
5
Quark Dynamics:
the Strong Interaction

In Chapter 3 we described the basic properties of quarks and in particular their

static properties and how these are used to construct the quark model of hadrons.

We now look in more detail at how quarks interact and the role of gluons in the

strong interactions. Thus we will be considering dynamical properties and the

theoretical framework that describes these interactions.

5.1 Colour

We saw in Chapter 3 that the quark model account of the hadron spectrum is very

successful. However, it begs several questions. One is: why are the observed states

overwhelmingly of the form 3q, 3�qq and q�qq? Another arises from a particular

assumption that was implicitly made in Chapter 3. This is: if two quarks of the

same flavour uu, dd, ss . . . are in the same spatial state, they must also be in the

same spin state, with their spins parallel. This can be seen very easily by

considering the baryon state omega-minus �� that is shown in Table 3.3 and

Figure 3.12.1 From its decay products, it may be deduced that this state has

strangeness S ¼ �3 and spin J ¼ 3
2

and thus in the quark model it has the

composition �� ¼ sss, where all three quarks have their spins parallel and there

is no orbital angular momentum between them. This means that all three like-

quarks have the same space and spin states, i.e. the overall wavefunction must be

symmetric, which violates the fundamental requirement of the Pauli principle. The

latter states that a system of identical fermions has a wavefunction that is overall

antisymmetric under the interchange of any two particles, because identical

1The discovery of the �� was a crucial step in gaining acceptance of the quark model of hadron
spectroscopy. The experiment is described in Chapter 15 of Tr75.
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fermions cannot simultaneously be in the same quantum state. The three s quarks

in the �� therefore cannot be in the same state. So how do they differ?

The �� is an obvious example of the contradiction, but it turns out that in order

for the predictions of the quark model to agree with the observed spectrum of

hadron multiplets, it is necessary to assume that overall baryon wavefunctions are

symmetric under the interchange of like quarks.2 In order to resolve this contra-

diction, it is necessary to assume that a new degree of freedom exists for quarks,

but not leptons, which is somewhat whimsically called colour. The basic properties

of colour are as follows.

1. Any quark u, d, s, . . . can exist in three different colour states.3 We shall see

later that there is direct experimental evidence that just three such states exist,

which we denote r, g, b for ‘red’, ‘green’ and ‘blue’ respectively.

2. Each of these states is characterized by the values of two conserved colour

charges, denoted IC
3 and YC, which are strong interaction analogues of the

electric charge in electromagnetic interactions.4 These charges depend only on

the colour states r, g, b and not on the flavours u, d, s, . . . The particular values

for quarks and antiquarks are given in Table 5.1, and are a consequence of a

fundamental symmetry of the strong interaction (called SU(3) colour symme-

try), which we will not pursue here. For multiparticle states, the colour charges

of the individual states are simply added.

3. Only states with zero values for the colour charges are observable as free

particles; these are called colour singlets. This is the hypothesis of colour

confinement. It can be derived, at least approximately, from the theory of strong

interactions we shall describe.

2In Problem 3.4 it was shown explicitly that otherwise the wrong hadron spectrum is predicted.
3Needless to say, nothing to do with ‘real’ colour!
4This is one reason we were careful to use the qualifier ‘electric’ when talking about charge in the context of
electromagnetic interactions in earlier chapters.

Table 5.1 Values of the colour charges IC
3 and YC for the

colour states of quarks and antiquarks

(a) Quarks (b) Antiquarks

IC
3 YC IC

3 YC

r 1
2

1
3

�rr � 1
2

� 1
3

g � 1
2

1
3

�gg 1
2

� 1
3

b 0 � 2
3

�bb 0 2
3
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Returning to the quark model, it can be seen from Table 5.1 that a 3q state

can only have both IC
3 ¼ 0 and YC ¼ 0 if we have one quark in an r state, one in a

g state and one in a b state. Hence in the ��, for example, all three s quarks

are necessarily in different colour states, and thus the Pauli principle can be

satisfied. Formally, we are assuming that the total wavefunction is the product of a

spatial part  spatialðxÞ and a spin part  spin, as usual, but also a colour wavefunction

 colour, i.e.

� ¼  spatialðxÞ spin  colour� ð5:1Þ

The Pauli principle is now interpreted as applying to the total wavefunction

including the colour part  colour. The combined space and spin wavefunctions can

then be symmetric under the interchange of quarks of the same flavour (to agree

with experiment) provided the colour wavefunction is antisymmetric. The struc-

ture of  colour is

 colour ¼
1ffiffiffi
6

p R1G2B3 þ G1B2R3 þ B1R2G3 � R1B2G3 � B1G2R3 � G1R2B3½ 	;

ð5:2Þ

where R, G and B represent quarks with colour red, green and blue, respectively.

One can also see from Table 5.1 part of the answer to the first question of this

section. Free quarks and fractionally charged combinations like qq and qq�qq are

forbidden by colour confinement, in accordance with experimental observation. On

the other hand, the combinations q�qq and 3q used in the simple quark model are

allowed. More unusual combinations like qq�qq�qq and qqqq�qq, which could give rise to

so-called ‘exotic’ mesons and baryons, respectively, are not in principle forbidden

by colour confinement and, as mentioned in Chapter 3, recent experiments may

possibly have provided some evidence for a small number of these, but this has yet

to be confirmed.

5.2 Quantum Chromodynamics (QCD)

The theory that describes strong interactions in the standard model is called

quantum chromodynamics, or QCD for short (chromos means colour in Greek).

Although QCD is not tested to the same extent or precision as quantum

electrodynamics (QED), the quantum theory of electromagnetic interactions, it

is nevertheless in impressive agreement with a large body of experimental data.

QCD is similar to QED in that both describe interactions that are mediated by

massless spin-1 bosons; gluons in the former case and photons in the latter. Both

theories are of the type called gauge theories which, as mentioned in Chapter 1,

refer to a particular symmetry of the theory. However, there is a very important

difference in the two interactions that we now discuss.
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Gluons, the force carriers of the strong interaction, have zero electric charge,

like photons, but unlike photons, which couple to electric charge, gluons couple to

colour charges. This leads immediately to the flavour independence of strong

interactions discussed in Chapter 3; that is, the different quark flavours a ¼ u,

d, s, c, b and t have identical strong interactions. We now see that this is because

they are postulated to exist in the same three colour states r, g, b, with the

same possible values of the colour charges. Flavour independence has its most

striking consequences for u and d quarks, which have almost equal masses, where

it leads to the phenomenon of isospin symmetry. This results, among other

things, in the near equality of the masses of the proton and neutron, and charge

states within other multiplets such as pions and kaons, all of which we have

seen in Chapter 3 are confirmed by experiment. We will examine the con-

sequence of flavour independence for the bound states of the heavy quarks c

and b in Section 5.3.

Although QED and QCD both describe interactions, albeit of very different

strengths, that are mediated by massless spin-1 bosons which couple to conserved

charges, there is a crucial difference between them that profoundly effects

the characters of the resulting forces. While the photons which couple to the

electric charge are themselves electrically neutral, gluons have non-zero values of

the colour charges to which they couple. This is illustrated in Figure 5.1, which

shows a particular example of a quark–quark interaction by gluon exchange.

In this diagram, the colour states of the two quarks are interchanged, and the

gluon has non-zero values of the colour quantum numbers, whose values follow

from colour charge conservation at the vertices, i.e.

IC
3 ðgÞ ¼ IC

3 ðrÞ � IC
3 ðbÞ ¼

1

2
ð5:3Þ

and

YCðgÞ ¼ YCðrÞ � YCðbÞ ¼ 1: ð5:4Þ

Figure 5.1 Example of quark--quark scattering by gluon exchange; in this diagram, the quark
flavours u and s are unchanged, but their colour states can change, as shown
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Just as quarks can exist in three colour states, gluons can exist in eight colour

states, although we will not need the details of these. The first thing implied by the

non-zero values of the colour charges is that gluons, like quarks, are confined and

cannot be observed as free particles. The second is that since gluons couple to

particles with non-zero colour charges, and since gluons themselves have non-zero

colour charges, it follows that gluons couple to other gluons. The two types of

gluon self-coupling that occur in QCD are given in Figure 5.2, which shows the

two lowest-order contributions to gluon–gluon scattering.

The first is a gluon exchange process in analogy to gluon exchange in quark–

quark scattering, which we have encountered previously (see Figure 1.3), while the

second involves a so-called ‘zero range’ or ‘contact’ interaction. If the forces

resulting from these interactions were attractive and sufficiently strong, they could

in principle lead to bound states of two or more gluons. These would be a new type

of exotic state called glueballs. Although some experiments claimed to have

detected these, at present there is little compelling evidence that they exist.5

The gluon–gluon interactions have no analogue in QED (photons couple to

electrically charged particles and hence do not couple directly to other photons)

and it can be shown that they lead to properties of the strong interaction that differ

markedly from those of the electromagnetic interaction. These properties are

colour confinement, which we have discussed above, and a new property called

asymptotic freedom. The latter is the statement that the strong interaction gets

weaker at short distances; conversely, as the distance between the quarks increases,

the interaction gets stronger.6 In this strong interaction regime the situation is very

complicated, and it has not yet been possible to evaluate the theory precisely. We

therefore have to rely on results obtained by numerical simulations of the theory;

the approach is called lattice gauge theory. In these simulations, the theory is

5A critical review is given in Ei04.
6Asymptotic freedom was postulated in 1973 by David Gross, David Politzer and Frank Wilczek, who were
subsequently awarded the 2004 Nobel Prize in Physics.

Figure 5.2 The two lowest-order contributions to gluon--gluon scattering in QCD: (a) one-
gluon exchange, (b) contact interaction
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evaluated at a grid of discrete points on a three-dimensional lattice and by making

the lattice spacing small enough it is hoped that the results of the true continuum

theory will be approximated. The calculations require very large ultra-fast

computers and precise results are difficult to obtain because of the approximations

that have to be made. Nevertheless, at present, the demonstration of confinement in

QCD rests largely on such simulations.7

5.3 Heavy Quark Bound States

Some of the features of QCD discussed above are illustrated by considering the

static potential between a heavy quark and an antiquark. Such systems give rise

to bound states and because the quarks are so heavy they move slowly enough

within the resulting hadrons to be treated non-relativistically to a first approxima-

tion. (This is one of the few places in particle physics where a non-relativistic

calculation is adequate.) This means that the rest energies of the bound states, and

hence their masses, can be calculated from the static potential between the quarks

in exactly the same way that the energy levels in the hydrogen atom are calculated,

although of course the potential is not Coulombic. In the present case, however, the

procedure is reversed, with the aim of determining the form of the static potential

from the rather precisely measured energies of the bound states.

The first such state to be discovered, the J= ð3097Þ8, is a bound state of the c�cc
system and is part of a family of such states given the name charmonium, by

analogy with positronium, the bound state of an electron and a positron. It is

identified with the n ¼ 1, 3S1 state of the c�cc system, where n is the principal

quantum number and we use the notation 2Sþ1LJ , with ðL, SÞ the angular

momentum between the quarks and their total spin, respectively. The discovery

of the J= ð3097Þ caused considerable excitement because it confirmed the

existence of the charm quantum number that had been predicted many years

earlier, even though the J= ð3097Þ itself has zero overall charm. It was hence a

very important piece of evidence in favour of the standard model.

The interpretation of the J= ð3097Þ as a c�cc bound state follows from its

unusually narrow width. For a state decaying predominantly (86 per cent) to

hadrons (mostly pions) by the strong interaction one would expect a width

measured in MeV, whereas the width of the J= ð3097Þ was only about 90 keV.

This meant that there was no possibility of an explanation in terms of just u, d and

s quarks. The preferred decay of the J= ð3097Þ would be via the mechanism

shown in Figure 5.3(a). However, this is forbidden by energy conservation because

7Lattice calculations also support the view that gluon–gluon forces are strong enough to give rise to
glueballs.
8The rather clumsy notation is because it was discovered independently by two groups, led by Burton Richer
and Samuel Ting. Richer’s group was studying the reactions eþe� ! hadrons and named it the  particle.
Ting’s group discovered it in pBe reactions and called it the J. It is now known as the J= . Richer and Ting
shared the 1976 Nobel Prize in Physics for the discovery.
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MJ= < 2MD, where MD is the mass of the lightest meson having non-zero charm,

the Dð1870Þ. (These latter states had already been seen in neutrino experiments,

but not clearly identified.) The mass 2MD is referred to as the charm threshold.

Since the direct decay to charmed mesons is forbidden, the only hadronic decays

allowed must proceed via mechanisms such as that of Figure 5.3(b) and diagrams

like this where initial and final quark lines are disconnected are known to be

heavily suppressed.9

The explanation for this in QCD is that since both the decaying particle and

the three pions in the final state are colour singlets, they can only be connected by

the exchange of a combination of gluons that is also a colour singlet, i.e. not the

exchange of a single gluon. Moreover, the J= ð3097Þ is known to be produced in

eþe� annihilations via photon exchange, so it must have a charge conjugation

C ¼ �1. Thus the minimum number of gluons exchanged is three. This is

illustrated in Figure 5.4. In contrast, if M > 2MD then the decay may proceed

via the exchange of low-momentum gluons as usual.

Subsequently, higher-mass charmonium states also with JPC ¼ 1��, where

P ¼ ð�1ÞLþ1
and C ¼ ð�1ÞLþS

, were discovered in eþe� reactions and states

with other JPC values were identified in their radiative decays. Thus the n ¼ 1; 1S0

9This is known as the OZI Rule after Okubo, Zweig and Iizuka who first formulated it. Another example
where it acts is the suppression of the decay �! �þ���0 compared with �! K �KK.

Figure 5.3 Quark diagrams for (a) the decay of a charmonium state to a pair of charmed
mesons, and (b) an example of a decay to non-charmed mesons

Figure 5.4 OZI-suppressed decay of a charmonium state below the D�DD threshold
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ground state 	cð2980Þ has been found from the decays

 ð3686Þ ! 	cð2980Þ þ 
 and J= ð3097Þ ! 	cð2980Þ þ 
 ð5:5Þ

and a series of states �ciði ¼ 1; 3Þ have been found in the decays

 ð3686Þ ! �ci þ 
� ð5:6Þ

The latter themselves decay and from an analysis of their decay products they are

identified with the n ¼ 1 states 3P0, 3P1 and 3P2. Some of these states lie below the

charm threshold and like the J= ð3097Þ are forbidden by energy conservation to

decay to final states with ‘open’ charm and thus have widths measured in keV.

Others lie above the charm threshold and therefore have ‘normal’ widths measure

in MeV. The present experimental situation for charmonium states with L � 2 is

shown in Table 5.2.

Later experiments established a spectrum of bottomium states, i.e. bound states

of the b�bb system. These are also shown in Table 5.2. By analogy with charmonium,

those bottomium states below the bottom threshold 2MB ¼ 10:56 GeV=c2, where

MB is the mass of the lightest meson with non-zero beauty quantum number, have

widths measured in keV, whereas those above this threshold have ‘normal’ widths

expected of resonances decaying via the strong interaction

The charmonium and bottomium states with L � 2 are shown in Figure 5.5 as

conventional energy level diagrams, where the energies are plotted relative to those

Table 5.2 Predicted c�cc and b�bb states with L � 2 and masses
up to and just above the charm and bottom thresholds
(3.74 GeV/c2 and 10.56 GeV/c2, respectively), compared with
experimentally observed states (masses are given in MeV/c2)

n2Sþ1LJ JPC c�cc state b�bb state

11S0 0�þ 	cð2980Þ 	bð9300Þ?
13S1 1�� J= ð3097Þ �ð9460Þ
11P1 1þ� hcð3526Þ?
13P0 0þþ �c0ð3415Þ �b0ð9860Þ
13P1 1þþ �c1ð3511Þ �b1ð9893Þ
13P2 2þþ �c2ð3556Þ �b2ð9913Þ
21S0 0�þ 	cð3654Þ?
23S1 1��  ð3686Þ �ð10 023Þ
23P0 0þþ �b0ð10 232Þ
23P1 1þþ �b1ð10 255Þ
23P2 2þþ �b3ð10 269Þ
33S1 1��  ð4040Þ �ð10 355Þ
43S1 1��  ð4160Þ �ð10 580Þ
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of the 3S1 ground states. There is a striking similarity in the levels of the two

systems, which suggests that the forces in the c�cc and b�bb are flavour independent, as

discussed in Chapter 3 and now seen to follow from the postulates of QCD. The

level structure is also very similar to that seen in positronium which suggests that,

as in positronium, there is a major contribution from a single-particle exchange

with the Coulomb-like form. In fact at short interquark distances r <� 0:1 fm, the

interaction is dominated by one-gluon exchange that we can write as

VðrÞ ¼ � a

r
; ð5:7Þ

where a is proportional to the strong interaction analogue of the fine structure

constant � in QED. Because of asymptotic freedom, the strength of the interaction

decreases with decreasing r, but for r < 0:1 fm this variation is slight and can in

many applications be neglected.10

In strong interactions we also have to take account of the fact that the quarks are

confined. The latter part of the potential cannot at present be calculated from QCD

and several forms are used in phenomenological applications. All reasonable forms

are found to give very similar results for the region of interest. If we choose a

linear form, then

VðrÞ 
 b r: ð5:8Þ

This is an example of a confining potential, in that it does not die away with

increasing separation and the force between the quark and antiquark cannot be

neglected, even when they are very far apart. The full potential is thus

VðrÞ ¼ � a

r
þ br: ð5:9Þ

If the form (5.9) is used in the Schrödinger equation for the c�cc and b�bb systems,

taking account of their different masses, it is found that a good fit to both sets of

energy levels can be obtained for the same values a 
 0:48 and b 
 0:18 GeV2,

which confirms the flavour independence of the strong interaction and is evidence

for QCD and the standard model.

5.4 The Strong Coupling Constant and Asymptotic Freedom

The strong interaction derives its name from the force that, among other things,

binds quarks into hadrons. However, some remarkable phenomena depend on the

fact that the interaction gets weaker at short distances; that is, on asymptotic

10The equivalent coupling in QED also varies with distance, but the variation is very small and can usually be
neglected.
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freedom. Such short-distance interactions are associated with large momentum

transfers qj j between the particles, with jqj ¼ Oð�h=rÞ, where r is the distance at

which the interaction occurs. Hence in discussing scattering from a static potential,

like the one above, we can regard the strong coupling �s as decreasing with

increasing momentum transfer, rather than with decreasing r.

In general, the strength of the interaction can be shown to depend on the squared

four-momentum transfer

Q2 � E2
q=c2 � q2; ð5:10Þ

which was introduced in Chapter 2. Specifically, it can be shown that the QCD

coupling constant �s is given to a good approximation by

�s ¼
12�

ð33 � 2NfÞ ln Q2=�2ð Þ ; ð5:11Þ

where Nf is the number of quark flavours u, d, s, . . . . , with 4m2
qc4 < Q2, and

Q2 � �2. The constant � is a scale parameter that must be determined from

experiment. Thus QCD does not predict the absolute value of �s, but rather its

dependence on Q2. The value of � may be found by measuring the coupling

constant in a variety of processes (two of which will be discussed later in this

chapter) giving values consistent with

� ¼ 0:2 � 0:1 GeV=c: ð5:12Þ

Because �s varies with Q2, it is often referred to as the running coupling constant.

The values of �sðQ2Þ corresponding to Equation (5.12) are plotted in Figure 5.6. The

Figure 5.6 The running coupling constant �s corresponding to four flavours and a scale
parameter � ¼ 0:2 � 0:1 GeV/c; the dashed, solid and dot-dashed curves correspond to
� ¼ 0:1 ; 0:2 and 0:3, respectively
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variation with Q2 is small at large Q2 and over limited Q2 regions it can often be

neglected. In this large Q2 region, the coupling is sufficiently weak that calcula-

tions can be performed with reasonable accuracy by retaining only diagrams of

lowest and next-to-lowest order; and sometimes the short-range strong interaction

can be neglected to a first approximation, as we shall see.

Although there are other forces that increase with increasing separation (for

example, the force between two particles connected by a spring or elastic string),

the difference between those and the present case is that in the former cases

eventually something happens (for example, the string breaks) so that the particles

(or the ends of the string) become free. This does not happen with the strong force.

Instead, the energy stored in the colour field increases until it becomes sufficiently

large to create q�qq pairs and eventually combinations of these will appear as physical

hadrons. This latter process is called fragmentation and is rather poorly understood.

The behaviour of the strong interaction as a function of distance (or equivalently

momentum transfer) is so unlike the behaviour of other forces we are familiar with

(e.g. gravity and electromagnetism) that it is worth looking at why this is.

In QED, single electrons are considered to emit and reabsorb photons con-

tinually, as shown in Figure 5.7(a). Such a process is an example of a so-called

quantum fluctuation, i.e. one particle converting to two or more particles for a

finite time. This is allowed provided the time and the implied violation of energy

conservation are compatible with the uncertainty principle. Of course if another

electron is nearby, then it may absorb the photon and we have the usual one-photon

exchange scattering process of Figure 5.7(b).

The emitted photon may itself be subject to quantum fluctuations, leading to more

complicated diagrams like those shown in Figure 5.8(a). Thus the initial electron

emits not only photons, but also indirectly electron–positron pairs. These are

referred to as a ‘sea’ of virtual electrons (cf. comments in Chapter 3 in the context

of the quark model). The equivalent contribution to elastic electron–electron

scattering is shown in Figure 5.8(b).

Figure 5.7 (a) The simplest quantum fluctuation of an electron, and (b) the associated
exchange process
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These virtual processes are collectively referred to as vacuum polarization

effects.11 The production of virtual eþe� pairs produces a shielding effect, so that

the charge and the strength of the interaction �, as seen from a distance, will appear

altered. Detailed calculations show that if we write the Coulomb potential as

�effðrÞ ¼
�effðrÞ�hc

r
; ð5:13Þ

then

�eff ¼ � 
 1=137 ð5:14Þ

for

r � rC � �h=mc ¼ 3:9 � 10�13 m; ð5:15Þ

but for r � rC, the value of � is somewhat larger and increases as r becomes

smaller. In other words, the strength of the interaction increases at very short

distances. Formally, without proof, the QED coupling �emðQ2Þ is given by

�emðQ2Þ ¼ �ð
2Þ 1 � 1

3�
�ð
2Þln Q2


2

� �� ��1

; ð5:16Þ

where 
2 is a low-energy value of Q2 at which the value of � is known. If, for

example, we take 
 ¼ 1 MeV=c and � ¼ 1=137, i.e. the value of the fine structure

constant as found from low-energy interactions, then at the mass of the Z0 boson,

� 
 1=135. Thus the electromagnetic coupling increases with energy-transfer, but

only very slowly.

11The name arises from the analogy of placing a charge in a dielectric medium. This aligns the particles of
the medium and produces a net polarization.

Figure 5.8 (a) A more complicated quantum fluctuation of the electron, and (b) the
associated exchange process
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Vacuum polarization effects have measurable consequences. For example, the

2S state in hydrogen is predicted to be more tightly bound than it would be in a

pure Coulomb potential. The increased binding is only 2:2 � 10�7 eV, but never-

theless it is confirmed by extremely accurate measurements on the hydrogen

spectrum. There are also very small corrections to the magnetic moment of the

electron that have been verified experimentally to extraordinary precision.

Quantum fluctuations also exist in QCD and also give rise to a variation of the

interaction strength with distance. If, by analogy with QED, we consider quark–

quark scattering, then the two lowest-order vacuum polarization corrections are

shown in Figure 5.9. The first of these (Figure 5.9(a)) is analogous to virtual eþe�

production in QED and also leads to a screening effect. However, the second

diagram (Figure 5.9(b)) has no counterpart in QED, because there are no direct

photon self-couplings. Calculations show that this diagram leads to an antiscreen-

ing effect that is larger than the screening effect from Figure 5.9(a) and so the net

effect is that the interaction grows weaker at short distances, i.e. asymptotic

freedom. Formally, the strong interaction coupling �s is given by a formula

analogous to that for �em above, except the coefficient of the logarithmic term is

different and, crucially, its sign is positive:

�sðQ2Þ ¼ �sð
2Þ 1 þ �sð
2Þ
12�

ð33 � 2NfÞlnðQ2=
2Þ
� ��1

; ð5:17Þ

where again 
2 is a low-energy value of Q2 at which the value of �s is known and

Nf is the number of quark flavours that take part in the interaction.

5.5 Jets and Gluons

A striking feature of many high-energy particle collisions is the occurrence of jets

of hadrons in the final state. We have already mentioned these in Section 3.2.1

when we discussed the experimental evidence for quarks and again when we

Figure 5.9 The two lowest-order vacuum polarization corrections to one-gluon exchange in
quark--quark scattering
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discussed basic properties of quarks and gluons interactions earlier in this chapter.

They have been extensively studied in the reaction

eþ þ e� ! hadrons ð5:18Þ

at high energies using colliding beam experiments, which were discussed in

Chapter 4. High-energy electrons and positrons collide head-on, with equal and

opposite momenta, so that the total momentum of the hadrons produced cancels

out to zero in order to conserve momentum. This is a particularly ‘clean’ reaction,

because the initial particles are elementary, without internal structure.

In the centre-of-mass energy range 15–40 GeV, electron–positron annihilation

into hadrons is dominated by the production of jets. These can be regarded as

occurring in two stages: (1) a primary electromagnetic process eþ þ e� ! q þ �qq
(due to photon exchange) leading to the production of a quark–antiquark pair,

followed by (2) fragmentation (the concept we met in discussing asymptotic

freedom) which converts the high-energy q�qq pair into two jets of hadrons. This is

illustrated in Figure 5.10.

The fragmentation process that converts the quarks into hadrons is very

complicated, and the composition of the jets – i.e. the numbers and types of

particles in the jet and their momenta – varies from event to event. However, the

direction of a jet, defined by the total momentum vector

P ¼
X

i

pi; ð5:19Þ

where the sum extends over all the particles within the jet, closely reflects the

parent quark or antiquark direction. This is because the QCD interaction is

relatively weak at very short distances (asymptotic freedom), and the quark and

antiquark do not interact strongly until they are separated by a distance r of order

1 fm. At these relatively large distances, only comparatively small momenta can be

transferred, and hence the jets that subsequently develop point almost exactly in

the initial quark and antiquark directions. That is, the jet angular distribution

relative to the electron beam direction reflects the angular distributions of the

quark and antiquark in the basic reaction eþ þ e� ! q þ �qq. The latter can easily

Figure 5.10 Basic mechanism of two-jet production in electron--positron annihilation
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be calculated in QED as it is a purely electromagnetic process, and is in excellent

agreement with the observed angular distribution of the jets. This is one of the

pieces of evidence for the existence of quarks that was cited in Chapter 3 and again

at the start of the present chapter.

Although the dominant process in electron–positron annihilation into hadrons is

the formation of two ‘back-to-back’ jets, occasionally we would expect a high-

momentum gluon to be emitted by the quark or anti-quark before fragmentation

occurs, in much the same way as a high-energy electron sometimes emits a photon

(i.e. bremssrahlung). The quark, antiquark and gluon then all fragment into

hadrons, leading to a three-jet event. A computer reconstruction of such an

event in a jet chamber is shown in Figure 5.11.

Events like these provided the first unambiguous evidence for gluons, because

the angular distributions of the jets are found to be in good agreement with the

theoretical expectation for spin-1 gluons, but are inconsistent with what would

be expected if, for example, the third jet originated from a particle of spin-0. The

ratio of three-jet to two-jet events can also be calculated, assuming that the third jet is

a gluon, because the probability that a quark or antiquark will emit a gluon is

determined by the strong coupling �s, in the same way that the probability that an

electron or positron will emit a photon is determined by the fine structure constant �.

This leads to a value of�s and hence�, the QCD scale parameter. The value obtained

is consistent with Equation (5.12) found from other determinations and lends further

support for the whole picture of quarks interacting via the exchange of gluons.

5.6 Colour Counting

What evidence is there that quarks exist in just three colour states? This question can

be settled by using data from electron–positron annihilation. The cross-sections for

Figure 5.11 Computer reconstruction of a three-jet event in electron--positron annihilation
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electron–positron annihilation to hadrons and for electron–positron annihilation to

muons12 both decrease rapidly with energy, but their ratio

R � �ðeþe� ! hadronsÞ
�ðeþe� ! 
þ
�Þ ð5:20Þ

is almost energy independent. The near constancy of this ratio follows from the

dominance of the two-step mechanism of Figure 5.10, with the total annihilation

rate being determined by that of the initial reaction eþe� ! q þ �qq. The value of

the ratio R then directly confirms the existence of three colour states, each with the

same electric charge, for each quark flavour.

To understand this, let us suppose that each quark flavour f ¼ u, d, s . . . exists

in NC colour states, so that NC ¼ 3 according to QCD, while NC ¼ 1 if the colour

degree of freedom does not exist. Since the different colour states all have the same

electric charge, they will all be produced equally readily by the mechanism of

Figure 5.10, and the rate for producing quark pairs of any given flavour f ¼ u, d,

s, . . . will be proportional to the number of colours NC. The cross-section is also

proportional to the squared charge of the produced pair (because this is a first-order

electromagnetic process), and since muon pairs are produced by an identical

mechanism, we obtain

�ðeþe� ! q�qqÞ ¼ NC e2
f �ðeþe� ! 
þ
�Þ; ð5:21Þ

where ef is the electric charge, in units of e, on a quark of flavour f.

The cross-section for eþ þ e� ! hadrons will receive an additional contribution

of the form of Equation (5.21) when the energy passes a threshold for a new quark

flavour to be produced. Thus R at low energies will have a series of ‘steps’

corresponding to the production of pairs of new quarks and this is what is observed

experimentally. At high energies above the threshold for the production of b�bb pairs

and assuming that hadron production is completely dominated by the two-step

process of Figure 5.10, we would have13

R ¼ R0 � NCðe2
u þ e2

d þ e2
s þ e2

c þ e2
bÞ ¼ 11NC=9: ð5:22Þ

When the small contribution from the three-jet events and other corrections of

order �s are taken into account, this expression for R is modified to

R ¼ R0ð1 þ �s=�Þ; ð5:23Þ

12The cross-section for the production of muon pairs is essentially a purely electromagnetic one, except at
very high energies where the effect of the weak interaction may be seen. This will be discussed in Chapter 6.
13There is no contribution from the top quark because it is too heavy to be produced, even at the high
energies we are considering.
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giving rise to a weak energy dependence of R from the energy dependence of �s

discussed earlier (Equation (5.17)). Although these corrections of order �s are

small compared to the dominant contribution, they must be included if the most

precise experimental data on R are to be accounted for. The data are in excellent

agreement with the theoretical prediction for the value NC ¼ 3 (see Figure 5.12)

and hence prove that quarks exist in just three colour states.

5.7 Deep Inelastic Scattering and Nucleon Structure

In Chapter 2 we discussed the scattering of electrons from nuclei to determine their

radial charge distributions. This was done by assuming a form for the charge

distribution, calculating the resulting form factor (i.e. the Fourier transform of the

charge distribution) and using it to fit experimental cross-sections. In a somewhat

similar way we can use high-energy inelastic scattering to investigate the charge

distribution within nucleons. This is referred to as deep inelastic scattering,

because the projectiles probe deep into the internal structure of the nucleon.

This type of interaction was mentioned in Section 2.9 in the context of classifying

nuclear reaction mechanisms. The original experiments of this type in particle

physics were done in the 1960s and provided the first definitive evidence for the

existence of quarks. We will deduce that nucleons have a sub-structure of point-

like charged constituents.14

14The pioneering work on deep inelastic scattering done by Jerome Friedman, Henry Kendall and Richard
Taylor resulted in their receiving the 1990 Nobel Prize in Physics.

Figure 5.12 Measured values of the cross-section ratio R and the theoretical prediction from
QCD for NC ¼ 3 colours; the dashed line shows the prediction without QCD corrections

168 CH5 QUARK DYNAMICS: THE STRONG INTERACTION



The dominant one-photon contribution to the inelastic scattering of a charged

lepton from a proton in the spectator quark model is shown in Figure 5.13. Unlike

elastic scattering, where at a given lepton energy E there is only one free variable

(e.g. the scattering angle), in inelastic scattering the excitation energy of the

nucleon adds a further degree of freedom, so we can define two independent

variables. These are usually taken to be �, defined by

2M� � W2c2 þ Q2 � M2c2 ð5:24Þ

and a dimensionless quantity (called the scaling variable) given by

x � Q2=2M�: ð5:25Þ

Here, M is the proton mass, W is the invariant mass of the final-state hadrons and

Q2 is the squared energy–momentum transfer

Q2 ¼ ðE � E0Þ2=c2 � ðp � p0Þ2: ð5:26Þ

The physical interpretation of x will be discussed below. In the rest frame of the

initial proton, � reduces to

� ¼ E � E0 ð5:27Þ

and so is the Lorentz-invariant generalization for the energy transferred from the

lepton to the proton.

In Chapter 2 we discussed several modifications to the formalism for describing

the structure of nuclei obtained from scattering experiments. Here we are dealing

with high-energy projectiles and so we will need to take all those corrections into

account. In particular, the magnetic interaction introduces a second form factor.

(cf Equation (2.14)). The two form factors, denoted W1 and W2, are called structure

Figure 5.13 Dominant one-photon exchange mechanism for inelastic lepton--proton
scattering where ‘ ¼ e or 
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functions in this context. In terms of these, the differential cross-section may be

written

d2�

d�dE0 ¼
d�

d�

� �
Mott

½W2ðQ2; �Þ þ 2W1ðQ2; �Þ tan2ð�=2Þ	; ð5:28Þ

where � is the lepton scattering angle. For values of W � 2:5 GeV=c2, the cross-

sections show considerable structure due to the excitation of nucleon resonances, but

above this mass they are smoothly varying. In the latter region, the values of the

structure functions can be extracted from the data by choosing suitable parameter-

izations and fitting the available data in an analogous way to the way charge

distributions of nuclei were deduced in Chapter 2.

Rather than W1 and W2, it is usual to work with two related dimensionless

structure functions defined by

F1ðx;Q2Þ � Mc2W1ðQ2; �Þ and F2ðx;Q2Þ � �W2ðQ2; �Þ: ð5:29Þ

It is a remarkable fact that at fixed values of x the structure functions have only a

very weak dependence on Q2. This behaviour is referred to as scaling and is

illustrated in Figure 5.14. As the Fourier transform of a spherically symmetric

point-like distribution is a constant, we conclude that the proton has a sub-structure

of point-like charge constituents.

The interpretation of scaling is simplest in a reference frame where the target

nucleon is moving with a very high velocity, so that the transverse momenta and

Figure 5.14 The structure function F2 of the proton as a function of x, for Q2 between 2 and
18 ðGeV=cÞ2 (reproduced from At82 with kind permission of Springer Science and Business
Media)
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rest masses of its constituents may be neglected. The structure of the nucleon is

then given by the longitudinal momentum of its constituents. This approach was

first adopted by Feynman and Bjorken, who called the constituents partons. (We

now identify charged partons with quarks and neutral partons with gluons.) In

the parton model, deep inelastic scattering is visualized as shown in Figure 5.15.

The target nucleon is a stream of partons each with four-momentum xP, where

P ¼ ðp; pÞ is the four-momentum of the nucleon and p ¼ pj j, is its (very large)

three-momentum, so that the nucleon mass may be neglected.

Suppose now that one parton of mass m is scattered elastically by the exchanged

photon of four-momentum Q. Then

ðxP þ QÞ2 ¼ ðx2P2 þ 2xP � Q þ Q2Þ ¼ m2c4 
 0: ð5:30Þ

If x2P2
�� �� ¼ x2M2c4 � Q2, then

x ¼ � Q2

2P � Q
¼ Q2

2M�
; ð5:31Þ

where the invariant scalar product has been evaluated in the laboratory frame

in which the energy transfer is � and the nucleon is at rest. This is our previous

definition Equation (5.25). Thus, the physical interpretation of x is the fractional

three-momentum of the parton in the reference frame where the nucleon has

a very high velocity. This is equivalent to having a parton of mass m stationary

in the laboratory system, with the elastic relation Q2 ¼ 2m�. So provided

Q2 � M2,

x ¼ Q2

2M�
¼ m

M
; ð5:32Þ

i.e. x may also be interpreted as the fraction of the nucleon mass carried by the

struck parton.

Figure 5.15 The parton model of deep inelastic scattering
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To identify the constituent partons with quarks we need to know their spins and

charges. For the spin, it can be shown that

F1ðx;Q2Þ ¼ 0 ðspin 0Þ ð5:33Þ

and

2xF1ðx;Q2Þ ¼ F2ðx;Q2Þ ðspin 1=2Þ: ð5:34Þ

The latter relation, known as the Callan–Gross relation, follows by comparing the

coefficients in the equation for the double differential cross-section Equation (5.28)

with that in Chapter 2 (Equation (2.14)). This gives

2W1=W2 ¼ 2�; ð5:35Þ

where � ¼ Q2=4m2 c2 and m is the mass of the target, in this case the mass of the

struck parton. Replacing W1 by F1=Mc2 and W2 by F2=�, gives

�

Mc2

F1

F2

¼ Q2

4m2c2
ð5:36Þ

and since now Q2 ¼ 2m�, we have m ¼ Q2=2� ¼ xM. Finally, using this mass in

Equation(5.36) yields the Callan–Gross relation. Figure 5.16 shows some results

for the ratio 2xF1=F2. It is clear that spin-1
2

is strongly favoured.

To deduce the parton charges is more complicated. We will assume that the

constituent partons are quarks and show that this is consistent with experimental

data. We start by defining qf ðxÞ to be the momentum distribution of a quark of

flavour f, i.e. qf ðxÞdx is the probability of finding in a nucleon a quark of flavour f,

with momentum fraction in the interval x to x þ dx. A given nucleon will consist of

a combination of valence quarks (i.e. those that give rise to the observed quantum

numbers in the quark model) and additional quark–antiquark pairs that are

continually produced and annihilated by the radiation of virtual gluons by the

quarks.15 (Recall the discussion of quantum fluctuations in electrodynamics in

Section 5.4.) Thus, in general, a structure function can be written as the sum of

contributions from quarks and antiquarks of all flavours. Also, from the cross-

section formula Equation (5.28), we would expect the structure functions to

involve the quark distributions weighted by the squares of the quark charges zf

(in units of e) for a given quark flavour f.

15These are the ‘sea’ quarks referred to in the discussion of the static quark model in Chapter 3.
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Thus, for example, F2 is

F2ðxÞ ¼ x
X

f

z2
f qf ðxÞ þ �qqf ðxÞ
� 	

: ð5:37Þ

If we concentrate on the scattering of charged leptons, i.e. electrons or muons, and

consider just the possibility of light quarks u, d and s within nucleons, then we

have (for ‘ ¼ e; 
)

F
‘p
2 ðxÞ ¼ x

1

9
ðd p þ �dd

pÞ þ 4

9
ðup þ �uupÞ þ 1

9
ðsp þ �sspÞ

� �
ð5:38aÞ

and

F‘n
2 ðxÞ ¼ x

1

9
ðd n þ �dd

nÞ þ 4

9
ðun þ �uunÞ þ 1

9
ðsn þ �ssnÞ

� �
; ð5:38bÞ

where, for example, un;p is the distribution of u quarks in the neutron and proton.

Using isospin symmetry, interchanging u and d quarks changes neutron to proton,

Figure 5.16 The ratio 2xF1=F2 at fixed x
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i.e. u $ d implies n $ p. Thus,

upðxÞ ¼ dnðxÞ � uðxÞ; ð5:39aÞ
dpðxÞ ¼ unðxÞ � dðxÞ; ð5:39bÞ

and

spðxÞ ¼ snðxÞ � sðxÞ; ð5:39cÞ

with similar relations for the antiquarks. Then if we work with a target nucleus

with equal numbers of protons and neutrons (an isoscalar target), its structure

function will have the approximate form (neglecting purely nuclear effects)

F‘N
2 ðxÞ ¼ 1

2
½F‘p

2 ðxÞ þ F‘n
2 ðxÞ	 ¼ 5

18
x
X

q¼d;u

½qðxÞ þ �qqðxÞ	 þ 1

9
x½sðxÞ þ �ssðxÞ	: ð5:40Þ

The second term is small because s quarks are only present in the sea component at

the level of a few percent. Thus the mean squared value of the charges of the u and

d quarks is approximately 5
18

.

The final step is to extract information from deep inelastic scattering using

neutrinos and antineutrinos as projectiles. This is more complicated because, as we

shall see in Chapter 6, neutrinos and antineutrinos couple differently to the different

quarks and antiquarks and there is also a third form factor involved. Without proof,

we shall just quote the result:

F�N
2 ðxÞ ¼ x

X
q¼d;u

½qðxÞ þ �qqðxÞ	: ð5:41Þ

There is no electric charge factor outside the summation because, just as quarks form

strong interaction isospin multiplets with different electric charges, the leptons also

form weak isospin multiplets, but in this case the resulting weak charge is the same

for all quarks.16

From Equation (5.40) and (5.41), we expect

F�N
2 ðxÞ � 18

5
F‘N

2 ðxÞ: ð5:42Þ

The experimental data illustrated in Figure 5.17 show that F‘N
2 ðxÞ and F�N

2 ðxÞ are

equal within errors except possibly at small values of x where antiquarks are more

important. Thus one can conclude that the partons do have charges 2
3

and � 1
3
, which

completes the evidence for identifying partons with quarks.

16Weak isospin will be discussed briefly in Chapter 6.

174 CH5 QUARK DYNAMICS: THE STRONG INTERACTION



Combining data from different experiments, with electrons, muons, neutrinos and

antineutrinos as projectiles, enables individual quark/parton momentum distribu-

tions to be extracted from combinations of cross-sections. Some typical results at

Q2 ¼ 10 ðGeV=cÞ2
are shown in Figure 5.18 for the combinations

QðxÞ ¼ dðxÞ þ uðxÞ ð5:43aÞ

and

�QQðxÞ ¼ �ddðxÞ þ �uuðxÞ: ð5:43bÞ

The difference

QvðxÞ � QðxÞ � �QQðxÞ ð5:44Þ

can be identified as the distribution of the valence quarks of the quark model. It can

be seen that Qv is concentrated around x 
 0:2 and dominates except at small

values of x where the antiquarks �qq in the sea distribution are important.

The results of Figure 5.18 reveal an interesting and unexpected result concerning

gluons within the nucleon. If we integrate the momentum distributions for quarks

and antiquarks over all x we might expect to recover the total momentum of the

nucleon, whereas the curves of Figure 5.18 yield a value of approximately 0.5.

Thus it follows that about 50 per cent of the momentum is carried by gluons.

Although scaling is approximately correct, it is certainly not exact. In Fig-

ure 5.19 we show some deep inelastic scattering data plotted in more detail. The

Figure 5.17 Comparison of F2ðxÞ from deep inelastic muon (data from Ar97) and neutrino
(data from Se97) scattering experiments; the data points are the average over a range of
Q2 > 2 ðGeV=cÞ2 and the error bars express the range of data values within the Q2 ranges
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deviations from scaling are due to QCD corrections to the simple quark model, i.e.

the quark in the proton that is struck by the exchanged photon can itself radiate

gluons. Again, without further details, the scaling violations are explained by QCD

using a value of the strong interaction parameter � that is consistent with that

obtained from other sources (e.g. the three-jet events that we have discussed

above).17

Finally, it is worth noting that the nucleon structure functions and hence the

quark densities are found from lepton scattering experiments using a range of

different nuclear targets. We have seen that the average binding energy of nucleons

in heavy nuclei is of the order of 7–8 MeV per nucleon. As this energy is much

smaller than those used in deep inelastic scattering experiments, it might be

thought safe to ignore nuclear effects (except those due to the internal motion of

the nucleons – the Fermi momentum – that are typically about 200 MeV/c).

However, experiments have shown that the structure functions do in fact depend

17Scaling violations are discussed in detail, but at a more advanced level than here in, for example Ha84.

Figure 5.18 Quark and antiquark momentum distributions in the nucleon
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slightly on the nuclear medium. Although the effects are very small and not

enough to alter the conclusions of this chapter, it is a reminder that there are still

things to be learnt about the role of nuclear matter and that this may hold

information on the nuclear force in terms of the fundamental quark–gluon

interaction.

Problems

5.1 The general combination of m quarks and n antiquarks qm�qqn, with baryon number

B > 0 has a colour wavefunction that may be written r� g� b
 �rr ��� �gg
��� �bb

�


, where r�

means that there are � quarks in the r colour state, etc.. By imposing the condition of

colour confinement, show that m � n ¼ 3p, where p is a non-negative integer and

hence show that states with the structure qq are not allowed.

Figure 5.19 A compilation of values of F2 measured in deep inelastic electron and muon
scattering from a deuterium target -- different symbols denote different experiments; for clarity,
the data at different values of x have been multiplied by the factors shown in brackets and the
solid line is a QCD fit with � ¼ 0:2 GeV (adapted from Mo94, copyright the American Physical
Society)
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5.2 Draw the lowest-order Feynman diagrams for the following processes:

(a) the interaction of a quark and a gluon to produce a quark and a photon;

(b) the production of a single Z0-boson in a collision of protons and antiprotons;

(c) the annihilation of an electron and a positron to produce a pair of W-bosons.

5.3 A p�pp collider with equal beam energies is used to produce a pair of top quarks. Draw

a Feynman diagram for this process that involves a single gluon. If the three quarks

of the proton (or antiproton) carry between them 50 per cent of the hadron total

energy–momentum, calculate the minimum beam momentum required to produce

the t�tt pair.

5.4 The lowest Feynman diagram for inelastic electron–proton scattering at high

energies

e�ðE; pcÞ þ pðEP;PpcÞ ! e�ðE0; p0cÞ þ XðhadronsÞ

is shown in Figure 5.20.

Use energy–momentum conservation to show that the variable � defined in

Equation (5.24) becomes � ¼ E � E0 in the rest frame of the proton. Hence show

that the variable x defined in Equation (5.25) lies in the range 0 � x � 1 if the mass

of the electron is neglected.

5.5 If hadron–hadron total cross-sections are assumed to be the sum of the cross-sections

between their constituent quarks, show that the quark model predicts the

relationship:

�ð�pÞ ¼ �ðppÞ þ �ðK�nÞ � �ð�þpÞ:

5.6 The 3
 decay of positronium (the bound state of eþe�) has a width that in QED is

predicted to be �ð3
Þ ¼ 2ð�2 � 9Þ�6mec2=9�, where � is the fine structure constant.

If the hadronic decay of the c�cc bound state J=�ð3100Þ proceeds via an analogous

Figure 5.20 Kinematics of inelastic electron--proton scattering
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mechanism, but involving three gluons, use the experimental hadronic width

�ð3gÞ ¼ 80 keV to estimate the strong interaction coupling constant �s. Use an

analogous assumption to estimate �s from the radiative width �ðgg
Þ ¼ 0:16 keV of

the b�bb bound state �ð9460Þ.

5.7 Use Equations (5.38) and (5.39) to derive the Gottfried sum rule,

ð1

0

½Fep
2 ðxÞ � Fen

2 ðxÞ	 dx

x
¼ 1

3
þ 2

3

ð1

0

½�uuðxÞ � �ddðxÞ	dx;

where the quark distributions refer to the proton.

5.8 Estimate the cross-section ratio R defined in Equation (5.20) at centre-of-mass

energies ECM ¼ 2:8 GeV and 15 GeV. How would R change if the energy were

increased so that top quark pairs could be produced?

5.9 Common forms assumed for the momentum distributions of valence quarks in the

proton are:

FuðxÞ ¼ xuðxÞ ¼ að1 � xÞ3; FdðxÞ ¼ xdðxÞ ¼ bð1 � xÞ3:

If the valence quarks account for half the proton’s momentum, find the values of a

and b.

5.10 The cross-section �ðu�dd ! WþÞ near the mass of the Wþ is given by the Breit–

Wigner form

� ¼ �ð�hcÞ2��2��u �dd

3½4ðE � MW c2Þ2 þ �2	
;

where ðMW ;�Þ are the mass and total width of the Wþ, �u �dd is the partial width for

Wþ ! u�dd , E is the total centre-of-mass energy of the u�dd pair and ��¼ 2=E. Find the

maximum value of �, i.e. �max, given that the branching ratio for Wþ ! u�dd is 1=3.

Use this result and the quark distributions of Question 5.9 to find an expression for

the cross-section �ðp�pp ! Wþ þ � � �Þ in terms of the p�pp total centre-of-mass energyffiffi
s

p
and �max and evaluate your result for

ffiffi
s

p
¼ 1 TeV. (Use the narrow width, i.e.

delta function, approximation

�u�ddðEÞ ¼ �
�W

MW c2
�max� 1 � E2

ðMW c2Þ2

 !

in integrals.)
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