b_2x + c_2)$	if									
	(a) $b_1 = 0, c_1 + 4a_1 = 0$		(b) $b_2 = 0, c_2 + 4a_2 = 0$									
	(c) $4a_1 + 2b_1 + c_1 = 0, 4a_2$	$+c_{2} = 2b_{2}$	(d) $4a_1 + c_1 = 2b_1, \ 4a_2 + 2b_2 + c_2 = 0$									

Quadratic Equations and Assignment (Basic and Advance Level)																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
а	с	а	d	d	с	d	d	b	d	d	d	с	d	с	a	с	b	d	С
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
с	d	с	с	b	с	d	с	b	с	b	с	a	a	b	с	b	b	b	с
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
a	С	a	a	d	d	С	a	a	С	b	а	a	a	a	d	b	b	С	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
C 01	a	C	b	a 9 -	d	с 9 -	a	a	a	d	c	b	d	b	b	b	C	b	a 100
81 d	82 с	83 b	84 b	85 b	86 a	8 7 с	88 с	89 b	90 d	91 b	92 с	93 b	94 с	95 b	96 a	97 b	98 a	99 a	100
101	102	103	104	105	a 106	107	108	109	110	111	112	113	114	115	a 116	117	a 118	a 119	a 120
c	b	c	b	a	a	a a	a	c	d	c	C	b	a	c	d	b	c	b	a
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
d	a	a	c	с	с	d	d	c	c	- J -	- 3 -	- 35	- J -	-35 b	d	, d	a	- 3 5	b
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
a	b	a	a,c	с	b	с	а	с	b	a	b	a	d	b	d	a	a	b	b
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
b	с	b	b	b	а	с	с	b	b	а	b	с	d	b	b	а	а	b	d
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
a	a	a	с	a	с	d	b	с	d	b	d	a	с	а	a	b	a	d	d
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
b	С	С	С	a	d	b	d	d	С	d	С	a	a	d	a	a	d	b	а
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
a	b	b	b	d	c	a	d	a	a	d	С	b	a	С	b	b	c	a	d
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255 b	256	257	258	259	260
b 261	b 262	a 263	с 264	с 265	b 266	d 267	b 268	d 269	с 270	a 271	с 272	d 273	b 274	b 275	b 276	a 277	b 278	a 279	a 280
201 b	202 a	203 C	204	205 b	200 a	207 C	200 a	209 d	2/0 b	2/1 b	2/2 b	2/3 b	2/4 a	2/3 a	2/0 a	2// a	2/0 b	2/9 d	200 a
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	29 7	298	299	300
d	a	a	c	a	b	, a	b	a	a	a	 a	b	d	_ 55	d	, d	d	b	c
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
a	b,c	a,c	b,c	b	b	b	с	b	b	d	с	b	С	a	d	b	a	d	с
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
a	d	b	а	С	a,c	С	b	a,c	С	a,b	с	с	а	a,b	с	с	с	d	d
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
с	b	b	b	с	с	с	с	a	a	b	b	a	c,d	b,c	a,b	a,c	с	с	a
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377		379	380
С	a	a,b,c,d	a	a	a	a	С	b	с	d	d	С	d	d	b	b	b	b	с
381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400
C	C	a	c	C	a	a	a	b	C	a	d	d	a,d	d	a	C	d	a	C
401	402	403	404	405	406	407	408	409	410	411	412	413	414	415 h	416	417	418	419	420 h
d	а	а	с	d	b	b,c	а	с	а	d	а	d	a,b, c	b	с	b	b	b	b
421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440
b	b	d	b	a	с	b	с	b	a	с	b	d	a	a	a,b	a	c	c	b

Indices and Surds **205**

441	442	443	444	445	446	447	448	449	450	451	452	453	454
a,c	С	d	С	с	a	b	b	b	а	С	с	b	a,b,c,d